
A Hybrid Mobile Robot Architecture
with Integrated Planning and Control

Kian Hsiang Low
Inst. Engineering Science

National University of Singapore
7 Engineering Drive 1

Singapore 119260, Singapore

ieslkh@nus.edu.sg

Wee Kheng Leow
Dept. Computer Science

National University of Singapore
3 Science Drive 2

Singapore 117543, Singapore

leowwk@comp.nus.edu.sg

Marcelo H. Ang Jr.
Dept. Mechanical Engineering

National University of Singapore
10 Kent Ridge Crescent

Singapore 119260, Singapore

mpeangh@nus.edu.sg

ABSTRACT
Research in the planning and control of mobile robots has
received much attention in the past two decades. Two basic
approaches have emerged from these research efforts: de-
liberative vs. reactive. These two approaches can be dis-
tinguished by their different usage of sensed data and global
knowledge, speed of response, reasoning capability, and com-
plexity of computation. Their strengths are complementary
and their weaknesses can be mitigated by combining the two
approaches in a hybrid architecture. This paper describes
a method for goal-directed, collision-free navigation in un-
predictable environments that employs a behavior-based hy-
brid architecture with asynchronously operating behavioral
modules. It differs from existing hybrid architectures in two
important ways: (1) the planning module produces a se-
quence of checkpoints instead of a conventional complete
path, and (2) in addition to obstacle avoidance, the reac-
tive module also performs target reaching under the control
of a self-organizing neural network. The neural network is
trained to perform fine, smooth motor control that moves
the robot through the checkpoints. These two aspects fa-
cilitate a tight integration between high-level planning and
low-level control, which permits real-time performance and
easy path modification even when the robot is en route to
the goal position.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence;
I.2.6 [Artificial Intelligence]: Learning—connectionism

and neural nets; I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Design, Experimentation, Performance, Relia-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proc. 1st AAMAS’02 , pages 219-226, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

bility, Theory

Keywords
hybrid agent architectures, learning, mobile agents, percep-
tion and action in agents, performance, self-organizing sys-
tems

1. INTRODUCTION
Research in the planning and control of mobile robots has

received much attention in the past two decades. Two basic
approaches have emerged from these research efforts: de-
liberative vs. reactive. The top-down deliberative (planner-
based) approach [9, 15, 24, 27] uses a global world model
to generate the most appropriate sequence of actions for the
agent to reach a specified goal. By performing deliberate
planning, this approach can generate optimal sequences in
a static complex environment. Since the planning process
typically takes some time to execute, this approach cannot
react quickly to unforeseen changes in the environment.

The bottom-up reactive approach [8, 11] directly couples
sensed data to motor actions. It can thus respond robustly
and timely to unexpected obstacles and unforeseen changes
in the environment. However, since it lacks global knowl-
edge about the environment, the sequence of actions pro-
duced may not be globally optimal. It may also fail to react
correctly in a complex environment.

These two approaches can be distinguished by their dif-
ferent usage of sensed data and global knowledge, speed of
response, reasoning capability, and complexity of computa-
tion. Their strengths are complementary and their weak-
nesses can be mitigated by combining the two approaches
in a hybrid architecture. Among the existing hybrid frame-
works, [2, 3, 12, 14, 16, 28, 31, 32] emphasize high-level task
planning. On the other hand, [5, 6, 10, 23, 29] focus on in-
tegrating low-level reactive motor control with motion path
planning.

This paper describes a method for goal-directed, collision-
free navigation in complex, unpredictable environments that
employs a behavior-based hybrid architecture with asyn-
chronously operating behavioral modules. It differs from
most existing hybrid architectures in three important ways:

1. Our architecture is one of very few frameworks that
perform continuous response encoding [1] (infinite set
of responses) rather than discrete response encoding
(finite, enumerated set of responses). This method



can produce very low-level velocity or torque control
of motors to perform fine, smooth motion control.

2. In our framework, the planning module produces a se-
quence of checkpoints instead of a complete motion
path. The constraint of adhering strictly to a gener-
ated path no longer exists. This approach is adopted
in [23] as well.

3. The real-time performance of existing hybrid architec-
tures is still not optimal because the capability of the
reactive components has not been fully exploited. In
extreme cases, the workload of the high-level planning
module far exceeds that of the low-level reactive mod-
ule (e.g., [7, 18, 28, 33]). The planning module plans
the exact motion path and generates the detailed se-
quence of actions to be executed by the actuators. The
reactive module performs a single task, i.e., obstacle
avoidance, by making minor modifications to an oth-
erwise good course of action.

A good example of exploiting the strengths of reac-
tive robotics is the compliant motion control method
of Jamisola et al. [19] for controlling a reactive robot
manipulator to perform polishing task. By sensing and
reacting to the forces acting on the manipulator, this
method can provide real-time, fine, and smooth mo-
tion control for the manipulator to follow the contours
of the surface to be polished.

Our hybrid architecture is another example. In addi-
tion to obstacle avoidance, the reactive module in our
architecture also performs target reaching under the
control of a self-organizing neural network. The neu-
ral network is trained to perform real-time, fine, and
smooth motor control that moves the robot through
the checkpoints planned by the planning module.

These characteristics facilitate a tight integration between
high-level planning and low-level control, which permits real-
time performance and easy path modification even when the
robot is en route to the goal position.

2. INTEGRATED FRAMEWORK

2.1 Overview
Our integrated framework consists of two main blocks

with four modules (Fig. 1). At the highest level, the de-
liberative planning module produces a sequence of check-
points from the start point to the goal using a variation of
the cell decomposition method in [29]. The main difference
is that our algorithm operates in the robot’s workspace in-
stead of the configuration space. This is unlike conventional
planning algorithms (e.g., [22, 25]) that plot detailed paths.
Also, the current implementation focuses on achieving a sin-
gle goal at a time. To achieve multiple, possibly conflicting
goals, high-level planning algorithms may be used to order
the goals.

The reactive block consists of three levels. At the first
level, the target reaching module determines the motion
path between checkpoints. It senses the checkpoint state
relative to the current state and outputs appropriate motor
control signals. It contains a self-organizing neural network
which is trained to produce a sequence of low-level (mo-
tor velocity) control commands to move the robot from one
checkpoint to the next.

The next lower-level module, obstacle avoidance, senses
the presence of local unforeseen or moving obstacles and
produces additional motor control commands to repel the
robot away from the obstacles.

The lowest-level homeostatic control module senses the in-
ternal state of the robot to maintain internal stability by co-
ordinated responses that automatically compensate for en-
vironmental changes [1]. An example of this low-level con-
trol is operational space control [19, 20], which senses the
internal joint angles, velocities, and forces to regulate the
dynamic behavior of a robot manipulator during task exe-
cution. This module is not strictly required for mobile robot
navigation, but is crucial for mobile manipulation tasks [21]
where the robot is manipulating an object or the environ-
ment while its base is in motion.

The three lower-level modules constitute a reactive model
of motion control. The command fusion module combines
the control commands from the reactive components into a
final command that is sent to the actuators.

All the modules operate asynchronously at different rates.
The planning module typically operates at the time scale of
several seconds or minutes depending on task complexity.
The target reaching module operates at about 1 second be-
tween servo ticks while the obstacle avoidance module oper-
ates at intervals of 100 ms. The homeostatic control module
operates at 1 ms interval. The command fusion module is
activated as and when control commands are generated (see
Section 2.5 for details). The asynchronous execution of mod-
ules is the key to preserving reactive capabilities while allow-
ing improvement of performance by the deliberative planner.
In fact, the planner can be removed and the resulting de-
capitated architecture degrades to a purely reactive system
capable of less complex motion tasks.

The hybrid architecture is applicable to both mobile robot
and robot manipulator. This paper focuses on the target
reaching and obstacle avoidance modules and their integra-
tion with the planning module, with specific application
to mobile robot target reaching task. This task is per-
formed by an Extended Kohonen Map (EKM) [30] which is
trained to produce a sequence of motor velocity commands.
The method utilized in the planning module for generat-
ing checkpoints is described in a separate paper [26]. The
next section describes the control method, which is achieved
through indirect mapping of sensory input to motor con-
trol. The advantages of indirect-mapping EKM over direct-
mapping EKM [17, 34] will be discussed in the following
sections.

2.2 Indirect Mapping
Our indirect-mapping EKM adopts an egocentric repre-

sentation of the sensory input vector up = (α, d)T where
α and d are the direction and the distance of a checkpoint
relative to the robot’s current location and heading. At the
goal state at time T , up(T ) = (α, 0)T for any α.

If sensorimotor coordination is a linear problem, then the
motor control vector cp would be related to the sensory in-
put vector up by the linear equation

cp = Mup (1)

where M is a matrix of motor control parameters. The
control problem would be reduced to one of determining M
from training samples.

In practice, however, sensorimotor coordination is a non-



points
check

local
obstacles

actuators

obstacle
avoidance

reaching
target

command
fusioncontrol

homeostatic
states

internal

cp

co

ch

planningworld
model

real-time

reactive model

time scale
deliberative

modellong-term

Figure 1: A hybrid architecture for integrated planning and control. It combines the planning module of a
deliberative model and the behavioral-based control of a reactive model.

C
M

U

M
c

up

p

Figure 2: Target reaching module. EKM neurons
map the sensory input space U indirectly to the mo-
tor control space C through the control parameter
space M.

linear problem because a real motor takes a finite but non-
zero amount of time to accelerate or decelerate in order to
change speed. This nonlinear problem is further complicated
in non-holonomic robots. To solve the nonlinear problem,
the EKM is trained to partition the sensory input space U
into locally linear regions. Each neuron i in the EKM has
a sensory weight vector wi that encodes the region in U
centered at wi. It also has a set of output weights which
encode the outputs produced by the neuron. However, un-
like existing methods (e.g., [17, 34]), the output weights Mi

of neuron i represent control parameters in the parameter
space M instead of the motor control vector (Fig. 2). The
control parameter matrix Mi is mapped to the actual mo-
tor control vector cp by the linear model of Eq. 1. With
indirect-mapping EKM, motor control is performed as fol-
lows:

Motor Control

Given a sensory input vector up,

1. Determine the winning neuron k.
The winning neuron k is the neuron whose sensory
weight vector wk = (αk, dk)T is nearest to the input
up = (α, d)T :

D(up,wk) = min
i∈A(α)

D(up,wi) . (2)

The difference D(up,wi) is a weighted difference be-
tween up and wi:

D(up,wi) = (γα(α − αi)
2 + γd(d − di)

2)1/2 (3)

where γα and γd are constant parameters. The min-
imum in Eq. 2 is taken over the set A(α) of neurons
encoding very similar angles as α:

|α − αi| ≤ |α − αj |,
for each pair i ∈ A(α), j /∈ A(α) .

(4)

In other words, direction has priority over distance in
the competition between EKM neurons. This method
allows the robot to quickly orientate itself to face the
target while moving towards it [34].

2. Compute motor control vector cp for target reaching:

cp =

{

Mkup if −c∗ ≤ Mkup ≤ c∗

Mkwk otherwise.
(5)

The constant vector c∗ denotes the upper limit of phys-
ically realizable motor control signal. For instance, for
the Khepera robots (http://www.k-team.com/robots/
khepera/), cp consists of the motor speeds vl and vr of
the robot’s left and right wheels. In this case, we define
cp ≤ c∗ if vl ≤ v∗

l and vr ≤ v∗
r . Note that if cp is be-

yond c∗, simply saturating the wheel speeds does not
work. For example, if the target is far away and not
aligned with the robot’s heading, then saturating both
wheel speeds only moves the robot forward. Without
correcting the robot’s heading, the robot will not be
able to reach the target.

The motor control algorithm is applied at each time step
t to compute the motor control vector cp(t) for the current
sensory input up(t). It is repeated until the robot reaches
the goal state up(T ) at time step T .

The direct-mapping approach [17, 34] maps all the sen-
sory inputs up in a region in the sensory input space U ,
represented by a neuron k, to the same discrete point ck in
the motor output space C, i.e., cp = ck. As a result, only a
small number of points in C are represented by the neurons’
outputs, i.e., the motor output space is very sparsely sam-
pled. In contrast, the indirect approach maps each up in a
locally linear region in U to a different point cp in C through
Eq. 5. Since this mapping is linear and continuous, the in-
direct approach maps a region in U to a region in C, thus
providing finer and smoother control of the robot’s motion
than does direct mapping.



2.3 Self-Organization of Indirect Mapping
In contrast to most existing methods, online training is

adopted for the indirect-mapping EKM. Initially, the EKM
has not been trained and the motor control vectors cp gener-
ated are inaccurate. Nevertheless, the EKM self-organizes,
using these control vectors cp and the corresponding robot
displacements v produced by cp, to map v to cp indirectly.
As the robot moves around and learns the correct mapping,
its sensorimotor control becomes more accurate. At this
stage, the same online training can still be performed, and
it mainly fine tunes the indirect mapping. The self-organized
training algorithm (in an obstacle-free environment) can be
summarized as follows:

Self-Organized Training

Repeat

1. Get sensory input up.

2. Execute motor control algorithm and move robot.

3. Get new sensory input u′
p and compute actual dis-

placement v as a difference between u′
p and up.

4. Use v as the training input to determine the winning
neuron k (same as Step 1 of Motor Control).

5. Adjust the weights wi of neurons i in the neighborhood
Nk of the winning neuron k towards v:

∆wi = η G(k, i)(v − wi) (6)

where G(k, i) is a Gaussian function of the distance
between the positions of neurons k and i in the EKM,
and η is a constant learning rate.

6. Update the weights Mi of neurons i in the neighbor-
hood Nk to minimize the error e:

e =
1

2
G(k, i)‖cp − Miv‖

2 . (7)

That is, apply gradient descent to obtain

∆Mi = −η
∂e

∂Mi
= η G(k, i)(cp − Miv)vT . (8)

At each training cycle, the weights of the winning neuron
k and its neighboring neurons i are modified. The amount of
modification is proportional to the distance G(k, i) between
the neurons in the EKM. The input weights wi are updated
towards the actual displacement v and the control parame-
ters Mi are updated so that they map the displacement v
to the corresponding motor control cp.

After self-organization has converged, the neurons will
stabilize in a state such that v = wi and cp = Miv = Miwi.
For any winning neuron k, given the sensory input up = wk,
the neuron will produce a motor control output cp = Mkwk

which yields a desired displacement of v = wk. For a sensory
input up 6= wk but close to wk, the motor control output
cp = Mkup produced by neuron k will still yield the cor-
rect displacement if linearity holds within the input region
that activates neuron k. Therefore, given enough neurons to
produce an approximate linearization of the sensory input
space U , the indirect-mapping EKM can produce finer and
smoother motion control than that of direct-mapping EKM.

front

rear

motormotor

Figure 3: Obstacle avoidance. The connections be-
tween the forward-facing sensors on one side of the
robot’s body with the motor on the opposite side
have large negative values (dotted lines), while the
other connections have small positive values (solid
lines).

2.4 Obstacle Avoidance
The reactive obstacle avoidance module adopts the archi-

tecture of Braitenberg’s Type-3C vehicle [4]. Given a set uo

of sensor inputs, the motor velocity co for obstacle avoidance
is computed as:

co = Zuo (9)

where Z = [zij ] is the control matrix. The matrix elements
zij that link the forward-facing sensors on one side of the
robot’s body with the motor on the opposite side have large
negative values, while the other matrix elements have small
positive values (Fig. 3). When the robot senses the presence
of an obstacle, say, in front and on the left, the right motor
will rotate backward faster than the left motor’s rotation
forward, thus turning the robot away from the obstacle.

A similar approach is adopted in the architecture of De-
cugis and Ferber [13]. The main difference is that Decugis
and Ferber assigned different sets of weights to different
behaviors including obstacle avoidance, left wall following,
right wall following, corridor following, left static turn, right
static turn, and forward move. On the other hand, our
method uses only one set of weights. It removes the need to
recognize different situations and select different behaviors,
and thus simplifies the reactive modules. As will be seen
in Section 3.2, different behaviors can still emerge naturally
from the interaction between the robot and the environment.

2.5 Command Fusion
The motor control for obstacle avoidance co is added to

the motor control for target reaching cp to produce the final
motor control signal c:

c = β cp + (1 − β) co (10)

where β is a constant parameter. The homeostatic control
ch of the motors is omitted. Equation 10 is analogous to
the potential fields method for obstacle avoidance [10, 22]
and is able to overcome small unforeseen obstacles and non-
adversarial moving obstacles.

Recall that the target reaching and obstacle avoidance
modules run at different rates. Each time one of the mod-
ules produces a new motor control signal, it updates a global
motor state, which then causes the combined motor control
signal c to be sent to the robot’s wheels to drive the robot.



0
 2
 4
 6
 8
 10

0


0.002


0.004


0.006


0.008


0.01


direct

indirect


time steps

(x10,000)


E 
(m)


Figure 4: Mean positioning error at various training
stages.

In the absence of obstacles, the motor control signal will be
sent at regular intervals. In the presence of obstacles, addi-
tional control signal may be sent as and when obstacles are
detected. This method allows the robot to run as smoothly
as possible and to make adjustments only when necessary.

3. EXPERIMENTS AND DISCUSSIONS

3.1 Quantitative Evaluation
Experiments were conducted to assess both the quantita-

tive and qualitative performance of the hybrid architecture
for mobile robot navigation. The experiments were per-
formed using Webots (http://www.cyberbotics.com), the sim-
ulator for Khepera mobile robots. In the experiments, EKMs
with 15×15 neurons were trained in an obstacle-free en-
vironment. Each training/testing trial took 100,000 time
steps and each time step for target reaching control lasted
1.024 sec. During training, the weights of the EKM were
initialized to correspond to regularly spaced locations in the
sensory input space U . The robot began the training at the
origin and a randomly selected sequence of checkpoints were
presented. The robot’s task was to move to the checkpoints,
one at a time, and weight modification was performed at
each time step after the robot had made a move. At each
time interval of 10,000 steps during training, a fixed testing
process was conducted. In each test, the robot began at
the origin and was presented with 50 random target loca-
tions in sequence. The robot’s task was to move to each of
the target locations (this time, no training was performed).
The above training/testing trial was repeated five times and
testing performance was averaged over the five trials.

The testing performance index measured in the above tri-
als is the mean positioning error E, which is the average
distance εi between the center of the robot and the ith tar-
get location after it has come to a stop (i.e., motor control
c = 0):

E =
1

RN

∑

i

εi (11)

where R is the number of trials and N is the number of
testing target locations. Experimental results (Fig. 4) show
that, with indirect mapping, the mean positioning error E
began to stabilize at 50,000 time steps. This implies that the
self-organization of EKM also began to stabilize at 50,000
time steps. At the end of 100,000 time steps, the robot
driven by the trained EKM had a mean positioning error
of 3 mm. In comparison, the same EKM that adopted the

5
 10
 15
 20
 25

0.5


0.6


0.7


0.8


0.9


1


indirect

direct


ε
 (mm)


P
(
ε
)


(a)

0
 5
 10
 15
 20
 25

7.5


10


12.5


15


17.5


20


direct

indirect


ε
 (mm)


T
(
ε
)


(b)

Figure 5: Performance comparison after training.
(a) Target reaching probability. (b) Normalized
time-to-target.

direct-mapping method stabilized at about the same time
but the direct-mapping robot had a mean positioning error
of 8 mm.

The radius of the robot is 25 mm. So, it is reasonable
to regard the robot to have reached (and touched) a target
if the distance-to-target ε is less than 25 mm. The next
two performance indices are based on this target reaching
criterion.

The target reaching probability P (ε) measures the proba-
bility of the robot reaching closer than a distance of ε (with
or without stopping) from the target locations after train-
ing. The normalized time-to-target T (ε) measures how long
it takes the robot to reach closer than a distance of ε after
training:

T (ε) =
1

RN

∑

i

t̃i(ε) , t̃i(ε) =
ti(ε)

li
(12)

where ti(ε) is the earliest time it takes the robot to reach
closer than a distance of ε from the ith target location, li
is the straight line distance between target locations i − 1
and i, and t̃i is the normalized time taken to reach target
i. That is, normalized time-to-target measures the average
amount of time the robot takes to travel a distance of 1 m.

Experimental results (Fig. 5) show that, with indirect
mapping method, the robot can get very close to a target
with high probability (> 0.9) and could reach the targets in
about 9 time steps. In contrast, with direct mapping, the
robot has a lower probability (< 0.9) of reaching close to the
targets and took about 17.5 time steps to reach them.

The above test results show that, with indirect mapping,



-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0


0.05


0.1


0.15


α
 
(rad)


d
 (m)


(a)

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0


0.05


0.1


0.15


α
 (rad)


d
 (m)


(b)

Figure 6: Self-organization results of EKM using (a)
direct and (b) indirect mapping. Each dot denotes
the weights wi = (αi, di)

T of a neuron.

the robot can reach the targets faster and closer than with
direct mapping. The advantages of indirect mapping can
also be assessed from the results of self-organization. Fig-
ure 6 illustrates the EKMs at the end of one of the five
training trials. The neurons in the direct-mapping EKM
were clustered into four clusters: d = 0 and α = −3, 0, +3
radian. Although the neurons in the indirect-mapping EKM
also clustered in a similar manner, its neurons were more
spread out. Moreover, they sampled distances up to 0.16 m
whereas direct-mapping neurons sampled distances only up
to 0.11 m. Note that 0.16 m is the furthest that a Khepera
robot can move in a single time step of 1 second. Therefore,
indirect-mapping EKM samples the sensory input space more
completely than does the direct-mapping EKM, and pro-
duces finer control of the robot.

3.2 Qualitative Evaluation
The robot’s performance was also qualitatively assessed in

an environment under three unforeseen conditions: (1) static
obstacle, (2) moving obstacle, and (3) unexpected change
in environment. The environment consisted of three rooms
connected by two doorways (Figs. 7–9). The robot began
in the left-most room and was tasked to move to the right-
most room via three checkpoints. The robot was regarded
to have reached a checkpoint if it was less than 5 mm from
the checkpoint. The robot was required to stop at the goal.
The target reaching module ran at 1.024 sec interval while

-0.5
 -0.25
 0
 0.25
 0.5

-0.25


0


0.25


Figure 7: Motion of robot (gray) in an environ-
ment with an unforeseen static obstacle (black). The
checkpoints (small black dots) are located at the
doorways and the goal position. The robot was able
to go around the obstacle to reach the goal. The
robot, obstacle, and rooms are drawn to the same
scale.

-0.5
 -0.25
 0
 0.25
 0.5

-0.25


0


0.25


Figure 8: Motion of robot (gray) in an environ-
ment with an obstacle (black) moving in an anti-
clockwise circular path. The robot was able to ne-
gotiate past the moving obstacle and proceed to the
second checkpoint.

the obstacle avoidance module ran at 0.128 sec interval.
In the first test (Fig. 7), an unforeseen static obstacle

was placed in the middle room between the first and second
checkpoint. Just before reaching the first checkpoint, the
robot detected a wall on its right and deviated slightly to
the left to reach the first checkpoint. While moving towards
the second checkpoint, the robot detected the unforeseen
static obstacle. It reacted to the presence of the obstacle by
going around the obstacle to reach the second checkpoint.
At the second checkpoint, the robot made a sharp turn due
to the direction of the goal and headed towards it.

In the second test (Fig. 8), a mobile robot, following an
anti-clockwise circular path, served as the moving obstacle.
When the target reaching robot first met the obstacle on
its left, it tried to avoid by turning right. Subsequently, it
encountered the obstacle on its right and was diverted to
the left before it moved out of the obstacle’s path, headed
towards the second checkpoint, and finally towards the goal.

In the last test (Fig. 9), the same checkpoints as the previ-
ous tests were initially planned for the robot. However, while
the robot was en route to the second checkpoint, the high-
level planning module realized that the environment had
changed. A new checkpoint was planned and given to the
target reaching module. Consequently, the target reaching
module changed the heading of the robot en route, so that
it could reach the goal through the new checkpoint. This
test clearly demonstrates the advantage of our integrated
approach. First, a plan can be easily modified by changing



-0.5
 -0.25
 0
 0.25
 0.5

-0.25


0


0.25


Figure 9: Motion of robot (gray) in an environment
that changed. The initial checkpoints were planned
with the assumption that the lower doorway was
opened. The planning module changed the second
checkpoint to a new checkpoint (triangle) while the
robot was en route to the old one. The target reach-
ing module was able to react immediately and it
changed the robot’s heading.

only the checkpoints. Second, the target reaching module
can react immediately to the change of a checkpoint, and
produce a course change at ease. In contrast, existing ar-
chitectures that plan the entire path need to make detailed
modifications to the path such as how to turn the robot
around, taking into account the robot’s current motion.

In all cases, the robot under the control of the trained
EKM was able to move to the checkpoints successfully. The
paths taken by the robot between checkpoints were not per-
fectly straight due to several realistic constraints. The two-
wheeled robot was non-holonomic. The motor control injec-
tions by the obstacle avoidance and target reaching modules
were not strictly continuous, but at discrete servo intervals.
Furthermore, the Webots simulator automatically injected
noise into the sensor inputs and motor outputs, which of-
fered realistic simulation of low-level robot control. Never-
theless, the paths taken were quite close to straight lines.

Our hybrid architecture implemented only two reactive
modules, compared to seven in that of Decugis and Ferber
[13]. Nevertheless, the robot still exhibits a rich set of be-
haviors including moving forward, turning, avoiding static
and moving obstacles, and reacting immediately to change
of path. These behaviors emerge from the interaction be-
tween the robot and the environment.

4. CONCLUSION
A hybrid architecture for integrated planning and con-

trol is presented in this paper. It differs from existing hy-
brid architectures in the following ways. First, our architec-
ture is one of very few frameworks that perform continuous
response encoding that permits fine, smooth motion con-
trol. Second, its planning module produces a sequence of
checkpoints instead of a complete path. Third, it integrates
the planning module with two reactive modules, i.e., target
reaching and obstacle avoidance. The target reaching mod-
ule is controlled by a neural network, which is trained online
to move the robot through the checkpoints. The neural net-
work can be easily trained to control different mobile robots,
thus providing flexibility and adaptability that are lacking
in many hard-wired reactive controllers. Although a simple
local reactive strategy (i.e., Braitenberg’s Type-3C vehicle)
is employed in the obstacle avoidance module, it enables the
robot to overcome unforeseen convex obstacles (static and
dynamic). In another paper [26], we show that the obsta-

cle avoidance capabilities can be further enhanced by the
cooperation of multiple EKMs to permit the negotiation of
unexpected concave obstacles.

Quantitative experimental results show that the neural
network can perform fine control of the motion of a mobile
robot very accurately and efficiently. In addition, qualitative
test results show that the low-level reactive control modules
can be seamlessly integrated with the high-level planning
module. In particular, changes to the robot’s heading can
be easily made at every level even when the robot is en
route to the goal position. Our continuing research goal
is to apply the integrated framework to the planning and
control of static as well as mobile robot manipulator.

5. ACKNOWLEDGMENT
This research was supported by NUS ARF R-252-000-018-

112.

6. REFERENCES
[1] R. C. Arkin. Behavior-Based Robotics. MIT Press,

Cambridge, MA, 1998.

[2] R. C. Arkin and T. Balch. AuRA: Principles and
practices in review. J. Expt. Theor. Artif. Intell.,
9(2-3):175–189, 1997.

[3] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp,
D. Miller, and M. Slack. Experiences with an
architecture for intelligent, reactive agents. J. Expt.

Theor. Artif. Intell., 9(2-3):237–256, 1997.

[4] V. Braitenberg. Vehicles: Experiments in Synthetic

Psychology. MIT Press, Cambridge, MA, 1984.

[5] O. Brock and L. E. Kavraki. Decomposition-based
motion planning: A framework for real-time motion
planning in high-dimensional configuration spaces. In
Proc. ICRA, volume 2, pages 1469–1474, 2001.

[6] O. Brock and O. Khatib. Executing motion plans for
robots with many degrees of freedom in dynamic
environments. In Proc. ICRA, volume 1, pages 1–6,
1998.

[7] O. Brock and O. Khatib. High-speed navigation using
the global dynamic window approach. In Proc. ICRA,
volume 1, pages 341–346, 1999.

[8] R. Brooks. A robust layered control system for a
mobile robot. IEEE J. Robot. Automat., 2(1):14–23,
1986.

[9] R. Chatila and J.-P. Laumond. Position referencing
and consistent world modeling for mobile robots. In
Proc. ICRA, pages 138–145, 1985.

[10] W. Choi and J.-C. Latombe. A reactive architecture
for planning and executing robot motions with
incomplete knowledge. In Proc. IROS, volume 1, pages
24–29, 1991.

[11] J. H. Connell. Minimalistic Mobile Robotics: A Colony

Architecture for an Artificial Creature. Academic
Press, 1990.

[12] J. H. Connell. SSS: A hybrid architecture applied to
robot navigation. In Proc. ICRA, pages 2719–2724,
1992.

[13] V. Decugis and J. Ferber. Action selection in an
autonomous agent with a hierarchical distributed
reactive planning architecture. In Proc. 2nd

International Conference on Autonomous Agents,
pages 354–361, 1998.



[14] E. Gat. On three-layer architectures. In
D. Kortenkamp, R. P. Bonnasso, and R. Murphy,
editors, Artificial Intelligence and Mobile Robots.
AAAI Press, 1998.

[15] G. Giralt, R. Chatila, and M. Vaisset. An integrated
navigation and motion control system for autonomous
multi-sensory mobile robots. In Proc. 1st International

Symposium on Robotics Research, pages 191–214,
1984.

[16] K. Z. Haigh and M. M. Veloso. High-level planning
and low-level execution: Towards a complete robotic
agent. In Proc. 1st International Conference on

Autonomous Agents, pages 363–370, 1997.

[17] J. Heikkonen, P. Koikkalainen, and E. Oja. From
situations to actions: Motion behavior learning by
self-organization. In Proc. ICANN, pages 262–267,
1993.

[18] H. Hu and M. Brady. A Bayesian approach to
real-time obstacle avoidance for a mobile robot.
Autonomous Robots, 1:69–92, 1994.

[19] R. Jamisola, T. M. Lim, M. H. Ang Jr., D. N.
Oetomo, O. Khatib, and S. Y. Lim. Operational space
formulation implementation to aircraft canopy
polishing application using a mobile manipulator. In
Proc. ICRA, volume 1, pages 400–405, 2002.

[20] O. Khatib. A unified approach to motion and force
control of robot manipulators: The operational space
formulation. IEEE J. Robotics and Automation,
3(1):43–53, 1987.

[21] O. Khatib. Mobile manipulation: The robotic
assistant. Robotics and Autonomous Systems,
26(2-3):175–183, 1999.

[22] D. E. Koditschek. Exact robot navigation by means of
potential functions: Some topological considerations.
In Proc. ICRA, pages 1–6, 1987.

[23] B. H. Krogh and C. E. Thorpe. Integrated path
planning and dynamic steering control for autonomous
vehicles. In Proc. ICRA, pages 1664–1669, 1986.

[24] J. E. Laird and P. S. Rosenbloom. Integrating
execution, planning, and learning in SOAR for
external environments. In Proc. AAAI, pages
1022–1029, 1990.

[25] J.-C. Latombe. Robot Motion Planning. Kluwer
Academic, Boston, 1991.

[26] K. H. Low. Integrated robot planning and control with
extended Kohonen maps. Master’s thesis, Department
of Computer Science, School of Computing, National
University of Singapore, July 2002.

[27] H. P. Moravec and D. W. Cho. A Bayesian method for
certainty grids. In Working Notes: AAAI Spring

Symposium on Robot Navigation, pages 57–60, 1989.

[28] L. D. Pyeatt and A. E. Howe. Integrating POMDP
and reinforcement learning for a two layer simulated
robot architecture. In Proc. 3rd International

Conference on Autonomous Agents, pages 168–174,
1999.

[29] S. Quinlan and O. Khatib. Towards real-time
execution of motion tasks. In R. Chatila and
G. Hirzinger, editors, Experimental Robotics II: Proc.

2nd International Symposium on Experimental

Robotics. Springer-Verlag, 1991.

[30] H. Ritter and K. Schulten. Extending Kohonen’s
self-organizing mapping algorithm to learn ballistic
movements. In R. Eckmiller and C. von der Marlsburg,
editors, Neural Computers. Springer, Heidelberg, 1987.

[31] R. Simmons, R. Goodwin, K. Z. Haigh, S. Koenig, and
J. O’Sullivan. A layered architecture for office delivery
robots. In Proc. 1st Int. Conf. on Autonomous Agents,
pages 245–252, Marina del Rey, CA, 1997.

[32] I. Soto, M. Garijo, C. A. Iglesias, and M. Ramos. An
agent architecture to fulfill real-time requirements. In
Proc. 4th International Conference on Autonomous

Agents, pages 475–482, 2000.

[33] S. Thrun, A. Buecken, W. Burgard, D. Fox,
T. Froehlinghaus, D. Henning, T. Hofmann, M. Krell,
and T. Schmidt. Map learning and high-speed
navigation in RHINO. In D. Kortenkamp, R. P.
Bonasso, and R. Murphy, editors, Artificial

Intelligence and Mobile Robots: Case Studies of

Successful Robot Systems, pages 21–52. AAAI Press,
1998.

[34] C. Versino and L. M. Gambardella. Learning the
visuomotor coordination of a mobile robot by using
the invertible Kohonen map. In J. Mira and
F. Sandoval, editors, Proc. International Workshop on

Artificial Neural Networks, pages 1084–1091. LNCS
930, Springer, Berlin, 1995.


