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Abstract

The Nash equilibrium (NE) is a classic solu-
tion concept for normal-form games that is sta-
ble under potential unilateral deviations by self-
interested agents. Bayesian optimization (BO)
has been used to find NE in continuous general-
sum games with unknown costly-to-sample util-
ity functions in a sample-efficient manner. This
paper presents the first no-regret BO algorithm
that is sample-efficient in finding pure NE by
leveraging theory on high probability confidence
bounds with Gaussian processes and the maxi-
mum information gain of kernel functions. Un-
like previous works, our algorithm is theoreti-
cally guaranteed to converge to the optimal so-
lution (i.e., NE). We also introduce the novel
setting of applying BO to finding mixed NE
in unknown discrete general-sum games and
show that our theoretical framework is general
enough to be extended naturally to this setting
by developing a no-regret BO algorithm that is
sample-efficient in finding mixed NE. We empir-
ically show that our algorithms are competitive
w.r.t. suitable baselines in finding NE.

1 INTRODUCTION

The Nash equilibrium (NE) is a classic solution concept for
normal-form games with self-interested utility-maximizing
agents (Nash, 1951). An NE is a stable solution such that
no agent can increase its utility by unilaterally deviating
from the NE. So, it provides predictability of obtained util-
ities compared to unstable solutions which may be arbi-
trarily worse in deployment. The NE has been used to
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analyze many real-world scenarios like sustainable use of
natural resources (Thorpe et al., 2017), international con-
flicts (Schelling, 1980), and traffic, power, and wireless net-
works (Djehiche et al., 2017).

There is extensive literature on the theory and computation
of NE for both discrete (Shoham and Leyton-Brown, 2008)
and continuous games (Başar, 1987; Debreu, 1952; Reeves
and Wellman, 2012) with known utility functions. On
the other hand, empirical, simulation-based, or black-box
games have unknown utility functions and hence require
using a learning-based approach to find an NE from sam-
ples of the utility function (through oracle calls) (Vorobey-
chik et al., 2007, 2008; Wellman, 2006). However, these
works do not assume a cost (e.g., time or money) for the
samples and can become impractical when the samples are
costly. To illustrate the importance of sample efficiency,
suppose that the vector x :“ px1, x2q P R2 of decision
variables represents an abstract joint policy over two pri-
vate hire drivers 1 and 2 with abstract individual policies
x1 and x2 and unknown utility functions u1 : R2 Ñ R
and u2 : R2 Ñ R, respectively. The utility of each driver
depends on the individual policies of both drivers: If both
drivers try to pick up passengers in the same areas, they will
reduce each other’s utility. The controller may want to de-
ploy the drivers at an NE so that they do not deviate from
their prescribed policies and there is predictability of the
obtained utilities. However, the utility functions can be un-
known and must be learned from real-world deployments
(through samples). A single sample of the utility function
may take days, so the controller must find an NE in as few
samples as possible.

To additionally account for the costly samples (i.e., our
problem setting), a novel line of work has investigated the
use of Bayesian optimization (BO) (Garnett, 2022) to find
NE with unknown utility functions in a sample-efficient
manner (Al-Dujaili et al., 2018; Picheny et al., 2019).
These works have proposed heuristic algorithms that have
been shown to perform well empirically, but do not provide
theoretical performance guarantees which are desirable in
ensuring generalization to untested settings. Also, such
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works have only considered pure NE in which each agent
selects only one strategy deterministically. There may be
situations in which each agent selects its strategy stochasti-
cally and their decisions are better modeled as a probability
distribution over strategies instead. In this case, we wish to
find mixed NE. It is unclear how existing algorithms can be
adapted for this purpose.

To tackle the above challenges, this paper presents novel
BO algorithms with provable performance guarantees that
are sample-efficient in finding pure and mixed NE in
general-sum games with unknown costly-to-sample utility
functions. To achieve this, we first leverage classic proof
techniques from sequential optimization (Srinivas et al.,
2010) to develop a BO algorithm with a no-regret perfor-
mance guarantee, i.e., its incurred average cumulative re-
gret tends to 0 by selecting decisions to sample function
values arbitrarily close to an optimum (in our setting, an
NE) as the number of BO iterations tends to infinity. Inter-
estingly, such a theory informs our algorithm (as opposed
to prescribing an algorithm based on heuristics) by explic-
itly selecting the decisions (to sample the function values)
for both exploitation and exploration that are required to
guarantee convergence. Then, we develop the novel set-
ting of applying BO to finding mixed NE and show that
our theoretical framework is general enough to be extended
naturally to this setting by developing a no-regret BO algo-
rithm for finding mixed NE. The specific contributions of
our work here are as follows:

‚ To our best knowledge, we develop the first no-regret BO
algorithm that is sample-efficient in finding pure NE in
unknown continuous general-sum games (Sec. 4);

‚ We introduce the novel setting of finding mixed NE with
BO in unknown discrete general-sum games, show that
our general theoretical framework can be extended natu-
rally to this setting (albeit not a simple application of our
aforementioned theory for pure NE due to the adoption
of a practical learning setting, as discussed in Sec. 5.1),
and consequently develop a no-regret BO algorithm that
is sample-efficient in finding mixed NE (Sec. 5);

‚ We provide experimental results to show that our algo-
rithms are competitive w.r.t. previous work in finding
pure NE as well as w.r.t. suitable baselines in finding
mixed NE (Sec. 6).

2 RELATED WORK

To use BO for finding NE with unknown utility functions
in a sample-efficient manner, Picheny et al. (2019) have
developed probability of equilibrium (i.e., analogous to a
conventional BO acquisition function called probability of
improvement) and an entropy search algorithm, while Al-
Dujaili et al. (2018) have proposed an ϵ-greedy algorithm
with best-response approximation. However, they do not
provide theoretical guarantees on the convergence of their

algorithms and only consider pure strategies. Vorobeychik
et al. (2008) have tackled the same problem using simu-
lated annealing. However, since they do not assume a prior
over the utility functions to exploit a probabilistic model,
their method is sample-inefficient (i.e., «1000ˆ the num-
ber of function samples compared to BO algorithms). An-
other line of work has focused on minimax problems, both
with BO (Bogunovic et al., 2018; Marchesi et al., 2020) and
without (Liu et al., 2020; Wang et al., 2022). These works
are applicable to zero-sum games but not in our more gen-
eral setting of finding NE for general-sum games. Viqueira
et al. (2019, 2020) have focused on a related but different
setting in which they have access to a conditional game and
sample entire utility functions at a time, as opposed to our
setting in which we only sample the utility function values
of specific strategy profiles at a time. More generally, other
recent works leverage BO within a multi-agent framework
for purposes other than finding NE (Dai et al., 2020a; Sessa
et al., 2019, 2020, 2021).

3 BAYESIAN OPTIMIZATION (BO) AND
GAUSSIAN PROCESSES (GP)

Before we describe the problem setting of finding Nash
equilibria, we will present a primer on standard BO (Gar-
nett, 2022). BO is a well-established framework for
sample-efficient black-box optimization that has seen nu-
merous successes in real-world applications with unknown
costly-to-sample objective functions such as hyperparame-
ter optimization of machine learning models (Chen et al.,
2018) and drug and antibody sequence design (Stanton
et al., 2022). A learner is required to find the maximizer
x˚ :“ argmaxx fpxq of an unknown function f w.r.t. de-
cision variables x. The learner obtains information about f
through samples of f at arbitrary decisions. Specifically, in
each iteration t, the learner selects a decision x̃t to sample
f at and receives a corresponding sampled noisy function
value yt :“ fpx̃tq ` ξt to form the sample px̃t, ytq where
ξt „ N p0, σ2q with noise variance σ2. Such samples are
assumed to be costly in terms of time, money, or some other
resource, hence it is in the learner’s interest to find x˚ in as
few iterations as possible. To achieve sample efficiency,
BO adopts a Bayesian approach by assuming a prior over f
and using the samples gathered thus far to derive a posterior
over f that is exploited by an acquisition function to guide
the learner in selecting future decisions so as to reduce the
number of samples required to find the maximizer.

Though any Bayesian model can be used, the Gaussian
process (GP) model (Williams and Rasmussen, 2006) is the
standard model of choice as it allows tractable exact poste-
rior inference with small datasets, as is the case with BO.
Given a dataset Dt :“ tpx̃j , yjqutj“1 of samples gathered
up till iteration t, the GP posterior mean and variance at any
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decision x in the decision space are given by

µtpxq :“ ktpxqJpKt ` λIq´1yJ
t , (1)

σ2
t pxq :“ kpx,xq ´ ktpxqJpKt ` λIq´1ktpxq (2)

where yt :“ pyjqtj“1 P Rt, k is a positive semidefinite ker-
nel (i.e., covariance function), ktpxq :“ pkpx, x̃jqqtj“1 P

Rt, Kt :“ pkpx̃j , x̃j1 qqtj,j1“1 P Rtˆt, and λ is a free pa-
rameter for algorithm design (Chowdhury and Gopalan,
2017) (to recover the true posterior in this setting, λ “

σ2). The choice of kernel k encodes our prior distribu-
tion over f : Briefly, k determines the reproducing ker-
nel Hilbert space (RKHS) in which the GP posterior mean
lies (Schölkopf and Smola, 2002). The kernel choice also
affects a quantity of interest known as the maximum in-
formation gain in iteration T (Srinivas et al., 2010): γT :“
maxpx̃tqTt“1

0.5 log detpI`σ´2KT q where the maximum is
taken over all possible combinations of T decisions. Note
that γT is considered a measure of sample complexity as it
is used to upper bound the regret of an algorithm in various
works on sequential optimization (Abbasi-Yadkori, 2012;
Chowdhury and Gopalan, 2017; Srinivas et al., 2010) and
in this work (Theorems 1, 2, and 3).

4 PURE NASH EQUILIBRIA (NE)

In the pure NE setting, we consider continuous normal-
form general-sum games with n self-interested agents:
A :“ t1, ..., nu. A pure strategy (or action) xi of each
agent i P A lies in a compact set Xi Ă Rdi of possible
pure strategies (i.e., a.k.a. pure strategy set). A pure strat-
egy profile is denoted by a vector x P Rd concatenating
all agents’ pure strategies x1, . . . ,xn where d “

řn
i“1 di.

Each agent i P A is associated with an unknown utility
function ui : Rd Ñ R that maps each pure strategy profile
to its obtained utility when that strategy profile is played.
Each ui is assumed to belong to the RKHS associated with
k. The space of all possible pure strategy profiles is denoted
by X :“ ˆn

i“1Xi Ă Rd. Given a strategy profile x P X ,
the best-response payoff of agent i P A for the pure NE set-
ting is defined as maxx1

iPXi
uipx

1
i,x´iq ´uipxq where x´i

denotes a vector of all agents’ strategies in x except agent
i’s; we overload the notation uipx

1
i,x´iq “ uippx1

i,x´iqq

here s.t. px1
i,x´iq is a concatenated vector. The larger this

payoff is, the less stable (i.e., worse) x is since agent i
has a larger incentive to deviate. To cast our setting as a
maximization problem, we consider agent i’s negative best-
response payoff instead:

fipxq :“ uipxq ´ maxx1
iPXi

uipx
1
i,x´iq ď 0 . (3)

A pure NE is a strategy profile x˚ s.t.

x˚ P X˚ :“ tx P X | @i P A fipxq “ 0u .

In general, a pure NE is not guaranteed to exist. We thus
rely on a relaxation known as a pure ϵ-Nash equilibrium

(ϵ-NE) which is denoted by strategy profile xϵ:

xϵ P Xϵ :“ tx P X | @i P A fipxq ě ´ϵu .

A pure ϵ-NE always exists if ϵ is arbitrary as ϵ can simply
increase until some strategy profile xϵ satisfies the condi-
tion @i P A fipxϵq ě ´ϵ. Fig. 1a illustrates an example of
a 2-agent game with 1-D strategy sets and the game’s NE.

4.1 Finding Pure NE with No-regret BO Algorithm

Our learning setting involves a single learner who is able
to sample at a pure strategy profile x̃t P X in each itera-
tion t; so, the learner’s decisions are pure strategy profiles.
The learner then receives a sampled noisy function value
yi,t “ uipx̃tq`ξi,t from every agent i P A to form the sam-
ple px̃t, yi,tq for updating a separate GP model (each with
kernel k) for each agent i. We assume that the learner has
full control over the agents during learning and the game
(with potential unilateral deviations from the prescribed
strategy profile) only starts during deployment after learn-
ing; these are similarly and commonly adopted in multi-
agent reinforcement learning utilizing centralized training
for decentralized execution (Lyu et al., 2021).1

In each iteration t, the learner also reports a pure strategy
profile that it thinks to be an NE using any available infor-
mation. This reported strategy profile xt serves a different
purpose from the sampled strategy profile x̃t and is used to
measure an algorithm’s performance through the notion of
regret. We define the cumulative pure Nash regret as

RT :“
řT

t“1 ´ϵ˚ ´ miniPA fipxtq ,

ϵ˚ :“ inftϵ P R | Xϵ ‰ Hu .

Since a pure NE may not exist, the pure Nash regret com-
pares the performance of each reported pure strategy profile
against the best achievable ϵ-NE (i.e., one with the smallest
relaxation ϵ possible). The learner is assumed to be un-
aware of the value of ϵ˚.

To develop our algorithm, we first define upper and lower
confidence bounds of the underlying utility functions:

pui,t´1pxq :“ µi,t´1pxq ` βtσt´1pxq ,

qui,t´1pxq :“ µi,t´1pxq ´ βtσt´1pxq ,

βt :“ B ` σp2 pγt´1 ` 1 ` lnp1{δqqq1{2

where B is an upper bound of the RKHS norms of each
ui. From Lemma 9 (Chowdhury and Gopalan, 2017),
with probability of at least 1 ´ δ, for any x and t, the

1We emphasize that our setting differs from that of multi-agent
online learning in which the agents aim to minimize their own
losses, have individual policies, and usually know their utility
functions, e.g., in (Cesa-Bianchi and Lugosi, 2006, Ch. 7). In
contrast, our setting considers a single learner who aims to find a
NE, coordinates the actions of all the agents during learning, and
does not know their utility functions.
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(a) Utility functions and pure NE x˚. (b) UCB-PNE’s reported and exploring strategy profiles.

Figure 1: Pure NE: (a) shows the underlying utility functions of a 2-agent continuous general-sum game and the NE
x˚. At x˚, neither of the agents can improve their utilities by unilaterally changing their strategies; each agent’s space of
possible other strategies is denoted by the dotted lines. The left plot in (b) shows the minimum (over agents) of the upper
confidence bounds of each agent’s negative best-response payoff in iteration t. The reported strategy profile xt maximizes
this function. The right plot assumes the exploring agent jt “ 1 and shows the upper confidence bound of agent 1’s utility
in iteration t ´ 1. Agent 1’s exploring strategy profile x1 maximizes this function over all strategy profiles with agent 2’s
strategy being held constant.

true uipxq will lie between these confidence bounds, i.e.,
uipxq P rqui,t´1pxq, pui,t´1pxqs for all x P X and t P Z`.

We use these confidence bounds to further define the upper
and lower confidence bounds of fi in iteration t as

pfi,t´1pxq :“ pui,t´1pxq ´ maxx1
iPXi

qui,t´1px1
i,x´iq

qfi,t´1pxq :“ qui,t´1pxq ´ maxx1
iPXi

pui,t´1px1
i,x´iq

(4)

and the exploring strategy profile of agent i w.r.t. x in iter-
ation t as

xi :“
´

argmaxx1
iPXi

pui,t´1px1
i,x´iq,x´i

¯

. (5)

Our first lemma proves that these confidence bounds of fi
are valid and the width of the resulting confidence inter-
val at any x is upper bounded by some function of the GP
posterior standard deviations at x and xi:

Lemma 1 With probability of at least 1 ´ δ, for all i P A,
x P X , and t P Z`, the following hold:

qfi,t´1pxq ď fipxq ď pfi,t´1pxq ,

pfi,t´1pxq ´ qfi,t´1pxq ď 2βt

`

σt´1pxq ` σt´1pxiq
˘

.

Note that the GP posterior standard deviation σt´1 (Equ. 2)
does not have a subscript to index the agent since it is the
same for all agents. This is because the GP posterior stan-
dard deviation only depends on the past selected decisions
px̃jq

t´1
j“1 (and not on the corresponding noisy function val-

ues pyi,jq
t´1
j“1) which are available to all agents.

Our acquisition function for finding pure NE called UCB-
PNE is described in Algo. 1. UCB-PNE samples at either
the reported strategy profile xt or the exploring strategy
profile xjt

t depending on which has the higher GP poste-
rior standard deviation. Fig. 1b illustrates an example of

Algorithm 1 UCB-PNE

1: Input: n GPs each with kernel k, max. iteration T
2: for iteration t “ 1 to T do
3: Report strategy profile

xt :“ argmaxxPX miniPA pfi,t´1pxq

4: Sample at strategy profile
x̃t :“ argmax

xPtxt,x
jt
t u

σt´1pxq where

jt :“ argminjPA
qfj,t´1pxtq

5: for agent i “ 1 to n do
6: Observe yi,t :“ uipx̃tq ` ξi where ξi „ N p0, σ2q

7: Update agent i’s GP posterior with
Di,t :“ Di,t´1

Ť

tpx̃t, yi,tqu

an iteration of UCB-PNE with the reported and exploring
strategy profiles of that iteration. Algo. 1 can be interpreted
as a double application of the classic ‘optimism in the face
of uncertainty’ (OFU) principle (Lai et al., 1985): The re-
ported strategy profile xt :“ argmaxxPX miniPA pfi,t´1pxq

is the maximizer of the minimum (over agents) of up-
per confidence bounds of fi while the exploring agent
jt :“ argminjPA

qfj,t´1pxtq is the agent with the minimum
of lower confidence bounds of fj (i.e., the agent who can
potentially receive the largest best-response payoff). The
exploring strategy profile xjt

t (Equ. 5) of jt then optimisti-
cally assumes that the upper confidence bounds of ujt de-
termine what this largest best-response payoff is. Com-
puting the reported strategy profile xt requires solving a
bilevel optimization problem; we elaborate on our method
of solving such a problem in App. B.1. Using Lemma 1,
we guarantee the no-regret performance of UCB-PNE:

Theorem 1 With probability of at least 1´δ, the sequence
of reported strategy profiles pxtq

T
t“1 selected by UCB-PNE
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(Algo. 1) incurs a cumulative pure Nash regret bounded by

RT “ O
´

βT

a

TγT

¯

. (6)

For the commonly used squared exponential kernel, γT “

Opplog T qd`1q ď Op
?
T q (Srinivas et al., 2010). By drop-

ping the polylogarithmic terms, Theorem 1 implies that the
average pure Nash regret RT {T “ Op1{

?
T q Ñ 0 as

T Ñ 8. So, UCB-PNE incurs no regret, which implies
that xt converges to an ϵ˚-NE. The proof bounds the pure
Nash regret in each iteration t in terms of the GP posterior
standard deviations of the reported strategy profile and ex-
ploring strategy profile of exploring agent jt via Lemma 1.
Then, RT can be written as a sum of GP posterior standard
deviations which can be bounded by the RHS of Equ. 6 via
Lemma 10 (Chowdhury and Gopalan, 2017). UCB-PNE’s
design is determined by Theorem 1 that prescribes the sam-
pled strategy profiles required to incur no regret.

Interestingly, under some further assumptions, the se-
quence of sampled strategy profiles (along with the re-
ported ones) can also be shown to be no regret:

Theorem 2 Suppose that the following assumptions hold:
(1) For all i P A, ui is continuous and bounded; (2) Agent-
wise maximizers are unique, i.e., @x P X @i P A D!xi P

Xi uipxi,x´iq “ maxx1
iPXi

uipx
1
i,x´iq; (3) There exists

a unique NE x˚; (4) γT ă OpT q. Then, with probability
of at least 1 ´ δ, the sequence of sampled strategy pro-
files px̃tq

T
t“1 chosen by UCB-PNE (Algo. 1) is no regret (in

terms of cumulative pure Nash regret):

limTÑ8 T´1
řT

t“1 ´ϵ˚ ´ miniPA fipx̃tq “ 0 .

To see the intuition of Theorem 2, the reported strategy
profiles xt converge to the unique NE x˚ by Theorem 1.
Since agent-wise maximizers are unique and the exploring
strategy profiles xjt

t maximize the upper confidence bounds
along an agent’s dimensions, the same maximum informa-
tion gain argument can be leveraged to show that xjt

t con-
verges to x˚ as well. The challenge is in proving this fact
when xt only converges to x˚ instead of being equal.

5 MIXED NASH EQUILIBRIA (NE)

In the mixed NE setting, each agent i P A is still asso-
ciated with a compact set Xi Ă Rdi of pure strategies.
However, we now consider discrete normal-form general-
sum games in which each agent i’s decision is a vector-
valued mixed strategy x△

i P Rmi (subject to 1Jx△
i “ 1

and x△
i ľ 0) corresponding to a probability distribution

over a finite set X̃i of mi strategies that is a discretiza-
tion of Xi. A mixed strategy profile is denoted by a vector
x△ P R

řn
i“1 mi concatenating all agents’ mixed strategies

x△
1 , . . . ,x

△
n. Each agent is again associated with an un-

known utility function ui : Rd Ñ R in the RKHS of k

that maps from each pure strategy profile to its obtained
utility when that strategy profile is played. In this discrete
game setting with m :“

śn
i“1 mi possible pure strategy

profiles, each ui can be equivalently represented by a vec-
tor ui :“ puipx̃

pjqqqmj“1 P Rm where x̃pjq is the j-th pure
strategy profile in X̃ :“ ˆn

i“1X̃i Ă Rd s.t. |X̃ | “ m. De-
fine the mapping ppx△q : R

řn
i“1 mi Ñ Rm s.t. the j-th

element of ppx△q is the probability that the j-th pure strat-
egy profile x̃pjq P X̃ is played when mixed strategy profile
x△ is played. In other words, ppx△q is a probability distri-
bution over X̃ (subject to 1Jppx△q “ 1 and ppx△q ľ 0)
and can be constructed by taking each agent’s mixed strat-
egy in x△ to be independent and taking the product of the
probabilities of the strategies that correspond to a particular
pure strategy profile. Fig. 2a illustrates an example of x△

with ppx△q. We can thus overload the notation ui to refer
to agent i’s expected utility under x△:

uipx
△q “ ppx△qJui .

We define agent i’s negative best-response payoff in the
mixed NE setting as

fipx
△q :“ uipx

△q ´ maxxiPXi uipxi,x
△
´iq .

Note that when taking the maximum over agent i’s strate-
gies, we only need to consider pure strategies and not
mixed ones as the maximum is attained by assigning all
probability mass to the one strategy with the largest ex-
pected utility given all other agents’ mixed strategies. The
space of all possible mixed strategy profiles is denoted by
X△. A mixed NE is a strategy profile x△

˚ s.t.

x△
˚ P X△

˚ :“ tx△ P X△ | @i P A fipx
△
˚q “ 0u .

The ϵ-relaxation is unnecessary here as there always exists
at least a mixed NE when the number of agents and the
number of strategies are both finite (Nash, 1951).

5.1 Finding Mixed NE with No-regret BO Algorithm

In each iteration t, the learner is allowed to sample at any
pure strategy profile x̃t P X̃ and receive sampled noisy
function values in the same manner as that in the pure NE
setting (Sec. 4.1). The learner is not allowed to sample at
arbitrary mixed strategy profiles as it is not feasible in prac-
tice to directly observe the expected utility of a mixed strat-
egy profile, especially since the samples are costly (Sec. 1).
In each iteration t, the learner reports a mixed strategy pro-
file x△

t that it thinks to be an NE. We define the cumulative
mixed Nash regret as

R△
T :“

řT
t“1 ´miniPA fipx

△
t q . (7)

There are two possible model choices for constructing a
GP posterior over each agent’s utility: Firstly, we can
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(a) Agent 1’s utility function and an example
mixed strategy profile.

(b) UCB-MNE’s potentially sampled strat-
egy profiles.

Figure 2: Mixed NE: (a) shows agent 1’s utility (and omits agent 2’s utility to ease exposition) in a 2-player discrete
general-sum game with an example mixed strategy profile x△ (red and blue bars). Each row (or column) corresponds to
one of agent 1’s (or 2’s) pure strategies with m1 “ m2 “ 4, and each box corresponds to a pure strategy profile. The colour
of each box represents the utility agent 1 receives from that pure strategy profile, and the numbers in the boxes are the joint
probability distribution ppx△q induced by x△. (b) assumes that x△

t is the shown mixed strategy profile, jt “ 1, and qjt is
the strategy represented by the first row. The set of pure strategy profiles supppx△

t q is shaded yellow and supppqjt ,x
△
´jt,t

q

is shaded green. UCB-MNE samples at the pure strategy profile x̃t with the largest posterior standard deviation among the
shaded strategy profiles.

use a pure-space GP model to represent ui with deci-
sion space X̃ and kernel k. Since ui is a finite vector,
this simplifies to placing a multivariate Gaussian prior on
ui with distribution N p0, K̃ :“ pkpx̃pjq, x̃pℓqqqmj,ℓ“1q. In
this model, if ui is distributed according to N pm,Sq for
some mean vector m and covariance matrix S, then the
expected utility uipx

△q will be distributed according to
N pppx△qJm,ppx△qJS ppx△qq since it is a linear trans-
formation of a Gaussian. Alternatively, we can use a mixed-
space GP model to directly represent uipx

△q with decision
space X△. However, since the decision space is no longer
a subset of X , kernel k cannot be directly used for the
mixed-space GP model. In order for any finite collection
of uipx

△
1 q, . . . , uipx

△
q q to be distributed in the same way as

if we had used a pure-space GP model, we require an ap-
propriate transformation to k, as given by the next result:

Proposition 1 Let k△ be a positive semidefinite kernel de-
fined as k△px△

j ,x
△
j1 q :“ ppx△

j qJK̃ ppx△
j1 q. Then, a mixed-

space GP model with prior mean 0 and kernel k△ yields
the same predictive mean of any uipx

△q and covariance
between any uipx

△
j q and uipx

△
j1 q as that obtained with a

linear transformation of the pure-space GP predictive dis-
tribution over ui with prior mean 0 and kernel k.

It may seem at first glance that we can use Algo. 1 and
Theorem 1 with a mixed-space GP model and the kernel
k△ to guarantee convergence towards a mixed NE by treat-
ing X△ as a ‘pure’ strategy profile space. This would be
the case if the learner is allowed to sample at an arbitrary
x△ to directly observe a noise-corrupted uipx

△q. However,
this violates our practical learning setting that the learner
can only sample at pure strategy profiles. Algo. 1 and The-

orem 1 are thus not directly applicable with a mixed-space
GP model. Moreover, using Algo. 1 prevents us from ex-
ploiting the structure of the mixed NE problem (without
non-trivial modifications), e.g., by choosing to first search
for mixed NE at which all agents have supports of equal
size (Stengel, 2007, pp. 56). We find that working with
pure-space GP models allows the previously developed the-
ory for pure NE to transfer elegantly with some necessary
modifications and also enables us to take advantage of ex-
isting mixed NE solvers that exploit the problem structure.
So, the rest of this section is devoted to finding mixed NE
via pure-space GP models.

We first define upper and lower bounds of the negative best-
response payoff using the overloaded notations of the up-
per and lower confidence bounds of the underlying utility
functions puipx

△q :“ ppx△qJ
pui and quipx

△q :“ ppx△qJ
qui:

pfi,t´1px△q :“ pui,t´1px△q ´ maxxiPXi
qui,t´1pxi,x

△
´iq

qfi,t´1px△q :“ qui,t´1px△q ´ maxxiPXi
pui,t´1pxi,x

△
´iq .

We also redefine the exploring pure strategy profile w.r.t. a
mixed strategy profile x△ for mixed NE as

xi :“ argmaxx1Psupppqi,x
△
´iq σt´1px1q (8)

qi :“ argmaxx1
i PXi

pui,t´1px1
i,x

△
´iq (9)

where supppx△q is the set of all pure strategy profiles with
non-zero probability under ppx△q, and define an additional
exploiting pure strategy profile w.r.t. a mixed strategy pro-
file x△ as

x :“ argmaxx1Psupppx△q σt´1px1q . (10)
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The next result is a direct analog of Lemma 1 for the mixed
NE setting. The additional insight is that the pure strategy
profiles forming the upper bound of the width of the con-
fidence interval of fi are those in the supports of x△ and
pqi,x

△
´iq with the largest GP posterior standard deviations.

Lemma 2 With probability of at least 1 ´ δ, for all i P A,
x△ P X△, and t P Z`, the following hold:

qfi,t´1px△q ď fipx
△q ď pfi,t´1px△q ,

pfi,t´1px△q ´ qfi,t´1px△q ď 2βt

`

σt´1pxq ` σt´1pxiq
˘

.

Our acquisition function for finding mixed NE called UCB-
MNE is described in Algo. 2 and illustrated in Fig. 2b.
In each iteration t, UCB-MNE samples a utility function
ũi,t´1 for each agent i s.t. qui,t´1 ĺ ũi,t´1 ĺ pui,t´1 (using
the vector representation of utility functions) and computes
the reported mixed NE x△

t using each ũi,t´1 as ground
truth; we elaborate on our method of computing mixed NE
in App. B.2. Based on x△

t , UCB-MNE then samples at
either the exploiting strategy profile xt (Equ. 10) or the ex-
ploring pure strategy profile xjt

t (Equ. 8) of the exploring
agent jt :“ argminjPA

qfj,t´1px△
t q depending on which of

the two has the larger uncertainty. Similar to UCB-PNE,
this may be interpreted as a double application of the OFU
principle: By sampling the utility functions within the con-
fidence bounds, we optimistically assume these functions
to be ground truth and compute a potential mixed NE based
on those functions. Since jt is the agent with the poten-
tially largest best-response payoff, UCB-MNE again opti-
mistically assumes that the upper confidence bounds of ujt

determine what the potential best-response payoff is when
selecting the exploring pure strategy profile. The theory
transfers elegantly: We prove using Lemma 2 that this se-
quence of reported mixed strategy profiles incurs no regret
and so, x△

t converges to a mixed NE; proof sketch is similar
to that of Theorem 1 but adapted to mixed NE setting:

Theorem 3 With probability of at least 1 ´ δ, the se-
quence of reported strategy profiles px△

t qTt“1 selected by
UCB-MNE (Algo. 2) incurs a cumulative mixed Nash re-
gret bounded by

R△
T “ O

´

βT

a

TγT

¯

.

6 EXPERIMENTS AND DISCUSSION

We empirically evaluate our acquisition functions in var-
ious games in both the pure and mixed NE settings. We
first describe the games defined by their utility (objective)
functions, followed by the acquisition functions tested in
both settings; App. C details the full description of the
utility functions, acquisition function hyperparameters, and
computation time. All experiments are tested over 5 RNG

Algorithm 2 UCB-MNE

1: Input: n GPs each with kernel k, max. iteration T
2: for iteration t “ 1 to T do
3: Sample utility functions ũi,t´1 s.t.

qui,t´1 ĺ ũi,t´1 ĺ pui,t´1 for all i P A
4: Report mixed strategy profile x△

t Ð mixed NE com-
puted using ũi,t´1 for all i P A as ground truth

5: Sample at strategy profile
x̃t :“ argmax

xPtxt,x
jt
t u

σt´1pxq where

jt :“ argminjPA
qfj,t´1px△

t q

6: for agent i “ 1 to n do
7: Observe yi,t :“ uipx̃tq ` ξi where ξi „ N p0, σ2q

8: Update agent i’s GP posterior with
Di,t :“ Di,t´1

Ť

tpx̃t, yi,tqu

seeds which affect the utilities, the initial samples, and
acquisition functions with randomness. The code for the
experiments can be found at https://github.com/
sebtsh/nash-bo.

Synthetic Random Functions (RF): We construct a 2-
player general-sum game by sampling two random 2-D
functions from a GP prior and using them as utility func-
tions. Each agent’s strategy is in r´1, 1s. To test the acqui-
sition functions’ ability to handle games with non-0 ϵ˚, we
chose 5 RNG seeds s.t. ϵ˚ ě 0.05 in the resulting games.

Generative Adversarial Networks (GAN) on 1-D Data
Manifold: GANs are a class of generative models that con-
sist of a generator and a discriminator. The desired gener-
ator and discriminator parameters form a Nash equilibrium
of a 2-player general-sum game (Salimans et al., 2016). We
evaluate our algorithms on a simple GAN setup inspired by
the experiments in Fedus et al. (2018). The generator gen-
erates data on a 1-D manifold with strategies (parameters)
in r´1, 1s2, while the discriminator is a binary classifier
with strategies in r´1, 1s3. This setup has ϵ˚ “ 0.

Binary Classifiers’ Additive Adversarial Attack and
Defense (BCAD): We evaluate our algorithms on finding
NE in the 2-player zero-sum game of additive adversar-
ial attacks and defenses on binary classifiers, as described
in Pal and Vidal (2020). We use a simple binary clas-
sifier that classifies points in R2. The attacker selects a
vector field of perturbations parameterized by strategies in
r´1, 1s3. The defender selects a constant perturbation pa-
rameterized by strategies in r´1, 1s2. Pal and Vidal (2020)
show that an NE always exists when the utility functions
are defined in a specific way and so, ϵ˚ “ 0 in this setup.

Pure NE. For the pure NE setting, we compare UCB-PNE
with Probability of Equilibrium (PE)2 (Picheny et al., 2019)

2PE is not designed for continuous strategy profile sets: To
make it work, we discretize each agent’s strategy set into a finite

https://github.com/sebtsh/nash-bo
https://github.com/sebtsh/nash-bo
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Figure 3: Mean and standard error of simple pure Nash regrets of reported strategy profiles.
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Figure 4: Mean and standard error of simple pure Nash regrets of sampled strategy profiles.
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Figure 5: Mean and standard error of simple mixed Nash regrets.

and BN (Al-Dujaili et al., 2018). We also do an ablation
study of UCB-PNE by removing its ability to select an
exploring strategy profile to sample at and call this UCB-
PNE no-exp. For PE and BN, the reported strategy profile
is computed in each iteration by taking the GP posterior
means as surrogates to each ui and solving the bilevel op-
timization problem argmaxxPX miniPA fipxq (App. B.1).
Fig. 3 shows the simple pure Nash regret minjďt ´ϵ˚ ´

miniPA fipxjq incurred by the reported strategy profiles
of each acquisition function with each game at each iter-
ation; 0 indicates that the ϵ˚-NE was exactly reported at
some iteration. It can be observed that UCB-PNE incurs the
least simple pure Nash regret by the end in RF and GAN.
While PE performs well in the games with ϵ˚ “ 0 (GAN

set with uniform random sampling in each iteration as we found
performance to be poor with a fixed strategy set at every iteration.
We do not compare to SUR (Picheny et al., 2019) (i.e., also not
designed for continuous spaces) as PE was empirically shown to
perform on par with or better than SUR in both previous works.

and BCAD), it performs poorly in RF when ϵ˚ ą 0, which
is expected as its behavior is unknown when the probabil-
ity of an equilibrium is 0 everywhere. In GAN and BCAD,
UCB-PNE continues to improve its simple regret in the last
few iterations while PE stops improving in the last 200 or
so iterations. We also plot the simple pure Nash regret in-
curred by the sampled strategy profiles in Fig. 4. It can be
observed that UCB-PNE again generally outperforms the
rest and only incurs slightly higher regret than UCB-PNE
no-exp by the end in GAN.

Mixed NE. For the mixed NE setting, since there is no prior
work, we compare UCB-MNE to its ablated form with-
out exploring strategy profiles (and call this UCB-MNE
no-exp) as well as to two simple heuristics: one sampling
at the pure strategy profile with the largest GP posterior
variance (i.e., maximum entropy) and one sampling at a
profile selected uniformly at random. We discretize each
agent’s strategy set into 10 strategies for RF and GAN, and
16 strategies for BCAD. Fig. 5 shows the simple mixed
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Nash regrets minjďt ´miniPA fipx
△
j q for different acqui-

sition functions and utility functions. It can be observed
that UCB-MNE and UCB-MNE no-exp consistently incur
the least simple mixed Nash regret by the end. While both
are able to outperform the simple heuristics by the end,
UCB-MNE finds solutions with low regret in slightly less
iterations: The ability to sample at exploring strategy pro-
files allows the learner to find better solutions faster.

7 CONCLUSION

This paper describes the first no-regret BO algorithms
that are sample-efficient in finding pure and mixed NE in
general-sum games with unknown costly-to-sample utility
functions. This line of research has several potential av-
enues of further exploration. In particular, the algorithms
tested in this work are difficult to scale to domains with
a large number of dimensions due to the bilevel optimiza-
tion for UCB-PNE and due to the need of discretization
for PE and UCB-MNE. Future work may explore acqui-
sition functions that are able to find NE in high dimen-
sions (Hoang et al., 2018) in a computationally tractable
manner. Finally, we will consider generalizing our algo-
rithms to cater to deep neural networks as the surrogate
model (instead of a GP model) (Dai et al., 2022b), batch
mode (Daxberger and Low, 2017), information-theoretic
acquisition functions (Nguyen et al., 2021c,e), prefer-
ences (Nguyen et al., 2021d), multi-fidelity function evalu-
ations (Zhang et al., 2017, 2019), nonmyopic planning with
lookaheads (Kharkovskii et al., 2020b; Ling et al., 2016),
uncontrollable environmental random variables (Nguyen
et al., 2021a,b; Tay et al., 2021), fairness (Sim et al., 2021),
differential privacy (Kharkovskii et al., 2020a), early stop-
ping (Dai et al., 2019), delayed feedback (Verma et al.,
2022), federated learning (Dai et al., 2020b, 2021, 2023)
and meta-learning (Dai et al., 2022a) settings, and con-
sider its application to neural architecture search (Shu et al.,
2022a,b,c) and inverse reinforcement learning (Balakrish-
nan et al., 2020). For applications with a huge budget
of function evaluations, we like to couple our algorithm
with the use of distributed/decentralized (Chen et al., 2012,
2013a,b, 2015; Hoang et al., 2016, 2019; Low et al., 2015;
Ouyang and Low, 2018), online/stochastic (Hoang et al.,
2015, 2017; Low et al., 2014; Xu et al., 2014; Yu et al.,
2019b), or deep (Yu et al., 2019a, 2021) sparse GP mod-
els to represent the belief of the unknown utility functions
efficiently.
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A PROOFS

A.1 Proof of Lemma 1

Lemma 1 With probability of at least 1 ´ δ, for all i P A, x P X, and t P Z`,

qfi,t´1pxq ď fipxq ď pfi,t´1pxq ,

pfi,t´1pxq ´ qfi,t´1pxq ď 2βt

`

σt´1pxq ` σt´1pxiq
˘

.

Proof From Lemma 9, with probability of at least 1 ´ δ, for all i P A, x P X, and t P Z`, the following holds:

qui,t´1pxq ď uipxq ď pui,t´1pxq .

For the first statement of the lemma,

qfi,t´1pxq :“ qui,t´1pxq ´ max
x1
iPXi

ppui,t´1px1
i,x´iqq

ď ui,t´1pxq ´ max
x1
iPXi

ppui,t´1px1
i,x´iqq

ď ui,t´1pxq ´ max
x1
iPXi

pui,t´1px1
i,x´iqq “ fi,t´1pxq

ď pui,t´1pxq ´ max
x1
iPXi

pui,t´1px1
i,x´iqq

ď pui,t´1pxq ´ max
x1
iPXi

pqui,t´1px1
i,x´iqq “ pfi,t´1pxq.

For the second statement of the lemma, define

qi :“ argmax
x1
iPXi

ppui,t´1px1
i,x´iqq

wi :“ argmax
x1
iPXi

pqui,t´1px1
i,x´iqq.

The quantity pfi,tpxq ´ qfi,t´1pxq is bounded by

pfi,tpxq ´ qfi,t´1pxq “ pui,t´1pxq ´ qui,t´1pwi,x´iq ´ qfi,t´1pxq

“ pui,t´1pxq ´ qui,t´1pxq ` pui,t´1pqi,x´iq ´ qui,t´1pwi,x´iq

“ 2βtσt´1pxq ` pui,t´1pqi,x´iq ´ qui,t´1pwi,x´iq

piq
ď 2βtσt´1pxq ` pui,t´1pqi,x´iq ´ qui,t´1pqi,x´iq

“ 2βt pσt´1pxq ` σt´1pqi,x´iqq

“ 2βt

`

σt´1pxq ` σt´1pxiq
˘

where piq follows from the definition of wi, hence completing the proof.
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A.2 Proof of Theorem 1

Theorem 1 With probability of at least 1 ´ δ, the sequence of reported strategy profiles pxtq
T
t“1 selected by UCB-PNE

(Algo. 1) incurs a pure Nash regret bounded by

RT ď O
´

βT

a

TγT

¯

.

Proof Recall the pure Nash regret:

RT :“
T

ÿ

t“1

´ϵ˚ ´ min
jPA

fjpxtq

“

T
ÿ

t“1

min
iPA

fipxϵ˚
q ´ min

jPA
fjpxtq.

We now derive an upper bound for RT .

RT “

T
ÿ

t“1

min
iPA

fipxϵ˚
q ´ min

jPA
fjpxtq

piq
ď

T
ÿ

t“1

min
iPA

pfi,t´1pxϵ˚
q ´ min

jPA
fjpxtq

piiq
ď

T
ÿ

t“1

min
iPA

pfi,t´1pxtq ´ min
jPA

fjpxtq

ď

T
ÿ

t“1

min
iPA

pfi,t´1pxtq ´ min
jPA

qfj,t´1pxtq

ď

T
ÿ

t“1

pfjt,t´1pxtq ´ qfjt,t´1pxtq

piiiq
ď

T
ÿ

t“1

2βt

´

σt´1pxtq ` σt´1pxjt
t q

¯

ď

T
ÿ

t“1

4βt max
´

σt´1pxtq, σt´1pxjt
t q

¯

ď 4βT

˜

T
ÿ

t“1

max
´

σt´1pxtq, σt´1pxjt
t q

¯

¸

pivq

ď 4βT

a

4pT ` 2qγT “ O
´

βT

a

TγT

¯

where jt :“ argminjPA
qfj,t´1pxtq, piq follows from Lemma 1, piiq follows from our choice of reported strategy profile

xt, piiiq follows from Lemma 1 again, and pivq follows from Lemma 10 and the algorithm’s choice of pure strategy
profiles x̃t sampled at.

A.3 Proof of Theorem 2

Theorem 2 If the following assumptions hold:

1. For all i P A, ui is continuous and bounded;

2. Unique agent-wise maximizers, i.e., @x P X ,@i P A, D!xi P Xi such that uipxi,x´iq “ maxx1
iPXi

uipx
1
i,x´iq;
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3. There exists a unique NE x˚;

4. γT ă OpT q,

then with probability of at least 1 ´ δ, the sequence of sampled strategy profiles px̃tq
T
t“1 chosen by UCB-PNE (Algo. 1)

incurs no regret (in terms of pure Nash regret), i.e.,

lim
TÑ8

1

T

T
ÿ

t“1

´ϵ˚ ´ min
iPA

fipx̃tq “ 0.

Proof For ease of exposition, define the following functions:

τipxq :“

˜

argmax
x1
iPXi

uipx
1
i,x´iq,x´i

¸

τ̂i,t´1pxq :“

˜

argmax
x1
iPXi

ûi,t´1px1
i,x´iq,x´i

¸

“ xi.

Denote Trep Ă Z`
0 as the set of all iterations in which the reported strategy profile was sampled at, and Texp Ă Z`

0

as the set of all iterations in which the exploring strategy profile was sampled at. The sequence of sampled strategy
profiles px̃tq

T
t“1 can be decomposed into two disjoint subsequences: the decisions that are chosen as the reported strategy

profiles pxtqtPTrep , and the decisions that are chosen as the exploring strategy profiles pτ̂jt,t´1pxtqqtPTexp . Since all infinite
subsequences converge to the same limit if the original sequence converges, by Theorem 1 and Assumption 4, pxtqtPTrep

has the desired no-regret performance guarantee. To prove that the entire sequence incurs no regret, it remains to show that
pτ̂jt,t´1pxtqqtPTexp incurs no regret (or is sublinear). To do this, it is sufficient to show that (noting that ϵ˚ “ 0 under our
assumptions)

lim
TÑ8

1

T

T
ÿ

t“1

´min
iPA

fipτ̂jt,t´1pxtqq “ 0.

From Lemma 3 and Assumption 1, for all i P A, fi is continuous, and hence so is miniPA fi. Since miniPA fipx˚q “ 0
where x˚ is the unique NE by Assumption 3, for all ϵf ą 0 there exists δ ą 0 such that

@x P Bpx˚, δq, min
iPA

fipxq ą ´ϵf (11)

where Bpx˚, δq is an open ball centered at x˚ with radius δ. To reduce notational clutter, let B denote Bpx˚, δq. Note that
x˚ P B.

Consider the preimage of B under τi:

τ´1
i pBq :“ tx P X | τipxq P Bu.

Note that τipx˚q “ x˚ P B for all i P A by Assumption 2, so x˚ P τ´1
i pBq. Denote the intersection of these sets as

τ´1pBq :“ XiPAτ
´1
i pBq

which contains x˚.

From Lemma 4, X zτ´1pBq is a compact set. Since X zτ´1pBq is compact and miniPA fi is a continuous function,
miniPA fi achieves a maximum value on X zτ´1pBq. Since X zτ´1pBq does not contain x˚, this maximum value, de-
noted as ϵ1

f , is less than 0. If X zτ´1pBq is an empty set, we may simply reduce δ until X zτ´1pBq is non-empty, and
Equ. 11 will still hold. Concretely,

ϵ1
f :“ max

xPX zτ´1pBq
min
iPA

fipxq ă 0.
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Hence, we can decompose the average cumulative regret of the exploring strategy profiles:

lim
TÑ8

´
1

T

T
ÿ

t“1

min
iPA

fipτ̂jt,t´1pxtqq

“ ´ lim
TÑ8

1

T

´

T
ÿ

t“1

1xtPτ´1pBq min
iPA

fipτ̂jt,t´1pxqq

`

T
ÿ

i“1

1xtPpX zτ´1pBqq min
iPA

fipτ̂jt,t´1pxqq

¯

.

From Lemma 5 and the fact that fi is bounded (e.g., by M ) since ui is bounded by Assumption 1,

lim
TÑ8

´
1

T

T
ÿ

i“1

1xtPpX zτ´1pBqq min
iPA

fipτ̂jt,t´1pxqq

ă lim
TÑ8

´
1

T
M |XT X

`

X zτ´1pBq
˘

| “ 0

where XT :“ txtu
T
t“1 is the set of reported strategy profiles until iteration T . Hence,

lim
TÑ8

´
1

T

T
ÿ

t“1

min
iPA

fipτ̂jt,t´1pxtqq

“ ´ lim
TÑ8

1

T

T
ÿ

i“1

1xtPτ´1pBq min
iPA

fipτ̂jt,t´1pxqq

“ ´ lim
TÑ8

1

T

T
ÿ

i“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPB min
iPA

fipτ̂jt,t´1pxqq

´ lim
TÑ8

1

T

T
ÿ

i“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPX zB min
iPA

fipτ̂jt,t´1pxqq.

Similar to the above argument, from Lemma 6, Assumption 4 and the fact that fi is bounded,

lim
TÑ8

1

T

T
ÿ

i“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPX zB min
iPA

fipτ̂jt,t´1pxqq “ 0.

Hence,

lim
TÑ8

´
1

T

T
ÿ

t“1

min
iPA

fipτ̂jt,t´1pxtqq

“ ´ lim
TÑ8

1

T

T
ÿ

i“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPB min
iPA

fipτ̂jt,t´1pxtqq

piq
ď lim

TÑ8

1

T

T
ÿ

i“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPB ϵf

ď ϵf

where piq follows from the definition of B. As the above is true for all ϵf ą 0, it follows that

lim
TÑ8

´
1

T

T
ÿ

t“1

min
iPA

fipτ̂jt,t´1pxtqq “ 0

which concludes the proof.
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Lemma 3 If ui is continuous, then τi and fi are continuous.

Proof We first prove that τi is continuous with a proof by contradiction. Assume that τi is not continuous. This means
that at some decision x˝,

D ϵ0 ą 0 s.t. @ δ ą 0, Dx1 s.t. p}x˝ ´ x1} ă δq ^ pτipx
1q R Bϵ0pτipx

˝qqq. (12)

where Bϵ0pτipx
˝qq is an open ball centered at τipx˝q with radius ϵ0 and }¨} is an arbitrary norm on Rd.

Let X̄ipx
˝q denote the following affine set that contains x˝:

X̄ipx
˝q :“ tpxi,x

˝
´iq| xi P Xiu.

Note that τipx˝q P X̄ipx
˝q.

Since there is a unique agent-wise maximizer τipx˝q by Assumption 2, for any ϵ0 above

ω :“ uipτipx
˝qq ´ max

xPX̄ipx˝qzBϵ0
pτipx˝qq

uipxq ą 0. (13)

Construct a sequence of distances from x˝ pδpjqq8
j“1 such that limjÑ8 δpjq “ 0. For each δpjq, by Equ. 12, there exists a

xpjq such that
p}x˝ ´ xpjq} ă δpjqq ^ pτipx

pjqq R Bϵ0pτipx
˝qqq.

Construct such a sequence pxpjqq8
j“1. This gives us the associated sequence pτipx

pjqqq8
j“1. By construction, all the elements

of this sequence lie outside the ϵ0 open ball around τipx
˝q. Furthermore, by letting ρpxq :“ pxi,x

˝
´iq be the projection of

x onto X̄ipx
˝q and noting that τi does not change the strategies of players other than i and that xpjq Ñ x, we claim (to be

proven later)

lim
jÑ8

}τipx
pjqq ´ ρpτipx

pjqqq} “ 0. (14)

Using the triangle inequality,

}τipx
˝q ´ ρpτipx

pjqqq} ` }τipx
pjqq ´ ρpτipx

pjqqq} ě }τipx
˝q ´ τipx

pjqq} ě ϵ0.

Hence,
lim
jÑ8

∥∥∥τipx˝q ´ ρpτipx
pjqqq

∥∥∥ ě ϵ0 . (15)

As ui is a continuous function on a compact set X , ui is uniformly continuous on X . Hence, given ω{3, there exists
ϵ2 ă ϵ0 such that

@x,x1 P X }x ´ x1} ă ϵ2 ñ |uipxq ´ uipx
1q| ă ω{3 . (16)

From Equ. 14 and Equ. 15, choose a value j1 such that

}τipx
˝q ´ ρpτipx

pj1
qqq} ą ϵ0 ´ ϵ2 (17)

}τipx
pj1

qq ´ ρpτipx
pj1

qqq} ă ϵ2. (18)

This implies that

uipτipx
˝qq ´ ui

´

ρpτipx
pj1

qqq

¯

ě
2

3
ω (19)

ˇ

ˇ

ˇ
uipτipx

pj1
qqq ´ ui

´

ρpτipx
pj1

qqq

¯
ˇ

ˇ

ˇ
ă

1

3
ω.

To see why Equ. 19 is true, let v be the closest point to ρpτipx
pj1

qqq that is not in Bϵ0pτipx
˝qq. From Equ. 13, uipτipx

˝qq ´

uipvq ě ω. For large enough j1, from (17), }ρpτipx
pj1

qqq ´ v} ă ϵ2. Equ. 19 then follows from applying Equ. 16.
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For all x1 P Bϵ2pτipx
˝qq, from Equ. 16,

|uipτipx
˝qq ´ uipx1q| ă

1

3
ω.

Hence, for all x1 P Bϵ2pτipx
˝qq,

uipx1q ´ uipτipx
pj1

qqq

“ uipx1q ´ uipτipx
˝qq ` uipτipx

˝qq ´ ui

´

ρpτipx
pj1

qqq

¯

` ui

´

ρpτipx
pj1

qqq

¯

´ uipτipx
pj1

qqq ` uipτipx
pj1

qqq ´ uipτipx
pj1

qqq

ą ´
1

3
ω `

2

3
ω ´

1

3
ω

“ 0.

Since the intersection X̄ipx
pj1

qq X Bϵ2pτipx
˝qq is non-empty due to Equ. 18 and τipx

pj1
qq R Bϵ2pτipx

˝qq since τipx
pj1

qq

is outside the ϵ0 open ball around τipx
˝q and ϵ0 ą ϵ2, there exists x1 P X̄ipx

pj1
qq X Bϵ2pτipx

˝qq such that uipx
1q ą

uipτipx
pj1

qqq which is a contradiction since τipx
pj1

qq is the unique maximizer of ui in X̄ipx
pj1

qq. We thus conclude that τi
is continuous. Since fipxq “ uipxq ´ uipτipxqq and both ui and τi are continuous, fi is continuous.

What remains is to prove the claim Equ. 14

lim
jÑ8

}τipx
pjqq ´ ρpτipx

pjqqq} “ 0.

}τipx
pjqq ´ ρpτipx

pjqqq}2 “

›

›

›

´

0i, px
pjq

´i ´ x˝
´iq

¯
›

›

›

2

ď

›

›

›

´

px
pjq

i ´ x˝
i q, px

pjq

´i ´ x˝
´iq

¯
›

›

›

2

“ }xpjq ´ x˝}2.

By our construction of pxpjqq8
j“1, limjÑ8 }xpjq ´ x˝} “ 0. Since any two norms in Rd are equiva-

lent, limjÑ8 }xpjq ´ x˝}2 “ 0. Since }xpjq ´ x˝}2 ě }τipx
pjqq ´ ρpτipx

pjqqq}2 for all j, it follows that
limjÑ8 }τipx

pjqq ´ ρpτipx
pjqqq}2 “ 0. By norm equivalence again, limjÑ8 }τipx

pjqq ´ ρpτipx
pjqqq} “ 0 which

completes the proof of the claim and concludes the proof of the lemma.

Lemma 4 The set X zτ´1pBq is compact.

Proof Since

X zτ´1pBq “
ď

iPA
X zτ´1

i pBq,

to prove that X zτ´1pBq is compact, we only need to show that X zτ´1
i pBq is compact. Define

τ̃´1
i pBq :“ tx P Rd | τipxq P Bu

where Rd Ą X . Since τi is a continuous function and B is an open set, the preimage τ̃´1
i pBq of B under τi in

Rd is an open set, i.e., its complement pτ̃´1
i pBqqc is a closed set. Since each Xi is compact, X is compact, and so

X zτ̃´1
i pBq “ X X pτ̃´1

i pBqqc is a compact set. Furthermore, X zτ̃´1
i pBq “ X zτ´1

i pBq. Hence, X zτ´1
i pBq is a compact

set.

Lemma 5 The number of reported strategy profiles that fall outside τ´1pBq is sublinear. Let XT :“ txtu
T
t“1 be the set of

reported strategy profiles until iteration T . Then,

lim
TÑ8

1

T
|XT X

`

X zτ´1pBq
˘

| “ 0.
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Proof We can rewrite RT as

RT :“ ´

T
ÿ

t“1

min
iPA

fipxtq

“ ´
ÿ

xPXT Xτ´1pBq

min
iPA

fipxq ´
ÿ

xPXT XpX zτ´1pBqq

min
iPA

fipxq

ě ´
ÿ

xPXT Xτ´1pBq

min
iPA

fipxq ´ ϵ1
f |XT X

`

X zτ´1pBq
˘

|

ě ϵ1
f |XT X

`

X zτ´1pBq
˘

|.

Since RT is sublinear,

lim
TÑ8

RT

T
“ 0

lim
TÑ8

1

T
ϵ1
f |XT X

`

X zτ´1pBq
˘

| “ 0

lim
TÑ8

1

T
|XT X

`

X zτ´1pBq
˘

| “ 0.

Lemma 6 If γT ă OpT q, then

lim
TÑ8

1

T

T
ÿ

t“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPX zB “ 0.

Proof Let

ϵu :“ min
xPτ´1pBq

min
iPA

ˆ

uipτipxqq ´ max
x1
iPtx1

iPXi|px1
i,x´iqRBu

uippx1
i,x´iqq

˙

.

Since τipxq is unique by Assumption 2 and xt P τ´1pBq implies that τipxtq P B for all i P A, ϵu ą 0.

Define

rupxtq :“ ujtpτjtpxtqq ´ ujtpτ̂jt,t´1pxtqq.

Hence, if τ̂jt,t´1pxtq P X zB,

rupxtq ě ϵu.

T
ÿ

t“1

1xtPτ´1pBqrupxtq “

T
ÿ

t“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPB rupxtq

`

T
ÿ

t“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPX zB rupxtq

ě ϵu

T
ÿ

t“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPX zB.
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From Lemma 7, since γT ă OpT q,
řT

t“1 rupxtq is sublinear, i.e., limTÑ8
1
T

řT
t“1 rupxtq “ 0. Hence,

lim
TÑ8

1

T

T
ÿ

t“1

1xtPτ´1pBqrupxtq ď lim
TÑ8

1

T

T
ÿ

t“1

rupxtq “ 0

lim
TÑ8

1

T
ϵu

T
ÿ

t“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPX zB ď lim
TÑ8

1

T

T
ÿ

t“1

1xtPτ´1pBqrupxtq “ 0

lim
TÑ8

1

T
ϵu

T
ÿ

t“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPX zB “ 0

lim
TÑ8

1

T

T
ÿ

t“1

1xtPτ´1pBq1τ̂jt,t´1pxtqPX zB “ 0.

Lemma 7 If γT ă OpT q, then
řT

t“1 rupxtq is sublinear, i.e.,

lim
TÑ8

1

T

T
ÿ

t“1

rupxtq “ 0.

Proof The proof is similar to GP-UCB’s proof (Srinivas et al., 2010):

T
ÿ

t“1

rupxtq “

T
ÿ

t“1

ujtpτjtpxtqq ´ ujtpτ̂jt,t´1pxtqq

ď

T
ÿ

t“1

pujt,t´1pτjtpxtqq ´ qujt,t´1pτ̂jt,t´1pxtqq

ď

T
ÿ

t“1

pujt,t´1pτ̂jt,t´1pxtqq ´ qujt,t´1pτ̂jt,t´1pxtqq

“

T
ÿ

t“1

2βtσt´1pτ̂jt,t´1pxtqq

ď

T
ÿ

t“1

2βtσt´1px̃tq

ď 2βT

a

4pT ` 2qγT “ OpβT

a

TγT q

where the last inequality follows from Lemma 10. Since γT ă OpT q,
řT

t“1 rupxtq is sublinear.

A.4 Proof of Lemma 2

Lemma 2 With probability of at least 1 ´ δ, for all i P A, x△ P X△, and t P Z`,

qfi,t´1px△q ď fipx
△q ď pfi,t´1px△q

and
pfi,t´1px△q ´ qfi,t´1px△q ď 2βt

`

σt´1pxq ` σt´1pxiq
˘

.

Proof From Lemma 9, with probability of at least 1 ´ δ, for all i P A, pure strategies x P X, and t P Z`, the following
holds:

qui,t´1pxq ď uipxq ď pui,t´1pxq



Sebastian Shenghong Tay, Quoc Phong Nguyen, Chuan Sheng Foo, Bryan Kian Hsiang Low

To extend these inequalities to any mixed strategy profile x△ P X△, we write the expected utility and its upper and lower
confidence bounds in terms of vector inner products:

qui,t´1px△q “ ppx△qJ
qui,t´1

ď ppx△qJui “ ui,t´1px△q

ď ppx△qJ
pui,t´1 “ pui,t´1px△q

For the first statement of the lemma, using these inequalities,

qfi,t´1px△q :“ qui,t´1px△q ´ max
xiPXi

pui,t´1pxi,x
△
´iq

ď uipx
△q ´ max

xiPXi

pui,t´1pxi,x
△
´iq

ď uipx
△q ´ max

xiPXi

uipxi,x
△
´iq “ fipx

△q

ď pui,t´1px△q ´ max
xiPXi

uipxi,x
△
´iq

ď pui,t´1px△q ´ max
xiPXi

qui,t´1pxi,x
△
´iq “ pfi,t´1px△q.

For the second statement of the lemma, we first bound the difference in the upper and lower confidence bounds of the
expected utility of any mixed strategy profile x△:

pui,t´1px△q ´ qui,t´1px△q “ ppx△qJ
pui,t´1 ´ ppx△qJ

qui,t´1

“ ppx△qJppui,t´1 ´ qui,t´1q

“ ppx△qJp2βtσt´1q

ď 2βt max
xPsupppx△q

σt´1pxq (20)

where σt´1 P R
śn

i“1 mi is a vector consisting of the GP posterior standard deviation of each pure strategy profile in the
domain, i.e., σt´1pxq for each of the m pure strategy profiles x P X̃ .

pfi,t´1px△q ´ qfi,t´1px△q “ pui,t´1px△q ´ qui,t´1px△q ` max
xiPXi

pui,t´1pxi,x
△
´iq ´ max

xiPXi

qui,t´1pxi,x
△
´iq

ď pui,t´1px△q ´ qui,t´1px△q ` pui,t´1pqi,x
△
´iq ´ qui,t´1pqi,x

△
´iq

piq
ď 2βt max

xPsupppx△q
σt´1pxq ` 2βt max

x1Psupppqi,x
△
´iq

σt´1px1q

“ 2βt

˜

max
xPsupppx△q

σt´1pxq ` max
x1Psupppqi,x

△
´iq

σt´1px1q

¸

“ 2βt

`

σt´1pxq ` σt´1pxiq
˘

where qi, x and xi are defined in Equ. 9, Equ. 10 and Equ. 8 respectively, and piq follows from Equ. 20.

A.5 Proof of Theorem 3

Theorem 3 With probability of at least 1´δ, the sequence of reported strategies px△
t qTt“1 selected by UCB-MNE (Algo. 2)

incurs a mixed Nash regret bounded by

R△
T ď O

´

βT

a

TγT

¯

.
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Proof The mixed Nash regret is bounded by

R△
T :“

T
ÿ

t“1

´min
iPA

fipx
△
t q

piq
ď

T
ÿ

t“1

´min
iPA

qfi,t´1px△
t q

“

T
ÿ

t“1

´ qfjt,t´1px△
t q

piiq
“

T
ÿ

t“1

ũjt,t´1px△
t q ´ max

xjtPXjt

ũjt,t´1pxjt ,x
△
´jt

q ´ qfjt,t´1px△
t q

ď

T
ÿ

t“1

pujt,t´1px△
t q ´ max

xjtPXjt

ũjt,t´1pxjt ,x
△
´jt

q ´ qfjt,t´1px△
t q

ď

T
ÿ

t“1

pujt,t´1px△
t q ´ max

xjtPXjt

qujt,t´1pxjt ,x
△
´jt

q ´ qfjt,t´1px△
t q

“

T
ÿ

t“1

pfjt,t´1px△
t q ´ qfjt,t´1px△

t q

piiiq
ď

T
ÿ

t“1

2βt

`

σt´1pxq ` σt´1pxiq
˘

ď

T
ÿ

t“1

4βt

˜

max
xPtxt,x

jt
t u

σt´1pxq

¸

pivq

ď 4βT

a

4pT ` 2qγT “ O
´

βT

a

TγT

¯

where jt :“ argminiPA
qfi,t´1px△

t q and ũjt,t´1 is a random function such that qujt,t´1pxq ď ũjt,t´1pxq ď pujt,t´1pxq

for all x P X . piq follows from Lemma 2, piiq follows as the reported mixed strategy profile x△
t was chosen as a

computed mixed NE based on a sampled ũjt,t´1, hence ũjt,t´1px△
t q ´ maxxjtPXjt

ũjt,t´1pxjt ,x
△
´jt

q “ 0, piiiq follows
from Lemma 2 again, and pivq follows from Lemma 10 and the algorithm’s choice of pure strategy profiles x̃t sampled at.

A.6 Proof of Proposition 1

Proposition 1 Let k△ be a positive semidefinite kernel defined as k△px△
j ,x

△
j1 q :“ ppx△

j qJK̃ppx△
j1 q. Then, a mixed-space

GP model with prior mean 0 and kernel k△ gives the predictive mean of any uipx
△q and covariance between any uipx

△
j q

and uipx
△
j1 q to be equal to those obtained with a linear transformation of the pure-space GP predictive distribution over

ui with prior mean 0 and kernel k.

Proof We first verify that k△ is a positive semidefinite kernel. Since k is a positive semidefinite kernel, K̃ is a positive
semidefinite symmetric matrix and has the Cholesky decomposition K̃ “ LLJ. k△px△

j ,x
△
j1 q can then be written as

k△px△
j ,x

△
j1 q :“ ppx△

j qJK̃ppx△
j1 q

“ ppx△
j qJLLJppx△

j1 q

“ pLJppx△
j qqJpLJppx△

j1 qq

“ xϕpx△
j q, ϕpx△

j1 qy

where ϕp¨q :“ LJpp¨q. k△px△
j ,x

△
j1 q is thus a positive semidefinite kernel since it can be written as the inner product of

ϕpx△
j q and ϕpx△

j1 q for any x△
j and x△

j1 and some map ϕ (Schölkopf and Smola, 2002, pp. 34).
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This proof will rely throughout on the following fact: If ui is distributed according to N pm,Sq for some mean vector
m and covariance matrix S, since uipx

△q “ ppx△qJui, the expected utility uipx
△q will be distributed according to

N pppx△qJm,ppx△qJSppx△qq since it is a linear transformation of a Gaussian.

We next show that for any agent i, the mixed-space GP prior mean of any uipx
△q and covariance between any uipx

△
j q

and uipx
△
j1 q with k△ is the same as that obtained through a linear transformation of the pure-space GP prior mean and

covariance on ui with k.

The mixed-space GP prior mean function on any uipx
△
j q is 0 by assumption. Since the pure-space GP prior mean function

on ui is also 0 by assumption, trivially, 0 “ ppx△qJ0 and the prior means are equal as desired. For the prior covariance
between any uipx

△
j q and uipx

△
j1 q, observe that

„

uipx
△
j q

uipx
△
j1 q

ȷ

“
“

ppx△
j q ppx△

j1 q
‰J

ui

„ N
´

0,
“

ppx△
j q ppx△

j1 q
‰J

K̃
“

ppx△
j q ppx△

j1 q
‰

¯

(21)

since the pure-space GP prior over ui is N p0, K̃q. The prior covariance is then given by the p1, 2q-th element of the
covariance matrix of the distribution in Equ. 21, i.e.,

Covpuipx
△
j q, uipx

△
j1 qq “

„

1
0

ȷJ
“

ppx△
j q ppx△

j1 q
‰J

K̃
“

ppx△
j q ppx△

j1 q
‰

„

0
1

ȷ

“ ppx△
j qJK̃ppx△

j1 q

“ k△px△
j ,x

△
j1 q

which is the prior covariance given by the mixed-space GP model with kernel k△ as desired.

Finally, we show that, for any agent i, the mixed-space GP posterior mean of any uipx
△q and covariance between any

uipx
△
j q and uipx

△
j1 q with k△ is the same as that obtained through a linear transformation of the pure-space GP posterior

mean and covariance on ui with k, both conditioned on the same set of observations of pure strategy profiles. Suppose the
pure-space GP model is conditioned on the set of observations Dt :“ px̃j , yi,jq

t
j“1. Note that each pure strategy profile x̃j

has a unique representation x̃△
j in the mixed strategy profile space, at which all agents simply place all probability mass

on their strategy in x̃j . The set of observations Dt in pure space thus has an equivalent representation in mixed space
D△

t :“ px̃△
j , yi,jq

t

j“1
on which the mixed-space GP model is conditioned.

The pure-space GP model gives the posterior distribution over ui to be

ui „ N pµt,Σtq

µi,t :“ ktpX̃ qJpKt ` λIq´1yi,t

Σt :“ K̃ ´ ktpX̃ qJpKt ` λIq´1ktpX̃ q

rktpX̃ qsjℓ :“ kpx̃j , x̃
pℓqq, ktpX̃ q P Rtˆm

rKtsjℓ :“ kpx̃j , x̃ℓq, Kt P Rmˆm.

The mixed-space GP model gives the posterior mean of any uipx
△q to be

µipx
△q “ k△

t px△qJpK△
t ` λIq´1yi,t (22)

rk△
t px△qsj :“ k△px△, x̃△

j q, k△
t px△q P Rt

rK△
t sjℓ :“ k△px̃△

j , x̃
△
ℓ q, K△

t P Rmˆm.

Define the matrix Pt P Rmˆt:

Pt :“
“

ppx̃△
1 q ppx̃△

2 q ¨ ¨ ¨ ppx̃△
t q

‰

(23)
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k△
t px△q can then be written as

k△
t px△q “

»

—

—

—

–

k△px△, x̃△
1 q

k△px△, x̃△
2 q

...
k△px△, x̃△

t q

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

ppx△qJK̃ppx̃△
1 q

ppx△qJK̃ppx̃△
2 q

...
ppx△qJK̃ppx̃△

t q

fi

ffi

ffi

ffi

fl

“ PJ
t K̃ppx△q (24)

Note that when x̃△
j and x̃△

j1 are pure strategy profiles and hence admit the representations x̃j and x̃j1 , k△px̃△
j , x̃

△
j1 q “

kpx̃j , x̃j1 q since we have shown that the prior covariance for any two mixed strategy profiles is the same via both pure- and
mixed-space GP models. We thus have that

K△
t “ Kt. (25)

From Equ. 24, Equ. 25 and Lemma 8, the mixed-space GP posterior mean (Equ. 22) becomes

µipx
△q “ k△

t px△qJpK△
t ` λIq´1yi,t

“ ppx△qJK̃PtpKt ` λIq´1yi,t

“ ppx△qJktpX̃ qJpKt ` λIq´1yi,t

“ ppx△qJµi,t

which is the posterior mean given by a linear transformation of the pure-space GP posterior distribution as desired.

The mixed-space GP model gives the posterior covariance between any uipx
△
j q and uipx

△
j1 q to be

Covpuipx
△
j q, uipx

△
j1 qq “

„

1
0

ȷJ
˜

„

k△px△
j ,x

△
j q k△px△

j ,x
△
j1 q

k△px△
j1 ,x

△
j q k△px△

j1 ,x
△
j1 q

ȷ

´

“

k△
t px△

j q k△
t px△

j1 q
‰J

pK△
t ` λIq´1

“

k△
t px△

j q k△
t px△

j1 q
‰

¸

„

0
1

ȷ

“ k△px△
j ,x

△
j1 q ´ k△

t px△
j qJpK△

t ` λIq´1k△
t px△

j1 q.

Again using Equ. 24, Equ. 25 and Lemma 8, the mixed-space GP posterior covariance becomes

Covpuipx
△
j q, uipx

△
j1 qq “ k△px△

j ,x
△
j1 q ´ k△

t px△
j qJpK△

t ` λIq´1k△
t px△

j1 q

“ ppx△
j qJK̃ppx̃△

j1 q ´ ppx△
j qJK̃PtpKt ` λIq´1PJ

t K̃ppx△
j1 q

“ ppx△
j qJ

´

K̃ ´ K̃PtpKt ` λIq´1PJ
t K̃

¯

ppx△
j1 q

“ ppx△
j qJ

´

K̃ ´ ktpX̃ qJpKt ` λIq´1ktpX̃ q

¯

ppx△
j1 q

“ ppx△
j qJΣtppx△

j1 q

which is the p1, 2q-th element of the posterior covariance matrix of uipx
△
j q and uipx

△
j1 q given by a linear transformation of

the pure-space GP posterior distribution as desired and completes the proof.

Lemma 8 With Pt defined as in Equ. 23, ktpX̃ q “ PJ
t K̃.
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Proof Since the sampled decisions x̃△
j for all 1 ď j ď t are pure strategy profiles, by definition of pp¨q, ppx̃△

j q is a one-hot
vector. Specifically, ppx̃△

j q P Rm has a 1 in the spjq-th element and 0 everywhere else, where spjq is a map such that x̃△
j

is equivalent to the spjq-th element in X̃ . Pt is thus a selection matrix of the form

Pt “
“

esp1q esp2q ¨ ¨ ¨ esptq

‰

where each espjq is a one-hot vector as described above. PJ
t K̃ is then a Rtˆm matrix such that the j-th row of PJ

t K̃ is
equal to the spjq-th row of of K̃, i.e.,

rPJ
t K̃sjℓ “ kpx̃pspjqq, x̃pℓqq

“ kpx̃j , x̃
pℓqq

which is the definition of ktpX̃ q as desired.

A.7 Other lemmas

Lemma 9 ((Chowdhury and Gopalan, 2017) Theorem 2) Let βt :“ B ` σ
a

2 pγt´1 ` 1 ` lnp1{δqq where B is the
upper bound of the RKHS norms of each ui. With probability of at least 1 ´ δ, for all i P A, x P X , and t P Z`,

|µi,t´1pxq ´ uipxq| ď βtσt´1pxq

where µi,t´1 and σt´1 are defined in Equ. 1 and Equ. 2 with λ “ 1 ` η and η :“ 2{T .

Lemma 10 ((Chowdhury and Gopalan, 2017) Lemma 4) Let px̂tq
τ
t“1 be a sequence of strategies that the algorithm

samples at. Then
τ

ÿ

t“1

σt´1px̂tq ď
a

4pτ ` 2qγτ .

B COMPUTATIONAL DETAILS

B.1 Bilevel optimization for computing pure NE in continuous general-sum games

In the standard BO setting, to (approximately) optimize acquisition functions over continuous decision variable sets, one
typically uses (sample-inefficient) black-box optimization algorithms such as DIRECT (Jones et al., 1993) or gradient-
based optimization (e.g., L-BFGS-B) with multiple starts. In the pure NE setting, we encounter multiple bilevel optimiza-
tion problems:

1. To compute a ground-truth NE, we need to solve argmaxxPX miniPA fipxq (Equ. 3).

2. To compute the reported strategy profile in UCB-PNE (Algo. 1), we need to solve argmaxxPX miniPA pfi,t´1pxq

(Equ. 4).

3. To compute the reported strategy profile for baselines PE and BN (Sec. 6), we need to solve
argmaxxPX miniPApµi,t´1pxq ´maxtiPXi

pµi,t´1pti,x´iqqq where µi,t´1 is agent i’s GP posterior mean (Equ. 1) in
iteration t.

These are bilevel optimization problems as the inner functions have a maximization operation. In principle, one can nest
any black-box optimization algorithm within a second black-box optimization algorithm to compute these quantities to
any desired accuracy. In practice, doing so incurs a large computational burden. In our experiments, we use DIRECT as
the outer algorithm and a simple algorithm we name ‘sample-and-shrink’ as the inner algorithm. In sample-and-shrink,
we randomly choose 213 points in a Sobol sequence within the function’s bounds and find the point with the maximum
function value. We then shrink the function’s bounds by a factor of 4 around this point and choose another 213 points in a
Sobol sequence within these smaller bounds. We then return the point with the maximum function value. We find that this
choice of outer and inner algorithms strikes a good balance between accuracy and computation time. For case 1, we use
DIRECT with 200 iterations. For cases 2 and 3 (which need to be computed once every BO iteration), we use DIRECT
with 50 iterations.
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B.2 Computing mixed NE in general-sum games

While our theory for mixed NE is applicable to n-agent games, in our experiments, we focus on two-agent general-sum
games due to the relative simplicity of computation. We refer the reader to of Shoham and Leyton-Brown (2008, Sec. 4.2)
for a detailed exposition on the computation of mixed NE in two-player general sum games. In brief, one may use the
Lemke-Howson algorithm by formulating the problem as a linear complementarity problem (Lemke and Howson, 1964),
or the support enumeration method (SEM) (Porter et al., 2008). While both Lemke-Howson and SEM have a worst-case
time complexity exponential in an agent’s number of strategies, SEM has been shown to be faster than Lemke-Howson
in some experimental settings (Porter et al., 2008), hence we adopt SEM in our experiments. SEM leverages the fact that
computing a mixed NE reduces to a linear feasibility program given that the support of the mixed NE is known. It then
simply iterates over all possible supports (smartly pruning some based on conditional domination) and tests each support
by attempting to solve the linear feasibility program. In our implementation, we observe that caching the found supports
from previous BO iterations and iterating over those first reduces the computation time significantly. We hypothesize that
this speedup is due to the GP posterior means not changing much towards the end of the iterations and hence a mixed NE
is likely be found with the same support. We use uniform random sampling to sample each ũi,t´1.

C EXPERIMENTAL DETAILS

C.1 Acquisition functions

In this section, we declare the hyperparameters used for each acquisition function.

C.1.1 UCB-PNE

We use βt “ 2 for all t ď T . We use DIRECT (Jones et al., 1993) to compute both the reporting strategy profile (bilevel
optimization, refer to App. B.1 for more details) and the exploring strategy profile (100 DIRECT iterations).

C.1.2 Probability of Equilibrium (Picheny et al., 2019)

Following the experimental setup in Al-Dujaili et al. (2018), we discretize each agent’s strategy set into 32 strategies (31
in previous work). This discretization is uniformly randomly sampled in each iteration, as we found that using a fixed
discretization leads to poor performance.

C.1.3 BN (Al-Dujaili et al., 2018)

We use γ “ 2. For the inner maximization, we use the Monte Carlo method (with 1000 samples) to approximate the
regret instead of the closed-form method as the previous work showed empirically that the Monte Carlo strategy performed
slightly better. For the outer maximization, we use DIRECT (Jones et al., 1993) with 100 iterations. Following the previous
work, the ϵ-greedy policy uses an exploring probability ϵ “ 0.05 (not to be confused with ϵ in the main paper).

C.1.4 UCB-MNE

We use βt “ 2 for all t ď T . Refer to App. B.2 for details on computing the reported mixed strategy.

C.2 Utility (objective) functions

C.2.1 Synthetic Random Functions (RF)

We construct a two-player general sum game by sampling two random 2-D functions from a GP prior and using them as
utility functions. Each agent’s strategy is in r´1.0, 1.0s. The GP prior used a squared exponential kernel with lengthscales
r0.5, 0.5s. The learner uses the kernel of the GP prior for the GPs modeling the utilities. We used noise standard deviation
σ “ 0.001 and 5 initial samples where the decisions are chosen uniformly at random. To test the acquisition functions’
ability to handle games with non-zero ϵ˚, we chose 5 RNG seeds such that the resultant games had ϵ˚ ě 0.05. Specifically,
we used seeds 4, 19, 20, 70, and 102 for the NumPy and TensorFlow RNGs.
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C.2.2 Generative Adversarial Networks: 1-D Data Manifold (GAN)

Generative adversarial networks (GANs) are a class of generative models that consist of a generator and a discriminator.
The generator maps realizations of a random variable to generated data, while the discriminator is trained to distinguish
between real and generated data. The generator is trained to fool the discriminator by producing generated data as close
to the real data as possible. Through this process, we obtain a generative model that produces realistic data. The desired
generator and discriminator parameters form a Nash equilibrium of a two-player general sum game (Salimans et al., 2016).

We evaluate our algorithms on a simple GAN setup inspired by the experiments in Fedus et al. (2018). The real data lies on
a 1-D manifold in 2-D space with probability distribution pw obtained by multiplying some uniformly randomly sampled
true parameters w P r´1, 1s2 with samples from N p0, 1q. The generator generates data on a 1-D manifold in the same
way with probability distribution pg and has parameters g P r´1, 1s2. The goal is to learn the true parameters, i.e., have
g “ w. The discriminator is a simple binary classifier Dv : R2 Ñ r0, 1s that outputs the probability that the input is real.
Dv is parameterized by v P r´1, 1s3 and has the form

Dpzq :“ spzJV zq

V :“

„

v1
1
2v2

1
2v2 v3

ȷ

spzq :“
1

1 ` e´z

where z P R2. The utility function of the discriminator is the expected log-likelihood of the binary classification task on
the real and fake data, which is the negative of the usual discriminator loss (Goodfellow et al., 2014):

uD :“ Ez„pw rlogDpzqs ` Ez„pg rlogp1 ´ Dpzqqs

The utility function of the generator is the negative of what Fedus et al. (2018) terms the non-saturating loss:

uG :“ Ex„pg rlogDpzqs .

A pure NE exists at g “ w and v “ 0, because when g “ w, the discriminator utility becomes

u˚
D “ Ez„pw rlogDpzq ` logp1 ´ Dpzqqs

and any function that assigns Dpzq “ 0.5 everywhere on suppppwq maximizes u˚
D. This condition is satisfied by v “ 0

as it assigns Dpzq “ 0.5 everywhere. In this case, uG is the same for all possible values of g and thus we have an
NE. This problem thus has ϵ˚ “ 0 in the pure NE setting. The learner used a squared exponential kernel with lengthscales
r0.5, 0.5, 2.0, 2.0, 2.0s for the GPs modeling the utilities. We used noise standard deviation σ “ 0.001 and 5 initial samples
where the decisions are chosen uniformly at random. We used seeds 0 ´ 4 for the NumPy and TensorFlow RNGs.

C.2.3 Binary Classifiers: Additive Adversarial Attacks and Defenses (BCAD)

We evaluate our algorithms on finding NE in additive adversarial attacks and defenses on binary classifiers as described
in Pal and Vidal (2020). We have a binary classifier that assigns the label sgnpgpzqq to each point z P R2 where

gpzq :“
1

4
z21 ´

1

2
z1z2 ´

1

4
z22

∇gpzq “
1

2

„

z1 ´ z2
´z1 ´ z2

ȷ

.

The attacker’s strategy is a vector field of perturbations with ℓ2 norm less than some margin ϵ. Concretely, the attacker
perturbs each point z with the function av : R2 Ñ R2, parameterized with v P R3:

avpzq :“ ´ϵ ¨ sgnpgpzqq
bvpzq

∥bvpzq∥

bvpzq :“

„

v1z1 ` v2z2
v3pz1 ` z2q

ȷ

.
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The defender’s strategy is a constant perturbation d P R2, ∥d∥ ď ϵ. The perturbed point z̃ is then both attacker’s and
defender’s perturbations added to z:

z̃ :“ z ` avpzq ` d.

The attacker’s utility given a particular point z is

uApzq :“

#

1 if sgnpgLpz, zqq ‰ sgnpgLpz, z̃qq

´1 otherwise.

gLpz, z1q :“ gpzq ` ∇gpzqJpz1 ´ zq.

The attacker gains utility if the added perturbations change the sign of z using a linear approximation of g around z. The
attacker’s utility is then their expected utility under the distribution of z pz:

uA :“ Ez„pz ruApzqs .

The defender’s utility is ´uA which makes this a zero-sum game. The defender gains utility if the chosen d maintains
the sign of z using a linear approximation of g around z in expectation. We choose pz to be a uniform distribution over a
randomly sampled rectangle with area 1 within the bounds r´1, 1s2. We approximate the expectations with Monte Carlo
sampling.

From Pal and Vidal (2020), under the defined utility function, choosing a according to the Fast Gradient Method (FGM)
and d according to Randomized Smoothing results in an NE. FGM is recovered when v “ p1{2,´1{2,´1{2q and Ran-
domized Smoothing selects some d˚ P R2, ∥d˚∥ ď ϵ which is also our domain for d, hence the NE is achievable.
This problem thus also has ϵ˚ “ 0 in the pure NE setting. The learner used a squared exponential kernel with lengthscales
r1.5, 0.5, 1.0, 0.5, 0.5s for the GPs modeling the utilities. We used noise standard deviation σ “ 0.001 and 5 initial samples
where the decisions are chosen uniformly at random. We used seeds 0 ´ 4 for the NumPy and TensorFlow RNGs.

C.3 Computation time

C.3.1 Pure NE

Table 1: Mean and standard error of computation times of each acquisition function in each game in the pure NE setting in
CPU seconds.

RF GAN BCAD

PE (without reporting) 43.38 ˘ 0.76 99.66 ˘ 0.42 102.73 ˘ 0.20
PE (with reporting) 11770.84 ˘ 30.71 10980.22 ˘ 12.86 12312.04 ˘ 17.72
BN (without reporting) 270.15 ˘ 56.96 380.67 ˘ 21.08 454.75 ˘ 18.20
BN (with reporting) 12214.34 ˘ 17.78 11242.32 ˘ 66.51 12632.13 ˘ 24.40
UCB-PNE no-exp 5796.41 ˘ 7.45 6638.85 ˘ 9.52 9658.40 ˘ 13.67
UCB-PNE 5848.52 ˘ 22.72 6670.05 ˘ 9.34 9659.24 ˘ 11.50

Table 1 shows the computation times in CPU seconds of the acquisition functions in each game in the pure NE setting for
the hyperparameters used. These times were obtained using GPs with a dataset size of 100 and measured over 5 different
acquisition function computations. Majority of the computation time arises from the bilevel optimization B.1 used to
compute the reported strategy profile in our learning setting. UCB-PNE was designed with this requirement to report a
strategy profile in mind and hence does not have a variant without reporting.

C.3.2 Mixed NE

Table 2 shows the computation times in CPU seconds of the acquisition functions in each game in the mixed NE setting for
the hyperparameters used. These times were obtained by measuring the mean time per iteration in each of the experiments
(used to compute Fig 5), then taking the mean and standard error over the 5 different RNG seeds. We chose to measure
computation time for mixed NE in this way (compared to fixing a dataset) as it better illustrates the variability of compu-
tation time when using SEM to compute a potential mixed NE. All the acquisition functions tested use SEM to compute a
potential mixed NE and differ only in the choice of sampled pure strategy profile. We observe that the computation spent
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Table 2: Mean and standard error of computation times of each acquisition function in each game in the mixed NE setting
in CPU seconds.

RF GAN BCAD

Random 0.34 ˘ 0.16 248.14 ˘ 150.52 10.14 ˘ 3.78
Max entropy 0.78 ˘ 0.59 234.49 ˘ 137.38 1.39 ˘ 0.26
UCB-MNE no-exp 0.30 ˘ 0.12 287.30 ˘ 162.12 4.72 ˘ 1.24
UCB-MNE 0.30 ˘ 0.09 239.89 ˘ 145.61 9.10 ˘ 3.32

on the sampled strategy profile is minimal compared to the computation spent on SEM. The standard errors for mixed NE
are much larger in proportion to the mean compared to in pure NE due to SEM: Some sampled utilities from the GPs take
much longer to compute a mixed NE for using SEM as it heavily depends on the size of the support of a mixed NE for
those sampled utilities. As such, there is large variability in the computation time per iteration.

C.4 Implementation

The experiments were implemented primarily with Python, NumPy (Harris et al., 2020), and GPflow (Matthews et al.,
2017). Refer to the code repository for the full list of Python packages used.

C.5 Hardware

The experiments were run on the following hardware configurations:

1. 2ˆ AMD EPYC 7543 32-Core Processors, 256 GiB RAM, Ubuntu 20.04.4 LTS.

2. 2ˆ AMD EPYC 7352 24-Core Processors, 256 GiB RAM, Ubuntu 20.04.4 LTS.

3. 2ˆ Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz, 256 GiB RAM, Ubuntu 20.04.4 LTS.

4. 2ˆ Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz, 256 GiB RAM, Ubuntu 20.04.4 LTS.
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