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ABSTRACT
We introduce the concept of continuous transportation task
to the context of multi-agent systems. A continuous trans-
portation task is one in which a multi-agent team visits a
number of fixed locations, picks up objects, and delivers
them to a transportation hub. The goal is to maximize
the rate of transportation while the objects are replenished
over time . In this extended abstract, we present a hybrid of
centralized and distributed approaches that minimize com-
munications in the multi-agent team. We contribute a novel
online partitioning-transportation algorithm with informa-
tion gathering in the multi-agent team.
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1. INTRODUCTION
We are interested in multi-agent coordination and con-

tinuous transportation, where agents visit locations in the
environment to transport objects (passengers or items) and
deliver them to a transportation hub. The objects replen-
ish over time, and we consider Poisson model of object re-
plenishment. Poisson model is suitable for scenarios with
independently-occurring objects, such as passengers appear
at the transit stops. Thus, the continuous transportation
task is general and applicable to many real-life scenarios,
e.g., first/last mile problem, package or mail collection and
delivery.

The most similar work has been done is in multi-robot
foraging and delivery problem [2, 3]. A multi-robot team
forages resources from environment to a home location or
delivers items to locations on request while the resources
replenish over time. The goal of continuous foraging is to
maximize the rate of resource foraging. Thus, continuous
foraging has similarities to continuous transportation, and
thus we compare our algorithms with that of [2, 3].

In addition, continuous area sweeping (e.g., [1]) problem
has similarities to continuous transportation, with the main
difference being that the agents have a carrying capacity and
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must periodically return to the transportation hub. Hence,
we compare to the benchmark of [1]. Besides, [1] uses area
partitioning algorithm that relies on communications and
negotiations among robots. Thus, it is prone to message
loss and inconsistency. In contrast, our approach does not
require communications among agents, and the partition-
ing is conducted separately. Hence, we present a hybrid of
centralized and distributed approaches, and the efficacy is
demonstrated in the evaluation section.

2. PROBLEM AND APPROACH
In this section, we formally define the multi-agent continu-

ous transportation problem in detail, and give an overview of
our approach. In a continuous transportation task, a multi-
agent team visits a number of fixed locations and transport
objects to a transportation hub.

2.1 Formal Problem Definition
The multi-agent continuous transportation problem can

be defined as follows:

• A = {a1, ..., ak} is the set of transportation agents,
e.g., the autonomous vehicles.

• si, ci, and yi (≤ ci) denote agent ai’s speed, maximum
capacity, and current load, i.e., the number of objects
carried.

• L = {l1, ..., ln} is the set of locations, where l0 is the
transportation hub.

• vj,t denotes the number of objects avaliable at location
lj at time step t, e.g., the number of passengers appear
at the transit stop lj .

• v̂(i)j,t denotes ai’s estimate of vj,t at time step t.

• oj denotes the observation made at location lj . When
a transportataion agent ai arrives at a location lj (j >
0), min(vj,t, ci − yi) objects at lj are picked up by
ai, and ai makes an observation oj of the number of
objects remaining. When ai arrives at l0, all yi objects
carried by ai are transferred to l0.

• D : L × L → R+ is the distance function of the loca-
tions.

• t(ai, lj , lk) =
⌈

D(lj ,lk)

si

⌉
is the time steps taken for an

agent ai to move from location lj to lk.

The goal is to maximize the rate of objects delivered to
the transportation hub l0 within T time steps, i.e., maximize
v0,T
T

.



2.2 Our Approach
Our approach for solving the continuous transportation

problem is:

• We assume that vj,t follows a known model — in this
paper, we assume that vj,t follows the Poisson model,
where the number of objects replenished every time
step follows a Poisson distribution with mean λj . How-
ever, the parameters of the models (i.e., λj) are not
known in advance;

• The estimates v̂
(i)
j,t are updated using the model and

observations from transportation agents ai visiting lo-
cation lj ;

• Following [2], the transportation agents do not share

their models v̂
(i)
j,t since it could be expensive subject to

the communication bandwidth and team size. Differ-
ent from [2], in our approach, the sharing of destination
and load among agents are not required.

We contribute an online algorithm that partition the loca-
tions based on their 2D-position and estimated replenish-
ment rate, and controls the transportation agents ai, that

use v̂
(i)
j,t to plan their next destination within the cluster of

locations assigned. The algorithm dynamically repartitions
locations based on information gathered by the multi-agent
team.

3. ALGORITHM AND EVALUATION
Our Online Balanced Partitioning (OBP) algorithm be-

gins with statically partition the locations into clusters based
on 2D-position of locations with k-means algorithm. The
algorithm is inspired by algorithms proposed for continuous
foraging [2]. The main difference is that the agents replan
destinations in the cluster of locations assigned, instead of
all the locations. The replanning of destination within each
cluster is based on Greedy Rate [2], i.e., maximizing the
transportation rate. Further, due to partitioning, communi-
cations of destinations and loads are not required.

By only considering the 2D-position of locations, the work-
load of each agent might not be balanced, i.e., the total re-
plenishment rate of some clusters could be so high that the
agents cannot afford it, while some other agents are idle. On
the other hand, the result of standard k-means algorithm
depends on the choice of initial centroid which is randomly
generated. In this case, we introduce online balanced par-
titioning, i.e., balance estimated total replenishment rate of
each cluster with information gathering. The replenishment
rate is not known in advance. The agents use preset esti-
mated replenishment rate to update its estimated number of
objects. The estimate can only be corrected when they visit
the location and make an observation. Since we focus on
Poisson replenishment model, where number of objects re-
plenished per time step follows a mean value, we believe that
estimated replenishment rate can be corrected with contin-
uous observations, i.e., the total number of objects replen-
ished divided by time steps elapsed.

Our online partitioning algorithm dynamically corrects
the estimated replenishment rate by visiting a location and
making observation. Once the deviation of total replenish-
ment rate of clusters are greater than a preset threshold,
repartitioning will be done immediately.

Figure 1 shows the performance of our Online Balanced
Partitioning (OBP) algorithm when the capacities of the

Figure 1: Comparison of our Online Balanced Partitioning
(OBP) algorithm against the benchmark of Greedy Rate
with Expected Observation (GR+EO) and Continuous Area
Sweeping (CAS) algorithm.

agents are 10 and the number of locations are 20. In order
to demonstrate the effectiveness of OBP, we compared OBP
with GR+EO [2] which requires the presence of a reconnais-
sance agent. The solid red, blue, and gray lines show Online
Balanced Partitioning (OBP), Greedy Rate with Expected
Observation (GR+EO), and Random Transportation (R),
and the shaded areas show the standard deviations of these
algorithms.

As the number of agents increase, OBP outperforms all
other algorithms, even GR+EO (p = 3 × 10−23), primar-
ily because of the dynamic partitioning with information
gathering by the multi-agent team. It clearly illustrates the
efficacy of our OBP algorithms over GR. Without the use
of reconnaissance agent and communications among agents,
our OBP algorithm can still outperform GR+EO algorithm.
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