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Abstract. This paper presents a novel online sparse Gaussian process (GP) ap-
proximation method [3] that is capable of achieving constant time and memory
(i.e., independent of the size of the data) per time step. We theoretically guaran-
tee its predictive performance to be equivalent to that of a sophisticated offline
sparse GP approximation method. We empirically demonstrate the practical fea-
sibility of using our online sparse GP approximation method through a real-world
persistent mobile robot localization experiment.

1 Introduction
Gaussian process (GP) models are a rich class of Bayesian non-parametric models that
can perform probabilistic regression by providing Gaussian predictive distributions with
formal measures of the predictive uncertainty. Unfortunately, the expressive power of
a full GP model comes at a cost of poor scalability (i.e., cubic time) in the size of
the data, which hinders its practical use for performing real-time predictions necessary
in many time-critical applications and decision support systems (e.g., ocean sensing,
traffic monitoring, geographical information systems) that need to process and analyze
huge quantities of data streaming in over time (e.g., in astronomy, internet traffic, me-
teorology, surveillance). When the data stream is expected to be (possibly indefinitely)
long, it is also computationally impractical to repeatedly use existing offline sparse GP
approximation methods [2] or online GP model [1] for training at each time step be-
cause they incur, respectively, linear and quadratic time in the data size per time step.

This paper presents a novel online sparse GP approximation method [3] (Section 3)
that, in contrast to existing works mentioned above, is capable of achieving constant
time and memory (i.e., independent of the size of the data/observations) per time step.
We provide a theoretical guarantee on its predictive performance to be equivalent to
that of the offline sparse partially independent training conditional (PITC) approxi-
mation method. Our proposed method [3] generalizes the sparse online GP model of
[1] by relaxing its conditional independence assumption significantly, hence potentially
improving the predictive performance. We empirically demonstrate the practical feasi-
bility of using our generalized online sparse GP approximation method [3] through a
real-world persistent mobile robot localization experiment described in Section 4.

2 Background
A Gaussian process (GP) model can be used to perform probabilistic regression as
follows: Let X be a set representing the input domain such that each input x ∈ X
denotes a d-dimensional feature vector and is associated with a realized output value zx
(random output variable Zx) if it is observed (unobserved). Let {Zx}x∈X denote a GP,



that is, every finite subset of {Zx}x∈X has a multivariate Gaussian distribution. The GP
is fully specified by its prior mean µx , E[Zx] and covariance σxx′ , cov[Zx, Zx′ ]
for all x, x′ ∈ X . Supposing a column vector zD of realized outputs is observed for
some set D ∈ X of inputs, the full GP model can exploit these observations to predict
the unobserved measurement for any input x ∈ X \ D as well as provide its predictive
uncertainty using a Gaussian predictive distribution p(zx|x,D, zD) = N (µx|D, σxx|D)
with the following posterior mean and variance, respectively:

µx|D , µx +ΣxDΣ
−1
DD (zD − µD) and σxx|D , σxx −ΣxDΣ−1DDΣDx (1)

where µD is a column vector with mean components µx′ for all x′ ∈ D, ΣxD is a row
vector with covariance components σxx′ for all x′ ∈ D, ΣDx is the transpose of ΣxD,
and ΣDD is a matrix with components σx′x′′ for all x′, x′′ ∈ D.

The key limitation hindering the practical use of the full GP model is that comput-
ing (1) requires inverting the covariance matrix ΣDD, which incurs O(|D|3) time and
O(|D|2) memory. To improve its scalability, the sparse partially independent training
conditional (PITC) [2] approximation method is the most general form of a class of
reduced-rank covariance matrix approximation methods in [2] exploiting the notion of
a support set S ⊂ X . PITC computes a Gaussian predictive distribution of the unob-
served measurement for any x ∈ X \D with the following posterior mean and variance:
µPITC
x|D , µx+ΓxD(ΓDD+Λ)

−1(zD−µD) and σPITC
xx|D , σxx−ΓxD(ΓDD+Λ)−1ΓDx

(2)
where ΓAA′ = ΣASΣ

−1
SSΣSA′ for all A,A′ ⊂ X and Λ is a block-diagonal matrix

constructed from the N diagonal blocks of ΣDD|S , each of which is a matrix ΣDnDn|S
for n = 1, · · · , N where D =

⋃N
n=1Dn. The covariance matrix ΣDD in (1) is ap-

proximated by a reduced-rank matrix ΓDD summed with the resulting sparsified resid-
ual matrix Λ in (2). So, computing either µPITC

x|D or σPITC
xx|D (2), which requires inverting

the approximated covariance matrix ΓDD + Λ, incurs O(|D|(|S|2 + (|D|/N)2)) time
and O(|S|2 + (|D|/N)2) memory. The sparse fully independent training conditional
(FITC) approximation method is a special case of PITC where Λ is a diagonal matrix
constructed from σx′x′|S for all x′ ∈ D (i.e., N = |D|).

3 Generalized Online Sparse GP (GOSGP) Approximation
The key idea of our GOSGP approximation method [3] is to summarize the newly gath-
ered data/observations at regular time intervals/slices, assimilate the summary informa-
tion of the new data with that of all the previously gathered data/observations, and then
exploit the resulting assimilated summary information to compute a Gaussian predictive
distribution of the unobserved measurement for any input. Let x1:t−1 , {x1, . . . , xt−1}
denote a set of inputs from time steps 1 to t − 1, each time slice n span time steps
(n − 1)τ + 1 to nτ for some user-defined slice size τ ∈ Z+, and the number of time
slices available thus far up until time step t be denoted by N (i.e., Nτ < t).
Definition 1 (Slice Summary). Given a support set S ⊂ X , a subsetDn , x(n−1)τ+1:nτ ∈
x1:t−1 of inputs associated with time slice n, and the column vector zDn

= z(n−1)τ+1:nτ

of corresponding realized measurements, the slice summary of time slice n is defined as
a tuple (µns , Σ

n
s ) for n = 1, . . . , N where µns , ΣSDn

Σ−1DnDn|S(zDn
− µDn

) and
Σn

s , ΣSDn
Σ−1DnDn|SΣDnS such that µDn

is defined in a similar manner as µD
in (1) and ΣDnDn|S is a posterior covariance matrix with components σxx′|S for all
x, x′ ∈ Dn, each of which is defined in a similar way as (1).



Definition 2 (Assimilated Summary). Given (µns , Σ
n
s ), the assimilated summary (µna , Σ

n
a )

of time slices 1 to n is updated from the assimilated summary (µn−1a , Σn−1
a ) of time

slices 1 to n − 1 using µna , µn−1a + µns and Σn
a , Σn−1

a + Σn
s for n = 1, . . . , N

where µ0
a , 0 and Σ0

a , ΣSS .
Remark 1. After constructing and assimilating (µns , Σ

n
s ) with (µn−1a , Σn−1

a ) to form
(µna , Σ

n
a ), Dn = x(n−1)τ+1:nτ , zDn

= z(n−1)τ+1:nτ , and (µns , Σ
n
s ) (Definition 1) are

no longer needed and can be removed from memory. As a result, at time step t where
Nτ + 1 ≤ t ≤ (N + 1)τ , only (µNa , Σ

N
a ), xNτ+1:t−1, and zNτ+1:t−1 have to be kept

in memory, thus requiring only constant memory (i.e., independent of t).
Remark 2. The slice summaries are constructed and assimilated at a regular time interval
of τ , specifically, at time steps Nτ + 1 for N ∈ Z+.
Theorem 1. Given S ⊂ X and (µNa , Σ

N
a ), our GOSGP approximation method com-

putes a Gaussian predictive distribution p(zt|xt, µNa , ΣN
a ) = N (µ̃xt , σ̃xtxt) of the

measurement for any xt ∈ X at time step t (i.e., Nτ + 1 ≤ t ≤ (N + 1)τ ) where
µ̃xt , µxt +ΣxtS

(
ΣN

a

)−1
µNa and σ̃xtxt , σxtxt −ΣxtS

(
Σ−1SS −

(
ΣN

a

)−1)
ΣSxt .

(3)If t = Nτ + 1, µ̃xt
= µPITC

xt|x1:t−1
and σ̃xtxt

= σPITC
xtxt|x1:t−1

.
Remark 1. Theorem 1 implies that our GOSGP approximation method [3] is in fact
equivalent to an online learning formulation/variant of the offline PITC (Section 2).
Supposing τ < |S|, the O(t|S|2) time incurred by offline PITC can then be reduced
to O(τ |S|2) time (i.e., time independent of t) incurred by GOSGP [3] at time steps
t = Nτ + 1 for N ∈ Z+ when slice summaries are constructed and assimilated.
Otherwise, GOSGP [3] only incurs O(|S|2) time per time step.
Remark 2. The above equivalence result allows the structural property of GOSGP [3]
to be elucidated using that of offline PITC: The measurements ZD1

, . . . , ZDN
, Zxt

be-
tween different time slices are assumed to be conditionally independent given ZS . Such
an assumption enables the data gathered during each time slice to be summarized in-
dependently of that in other time slices. Increasing slice size τ (i.e., less frequent as-
similations of larger slice summaries) relaxes this conditional independence assumption
(hence, potentially improving the predictive performance), but incurs more time at time
steps when slice summaries are constructed and assimilated (see Remark 1).
Remark 3. Since offline PITC generalizes offline FITC, our GOSGP approximation
method [3] generalizes the online learning variant of FITC (i.e., τ = 1) [1].

WhenNτ+1 < t ≤ (N+1)τ (i.e., before the next slice summary of time sliceN+
1 is constructed and assimilated), the most recent observations (i.e., D′ , xNτ+1:t−1
and zD′ = zNτ+1:t−1), which are often highly informative, are not used to update µ̃xt

and σ̃xtxt (3). This may hurt the predictive performance when τ is large. To resolve this,
we exploit incremental update formulas of Gaussian posterior mean and variance [3] to
update µ̃xt

and σ̃xtxt
with the most recent observations, thereby yielding a Gaussian

predictive distribution p(zt|xt, µNa , ΣN
a ,D′, zD′) = N (µ̃xt|D′ , σ̃xtxt|D′) where

µ̃xt|D′ , µ̃xt
+ Σ̃xtD′Σ̃

−1
D′D′ (zD′ − µ̃D′) and σ̃xtxt|D′ , σ̃xtxt

− Σ̃xtD′Σ̃
−1
D′D′Σ̃D′xt

(4)
such that µ̃D′ is a column vector with mean components µ̃x (i.e., defined similarly to
(3)) for all x ∈ D′, Σ̃xtD′ is a row vector with covariance components σ̃xtx (i.e., defined
similarly to (3)) for all x ∈ D′, Σ̃D′xt

is the transpose of Σ̃xtD′ , and Σ̃D′D′ is a matrix
with covariance components σ̃xx′ (i.e., defined similarly to (3)) for all x, x′ ∈ D′.
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(a) (b) (c)
Fig. 1. (a) Pioneer 3-DX mobile robot trajectory of about 280 m in SMART FM IRG office/lab
generated by AMCL package in ROS, along which (b) 561 relative light (%) observations/data
are gathered at locations denoted by small colored circles. (c) Graphs of incurred time (s) per
time step vs. number of time steps comparing different GP localization algorithms.

Theorem 2. Computing (4) incursO(τ |S|2) time at time steps t = Nτ+1 forN ∈ Z+

and O(|S|2) time otherwise. It requires O(|S|2) memory at each time step.
So, GOSGP [3] incurs constant time and memory (i.e., independent of t) per time step.

4 Experiments and Discussion
In contrast to existing localization algorithms that train the GP observation model of a
Bayes filter offline, GOSGP [3] is used to learn it online for persistent robot localiza-
tion and the resulting algorithm is called GP-Localize [3]. The adaptive Monte Carlo
localization (AMCL) package in the Robot Operating System (ROS) is run on a Pioneer
3-DX mobile robot mounted with a SICK LMS200 laser rangefinder to determine its
trajectory (Fig. 1a) and the 561 locations at which the relative light measurements are
taken using a weather board (Fig. 1b); these locations are assumed to be ground truth.
For empirical evaluation of GP-Localize with other real-world datasets, refer to [3].

The localization performance/error (i.e., distance between the robot’s estimated and
true locations) and scalability of GP-Localize are compared to that of two sparse GP lo-
calization algorithms [3]: (a) The Subset of Data (SoD)-Truncate method uses |S| = 10
most recent observations (i.e., compared to |D′| < τ = 10 most recent observations
considered by GOSGP [3] besides the assimilated summary) as training data at each
time step while (b) the SoD-Even method uses |S| = 40 observations (i.e., compared
to the support set of |S| = 40 possibly unobserved locations selected prior to localiza-
tion and exploited by GOSGP [3]) evenly distributed over the time of localization. The
scalability of GP-Localize is further compared to that of GP localization algorithms em-
ploying full GP and offline PITC. GP-Localize, SoD-Truncate, and SoD-Even achieve,
respectively, localization errors of 2.1 m, 5.4 m, and 4.6 m averaged over all 561 time
steps and 3 runs. Fig. 1c shows the time incurred by GP-Localize, SoD-Truncate, SoD-
Even, full GP, and offline PITC at each time step. GP-Localize is clearly much more
scalable (i.e., constant time) than full GP and offline PITC. Though it incurs slightly
more time than SoD-Truncate and SoD-Even, it can localize significantly better.
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