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Abstract
This paper presents a novel unifying framework
of anytime sparse Gaussian process regression
(SGPR) models that can produce good predic-
tive performance fast and improve their predic-
tive performance over time. Our proposed unify-
ing framework reverses the variational inference
procedure to theoretically construct a non-trivial,
concave functional that is maximized at the pre-
dictive distribution of any SGPR model of our
choice. As a result, a stochastic natural gradient
ascent method can be derived that involves itera-
tively following the stochastic natural gradient of
the functional to improve its estimate of the pre-
dictive distribution of the chosen SGPR model
and is guaranteed to achieve asymptotic conver-
gence to it. Interestingly, we show that if the pre-
dictive distribution of the chosen SGPR model
satisfies certain decomposability conditions, then
the stochastic natural gradient is an unbiased es-
timator of the exact natural gradient and can be
computed in constant time (i.e., independent of
data size) at each iteration. We empirically eval-
uate the trade-off between the predictive perfor-
mance vs. time efficiency of the anytime SGPR
models on two real-world million-sized datasets.

1. Introduction
A Gaussian process regression (GPR) model is a Bayesian
nonparametric model for performing nonlinear regression
that provides a Gaussian predictive distribution with for-
mal measures of predictive uncertainty. The expressivity of
a full-rank GPR (FGPR) model, however, comes at a cost
of cubic time in the size of the data, thus rendering it com-
putationally impractical for training with massive datasets.
To improve its scalability, a number of sparse GPR (SGPR)
models (Lázaro-Gredilla et al., 2010; Quiñonero-Candela
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& Rasmussen, 2005; Snelson & Ghahramani, 2007; Tit-
sias, 2009) exploiting low-rank approximate representa-
tions have been proposed, many of which share a similar
structural assumption of conditional independence (albeit
of varying degrees) based on the notion of inducing vari-
ables (Section 2) and consequently incur only linear time
in the data size. The work of Quiñonero-Candela & Ras-
mussen (2005) has in fact presented a unifying view of
such SGPR models, which include the subset of regres-
sors (SoR) (Smola & Bartlett, 2001), deterministic train-
ing conditional (DTC) (Seeger et al., 2003), fully inde-
pendent training conditional (FITC) (Snelson & Gharah-
mani, 2005), fully independent conditional (FIC), partially
independent training conditional (PITC) (Schwaighofer &
Tresp, 2003), and partially independent conditional (PIC)
(Snelson & Ghahramani, 2007) approximations. To scale
up these SGPR models further for performing real-time
predictions necessary in many time-critical applications
and decision support systems (e.g., ocean sensing (Cao
et al., 2013; Dolan et al., 2009; Low et al., 2008; 2009;
2011; 2012; Podnar et al., 2010), traffic monitoring (Chen
et al., 2012; 2013b; 2015; Hoang et al., 2014a;b; Low et al.,
2014a;b; Ouyang et al., 2014; Xu et al., 2014; Yu et al.,
2012)), the work of Gal et al. (2014) has parallelized DTC
while that of Chen et al. (2013a) has parallelized FITC,
FIC, PITC, and PIC to be run on multiple machines. The
recent work of Low et al. (2015) has produced a spectrum
of SGPR models with PIC and FGPR at the two extremes
that are also amenable to parallelization on multiple ma-
chines. Ideally, these parallel SGPR models can reduce the
incurred time of their centralized counterparts by a factor
close to the number of machines. In practice, since the
number of machines is limited due to budget constraints,
their incurred time will still grow with an increasing size
of data. Like their centralized counterparts, they can be
trained using all the data.

A more affordable alternative is to instead train a SGPR
model in an anytime fashion with a small, randomly sam-
pled subset of the data at each iteration, which requires
only a single machine. To the best of our knowledge, the
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only notable anytime SGPR model (Hensman et al., 2013)
exploits a result of Titsias (2009) that DTC can alterna-
tively be obtained using variational inference by minimiz-
ing the Kullback-Leibler (KL) distance between the varia-
tional approximation and the GP posterior distribution of
some latent variables given the data, from which a stochas-
tic natural gradient ascent (SNGA) method can be derived
to achieve an asymptotic convergence of its predictive per-
formance to that of DTC while incurring constant time per
iteration. This anytime variant of DTC promises a huge
speedup if the number of sampled subsets of data needed
for convergence is much smaller than the total number of
possible disjoint subsets that can be formed and sampled
from all the data. But, it can be observed in our experiments
(Section 5) that DTC often does not predict as well as the
other SGPR models (except SoR) encompassed by the uni-
fying view of Quiñonero-Candela & Rasmussen (2005) be-
cause it imposes the most restrictive structural assumption
(Snelson, 2007). This motivates us to consider the possibil-
ity of constructing an anytime variant of any SGPR model
of our choice whose derived SNGA method can achieve
an asymptotic convergence of its predictive performance to
that of the chosen SGPR model while preserving constant
time per iteration. However, no alternative formulation
based on variational inference exists for any SGPR model
other than DTC in order to derive such a SNGA method.

To address the above challenge, this paper presents a novel
unifying framework of anytime SGPR models that can pro-
duce good predictive performance fast and improve their
predictive performance over time. Our proposed unifying
framework, perhaps surprisingly, reverses the variational
inference procedure to theoretically construct a non-trivial,
concave functional (i.e., of distributions) that is maximized
at the predictive distribution of any SGPR model of our
choice (Section 3). Consequently, a SNGA method can
be derived that involves iteratively following the stochastic
natural gradient of the functional to improve its estimate of
the predictive distribution of the chosen SGPR model and
is guaranteed to achieve asymptotic convergence to it. In-
terestingly, we show that if the predictive distribution of the
chosen SGPR model satisfies certain decomposability con-
ditions (e.g., DTC, FITC, PIC), then the stochastic natural
gradient is an unbiased estimator of the exact natural gradi-
ent and can be computed in constant time (i.e., independent
of data size) at each iteration (Section 4). We empirically
evaluate the trade-off between the predictive performance
vs. time efficiency of the anytime SGPR models spanned
by our unifying framework (i.e., including state-of-the-art
anytime variant of DTC (Hensman et al., 2013)) on two
real-world million-sized datasets (Section 5).

2. Background and Notations
Full-Rank Gaussian Process Regression (FGPR). Let X

be a set representing the input domain such that each d-
dimensional input feature vector x ∈ X is associated with
a latent output variable fx. Let {fx}x∈X denote a Gaus-
sian process (GP), that is, every finite subset of {fx}x∈X
follows a multivariate Gaussian distribution. Then, the GP
is fully specified by its prior mean E[fx], which we as-
sume to be zero for notational simplicity, and covariance
kxx′ , cov[fx, fx′ ] for all x,x′ ∈ X . Given a col-
umn vector yD , (yx′)>x′∈D of noisy observed outputs
yx′ , fx′ + ε for some set D ⊂ X of training inputs
where ε ∼ N (0, σ2

n) and σ2
n is the noise variance, a FGPR

model can perform probabilistic regression by providing a
GP predictive distribution p(fx|yD) = N (KxD(KDD +
σ2
nI)−1yD, kxx − KxD(KDD + σ2

nI)−1KDx) of the la-
tent output fx for any test input x ∈ X where KxD ,
(kxx′)x′∈D, KDD , (kx′x′′)x′,x′′∈D, and KDx , K>xD.
Computing the GP predictive distribution incurs O(|D|3)
time due to inversion of KDD, hence causing the FGPR
model to scale poorly in the size |D| of data.

Sparse Gaussian Process Regression (SGPR). To im-
prove the scalability of the FGPR model, the SGPR models
encompassed by the unifying view of Quiñonero-Candela
& Rasmussen (2005) exploit a vector fU , (fx′)>x′∈U of
|U| inducing output variables for some small set U ⊂ X
of inducing inputs (i.e., |U| � |D|) for approximating
the GP predictive distribution p(fx|yD). Specifically, they
share a similar structural assumption (Snelson & Ghahra-
mani, 2007) that the joint distribution of fx and fD ,
(fx′)>x′∈D conditioned on fU factorizes across a pre-defined
partition of the input domain X into P disjoint subsets
X1, . . . ,XPThat is, supposing x ∈ XP ,

p(fx, fD | fU ) = p(fx | fDP
, fU )

P∏
i=1

p(fDi
| fU ) (1)

where fDi
, (fx′)>x′∈Di

denotes a column vector of latent
outputs for the disjoint subset Di , Xi ∩ D ⊂ D of train-
ing inputs for i = 1, . . . , P . Using (1), the GP predictive
distribution p(fx|yD) reduces to

p(fx|yD) =

∫
p(fx|yDP

, fU ) p(fU |yD) dfU (2)

'
∫
q∗(fx|yDP

, fU ) q∗(fU ) dfU (3)

where yDP
, (yx′)>x′∈DP

is a vector of noisy observed
outputs for the subset DP of training inputs, derivation
of (2) is in Appendix C.1, and p(fx|yDP

, fU ) and p(fU |yD)
are, respectively, approximated by q∗(fx|yDP

, fU ) and
q∗(fU ) in (3), as discussed in Remarks 1 and 2 below.

Remark 1. PIC sets q∗(fx|yDP
, fU ) as the exact test condi-

tional p(fx|yDP
, fU ). The other SGPR models have addi-

tionally assumed conditional independence of fx and fDP

given fU , thus resulting in p(fx|yDP
, fU ) = p(fx|fU ) and

q∗(fx|yDP
, fU ) , p(fx|fU ) (e.g., see eq. 5 in (Titsias,
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2009) for the case of DTC). Then, q∗(fx|yDP
, fU ) can be

computed in O(|U|3) time and space (i.e., |DP | = O(|U|)
for the case of PIC), as shown in Appendix D.4.

Remark 2. The work of Titsias (2009) has approximated
p(fU |yD) with a choice of q∗(fU ) whose resulting predic-
tive distribution (3) coincides with that of DTC. Interest-
ingly, other choices of q∗(fU ) can be derived to induce the
predictive distributions (3) of the other SGPR models and
computed in O(|D||U|2) time, as shown in Appendix D.1.

Instead of computing q∗(fU ) directly that becomes pro-
hibitively expensive (i.e., O(|D||U|2) time) for massive
datasets, we will derive a stochastic natural gradient ascent
method that is guaranteed to achieve asymptotic conver-
gence to q∗(fU ) of any SGPR model of our choice while
incurring only O(|U|3) time per iteration (Section 4), thus
producing an anytime variant of the chosen SGPR model.

Variational Inference for DTC. Variational inference can
be used to derive q∗(fU ) of DTC as follows: A variational
approximation to the posterior distribution of some latent
output variables (e.g., p(fD, fU |yD)) can be derived ana-
lytically by minimizing their KL distance, provided that it
factorizes in some way or has some parametric form that
is inexpensive to evaluate (Bishop, 2006). The work of
Titsias (2009) parameterizes the variational approximation
q(fD, fU ) to the GP posterior distribution p(fD, fU |yD) by

q(fD, fU ) , p(fD | fU ) q(fU ) (4)

where p(fD|fU ) is the exact training conditional (8) and
q(fU ) , N (µ,Σ). The result below reveals how µ and Σ,
which depend on training data (D,yD), can be selected to
minimize the KL distance DKL(q(fD, fU )‖p(fD, fU |yD)):

Lemma 1 For any PDF q(fD, fU ) and p(fD, fU ,yD),

log p(yD) = L(q) + DKL (q(fD, fU ) ‖ p(fD, fU | yD))

where the functional L(q) is defined as

L(q) ,
∫
q(fD, fU ) log

(
p(fD, fU ,yD)

q(fD, fU )

)
dfD dfU . (5)

Its proof is in Appendix C.2. Lemma 1 implies that
minimizing DKL(q(fD, fU )‖p(fD, fU |yD)) is equivalent to
maximizing L(q) since p(yD) is constant with respect to
q(fD, fU ). Using the parameterization in (4), L(q) becomes
a concave function in µ and Σ that is maximized when its
gradient is zero. So, q(fU ) , N (µ,Σ) can be optimized by
solving for µ and Σ such that ∂L/∂µ = 0 and ∂L/∂Σ = 0.

Remark 1. From Lemma 1, sinceDKL(.‖.) is non-negative,
log p(yD) ≥ L(q), which recovers the variational lower
bound of Titsias (2009) by setting p(fD, fU ,yD) as the GP
joint distribution.

Remark 2. The work of Titsias (2009) is originally intended
to jointly optimize q(fU ), inducing inputs U , and hyperpa-

rameters of k(., .). In the context of our work here, by as-
suming U and the hyperparameters to be given, the optimal
q(fU ) ≡ q∗(fU ) induces the predictive distribution (3) of
DTC when q∗(fx|yDP

, fU ) , p(fx|fU ) (Titsias, 2009).

3. Reverse Variational Inference
This section introduces a novel, interesting use of varia-
tional inference, which we term reverse variational infer-
ence, to theoretically construct a concave, differential func-
tional L(q) that is maximized at q(fU ) ≡ q∗(fU ) of any
SGPR model of our choice; we call this requirement R1.
The functional L(q) allows us to derive a stochastic natu-
ral gradient ascent (SNGA) method (Section 4) that takes
small, iterative steps in the direction of the stochastic natu-
ral gradient of L(q) to improve its estimate q(fU ) of q∗(fU )
and is guaranteed to achieve asymptotic convergence of
q(fU ) to q∗(fU ) if the step sizes are scheduled appropriately
(Robbins & Monro, 1951). If the stochastic natural gradi-
ent of L(q) can be computed in constant time (i.e., inde-
pendent of data size |D|) and we call this requirement R2,
then such a SNGA method is desirable in practice due to
its anytime behavior of improving the estimation of q∗(fU )
over time. In Section 4, we will establish sufficient con-
ditions for q∗(fU ) to satisfy R2, thus entailing a unifying
framework of anytime SGPR models.

Constructing L(q) to Satisfy R1. Let q(fD, fU ) be fac-
torized according to (4) and q∗(fU ) , N (µ∗,Σ∗) where
µ∗ and Σ∗ depend on training data (D,yD). Our key
idea is to derive a joint distribution p(fD, fU ,yD) such
that L(q) is maximized at q(fU ) ≡ q∗(fU ) of any SGPR
model of our choice, which remains largely unexplored ex-
cept for DTC: A result of Titsias (2009) has established
that q∗(fU ) of DTC (Appendix D.1.3) maximizes L(q)
when p(fD, fU ,yD) coincides with the GP joint distribu-
tion, hence satisfying R1 for DTC only. Such a func-
tional L(q) is then shown by Hensman et al. (2013) to
satisfy R2 and can consequently be exploited for deriving
a SNGA method to produce an anytime variant of DTC.
However, this work neither extends nor discusses how L(q)
can be derived for other choices of q∗(fU ) and the condi-
tions under which they will satisfy R1 and R2. We will
address both these issues in this section and the next, re-
spectively. In addition, the predictive performance of their
SNGA method is severely limited by the highly restrictive
structural assumption of DTC. Finally, their anytime vari-
ant of DTC turns out to be a special case spanned by our
unifying framework of anytime SGPR models (Section 4).

For the rest of this section, we will first evaluate L(q)
to a concave function in µ and Σ (i.e., Theorems 1, 2,
and 3) subject to our factorization of q(fD, fU ) in (4) and
p(fD, fU ,yD) in (10). Then, we will show how the pa-
rameters defining p(fD, fU ,yD) can be appropriately se-
lected such that the induced L(q) (5) is maximized at
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q∗(fU ) , N (µ∗,Σ∗) of our choice (i.e., Theorem 4).

Theorem 1 Let q(fD|fU ) , q(fD, fU )/q(fU ). Then,

L(q) =

∫
q(fU ) LU (q) dfU −DKL(q(fU ) ‖ p(fU )) (6)

where the functional LU (q) is defined as

LU (q) ,
∫
q(fD | fU ) log

p(fD,yD | fU )

q(fD | fU )
dfD . (7)

Its proof is in Appendix C.3. The parameterization of
q(fU ) , N (µ,Σ) and factorization of q(fD, fU ) using (4)
entail q(fD|fU ) being set as the exact training conditional:

q(fD|fU ) , p(fD | fU ) = N (PDU fU ,KDD−QDD) (8)

where PDU , KDUK
−1
UU and QDD , KDUK

−1
UUKUD.

Using (8), LU (q) is reduced to a quadratic function of fU :

Theorem 2 By substituting (8) into LU (q) (7),

LU (q) = − 1

2σ2
n

f>U P
>
DUPDU fU +

1

σ2
n

f>U P
>
DUyD + C (9)

where the constant C absorbs all terms independent of fU .

Its proof is in Appendix B.1. Then, we factorize

p(fD, fU ,yD) , p(yD | fD) p(fD | fU ) p(fU ) (10)

where p(yD|fD) = N (fD, σ
2
nI), p(fD|fU ) is the exact

training conditional (8), and we let p(fU ) , N (ν,Λ−1)
(instead of defining p(fU ) as a GP prior by Titsias (2009)
that makes p(fD, fU ,yD) a GP joint distribution) where Λ
denotes a precision matrix. Then, by applying Theorems 1
and 2, L(q) becomes a concave function in both µ and Σ:

Theorem 3 By substituting q(fU ) , N (µ,Σ), p(fU ) ,
N (ν,Λ−1), and LU (q) (9) into L(q) (6),

L(q) = − 1

2
µ>Ψµ− 1

2
tr(ΨΣ) +

1

2
log |Σ| +

µ>
(
(1/σ2

n)P>DU yD + Λν
)

+ C ′
(11)

where Ψ , (1/σ2
n)P>DUPDU + Λ and the constant C ′

absorbs all terms independent of µ and Σ.

Its proof is in Appendix B.2. Using Theorem 3, the condi-
tions for the parameters ν and Λ defining p(fU ) (or, equiv-
alently, p(fD, fU ,yD)) can be determined such that L(q)
is maximized at q(fU ) ≡ q∗(fU ) by making its derivatives
with respect to µ and Σ go to zero at (µ,Σ) = (µ∗,Σ∗):

Theorem 4 If ν and Λ satisfy the following conditions:

Λν +
1

σ2
n

P>DU yD =

(
1

σ2
n

P>DUPDU + Λ

)
µ∗ (12)

and Λ = Σ∗−1 − 1

σ2
n

P>DUPDU , (13)

then L(q) is maximized at q(fU ) ≡ q∗(fU ).

Its proof is in Appendix B.3.

Remark. (12) and (13) define the space of feasible pairs
(ν,Λ) guaranteeing that L(q) is maximized at (µ,Σ) =
(µ∗,Σ∗). Interestingly, it is not necessary to explicitly
solve for (ν,Λ) in order to constructL(q) that is maximized
at q(fU ) ≡ q∗(fU ), as shown in (34) in Appendix B.3.

4. Anytime Sparse GP Regression Models
Using Theorem 4, a gradient ascent method that is guar-
anteed to achieve asymptotic convergence of (µ,Σ) to
(µ∗,Σ∗) can now be derived. Specifically, it starts with
randomly initialized (µ,Σ) = (µ0,Σ0) and iterates the fol-
lowing gradient ascent update until convergence:

µt+1 = µt + ρt
∂L

∂µ
(µt,Σt), Σt+1 = Σt + ρt

∂L

∂Σ
(µt,Σt)

(14)
where ρt is the step size and ∂L

∂µ (µt,Σt) and ∂L
∂Σ (µt,Σt)

denote, respectively, ∂L/∂µ and ∂L/∂Σ (i.e., see (35) and
(36) in Appendix B.3 for their expressions) being evaluated
at (µ,Σ) = (µt,Σt). This method is guaranteed to con-
verge if (a)

∑
t ρt = +∞ and (b)

∑
t ρ

2
t < +∞, which is

a well-known result in optimization. For example, one pos-
sible schedule is ρt = ρ0/(1 + τρ0t)

κ where τ , κ, and ρ0

are determined empirically. However, evaluating the exact
gradient (∂L/∂µ, ∂L/∂Σ) requires computing q∗(fU ) di-
rectly that incurs O(|D||U|2) time (Appendix D.1), which
is prohibitively expensive for massive datasets.

Stochastic Gradient Ascent (SGA). To sidestep the above
scalability issue, we adopt the stochastic gradient as-
cent (SGA) method (Robbins & Monro, 1951) that re-
places the exact gradient in (14) with its stochastic gradient
(∂L̂/∂µ, ∂L̂/∂Σ). The key idea is to iteratively compute
(∂L̂/∂µ, ∂L̂/∂Σ) in an efficient manner by randomly sam-
pling a small block of data of size |U| whose incurred time
per iteration is independent of the data size |D|. We will
prove in Theorem 5 later that such a stochastic gradient is
an unbiased estimator of the exact gradient. As a result,
(14) is also guaranteed to converge using the above sched-
ule of {ρt}t. To derive (∂L̂/∂µ, ∂L̂/∂Σ), the following
decomposability conditions for (µ∗,Σ∗) are necessary:

Decomposability Conditions. Let F ′(U) and G′(U)
(F (U , yDi

) and G(U , yDi
)) denote arbitrary functions

depending on U (U and (Di, yDi)) only. The decompos-
ability conditions for (µ∗,Σ∗) are

Σ∗−1 = F ′(U) +

P∑
i=1

F (U , yDi
) , (15)

Σ∗−1µ∗ = G′(U) +

P∑
i=1

G(U , yDi
) . (16)

Remark 1. Though (15) and (16) may appear rather awk-
ward when viewed using the moment parameterization
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q∗(fU ) , N (µ∗,Σ∗), they can alternatively be perceived
as simple additive decomposability of the natural parame-
ters θ1 , Σ∗−1µ∗ and θ2 , −(1/2)Σ∗−1, which define
the canonical parameterization of q∗(fU ) (Appendix E).

Remark 2. Interestingly, this canonical view reveals a sys-
tematic way to construct new SGPR models from existing
ones that satisfy (15) and (16): Given a set {q∗m(fU )}Mm=1

of M SGPR models specified by their respective canonical
parameterizations {(θ1,m, θ2,m)}Mm=1 satisfying (15) and
(16), if they share the same test conditional q∗(fx|yDP

, fU )

in (3), then any new SGPR model constructed with θ̂1 ,∑M
m=1 αmθ1,m and θ̂2 ,

∑M
m=1 αmθ2,m (i.e., {αm}Mm=1

is a set of linear coefficients) also satisfies (15) and (16).

In practice, the decomposability conditions (15) and (16)
are satisfied by many SGPR models that share a sim-
ilar structural assumption of conditional independence
in (1) such as SoR, DTC, FITC, FIC, PITC, and PIC.
For interested readers, {F (U ,yDi

)}Pi=1, {G(U ,yDi
)}Pi=1,

F ′(U), and G′(U) of these SGPR models are derived
in Appendix D.2. If our choice of (µ∗,Σ∗) (i.e.,
q∗(fU )) satisfies (15) and (16), then the stochastic gradi-
ent (∂L̂/∂µ, ∂L̂/∂Σ) is an unbiased estimator of the exact
gradient (∂L/∂µ, ∂L/∂Σ):

Theorem 5 Let S be a set of i.i.d. samples (i.e., |S| > 0)
drawn from a uniform distribution over {1, 2, . . . , P} and

∂L̂

∂µ
,G′(U)−F ′(U)µ+

P

|S|
∑
s∈S

G(U ,yDs
)−F (U ,yDs

)µ ,

(17)
∂L̂

∂Σ
,

1

2
Σ−1 − 1

2
F ′(U)− P

2|S|
∑
s∈S

F (U ,yDs
) . (18)

If (µ∗,Σ∗) satisfies (15) and (16), then E[∂L̂/∂µ] =

∂L/∂µ and E[∂L̂/∂Σ] = ∂L/∂Σ.

Its proof is in Appendix B.4.

Remark. By assuming |Di| = O(|U|) for i = 1, . . . , P ,
computing stochastic gradient (∂L̂/∂µ, ∂L̂/∂Σ) (i.e., (17)
and (18)) incurs time independent of data size |D|, in par-
ticular, O(|S||U|3) time for SoR, DTC, FITC, FIC, PITC,
and PIC (Appendix D.3) that reduces to O(|U|3) time by
setting |S| = 1 in our experiments. Also, since (µ,Σ) (i.e.,
q(fU )) is readily available from the SGA update (14), the
prediction time (i.e., time incurred to analytically integrate
q∗(fx|yDP

, fU ) with q∗(fU ) ≡ q(fU ) in (3)) is independent
of |D| (Appendix D.4). So, if the number t of iterations
of SGA update is much smaller than min(|D|/|U|, P ),
then the anytime variants spanned by our unifying frame-
work achieve a huge computational gain (i.e., O(t|U|3)
time) over their corresponding SGPR models that incur
O(|D||U|2) time (Appendix D.1).

Stochastic Natural Gradient Ascent (SNGA). As the
standard gradient of a function (e.g., L(q)) only points in

the direction of the steepest ascent when the space of its
parameters (e.g., (µ,Σ)) is Euclidean (Amari, 1998), the
SGA update (14) has implicitly defined the parameter space
of q(fU ) using the Euclidean distance between two candi-
date parameters, which unfortunately appears to be a poor
dissimilarity measure between their corresponding distri-
butions (Hoffman et al., 2013). To capture a more mean-
ingful notion of dissimilarity, the parameter space of q(fU )
is redefined using the symmetrized KL distance, which is a
natural dissimilarity measure between two probability dis-
tributions (Hoffman et al., 2013). This motivates the use
of the natural gradient of L(q) in the Euclidean space that
can be equivalently considered its standard gradient in the
redefined parameter space implementing the symmetrized
KL distance (Amari, 1998). Such a natural gradient ofL(q)
will be used to derive the stochastic natural gradient ascent
(SNGA) method. Intuitively, SNGA can be regarded as an-
other version of SGA that operates in a different parameter
space defined with a different distance metric. Therefore,
both converge to the same optimal parameters, although
SNGA is empirically demonstrated to converge faster than
SGA (Amari, 1998) when an objective function L(q) is op-
timized with respect to a parameterized distribution q(fU ).
This is expected since the symmetrized KL distance is more
accurate than the Euclidean distance in measuring the dis-
similarity between parameterized distributions.

To derive the natural gradient of L(q), the moment pa-
rameterization of q(fU ) , N (µ,Σ) is first replaced by its
canonical counterpart q(fU |θ):

q(fU | θ) , N (µ, Σ) = h(fU ) exp(θ>T(fU ) − A(θ))

where T(fU ) ,
(
fU ; vec(fU f

>
U )
)
, h(fU ) , (2π)−|U|/2,

A(θ) is simply a normalizing function guaranteeing that
q(fU |θ) integrates to unity, and the natural parameters θ ,
(θ1; vec(θ2)) where θ1 = Σ−1µ and θ2 = −(1/2)Σ−1. In
particular, the metric distance defining the parameter space
is given by the Riemannian metric tensor H(θ) (Amari,
1998) that corresponds to the identity matrix when the Eu-
clidean metric is used. Otherwise, when the parameter
space implements the symmetrized KL distance, the work
of Hoffman et al. (2013) has shown that H(θ) is defined by
the Fisher information matrix (Amari, 1998):

H(θ) , −EfU |θ

[
∂2 log q(fU | θ)

∂θ∂θ>

]
=

∂2A(θ)

∂θ∂θ>
. (19)

The last equality is formally verified in Appendix E.2.
Let ∂L/∂θ be the standard gradient of L(q) with respect
to θ. Then, its natural gradient is defined as ∂L/∂θ ,
H(θ)−1∂L/∂θ. To express ∂L/∂θ in terms of µ and Σ,
let η , [η1; vec(η2)] where η1 , µ and η2 , µµ> + Σ. It
can be verified that E[T(fU )] = η (Appendix E.1), which
implies ∂η/∂θ = H(θ) (Appendix E.3). Using this result,
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∂L

∂θ
, H(θ)−1 ∂L

∂θ
= H(θ)−1 ∂η

∂θ

∂L

∂η
=

∂L

∂η
. (20)

The last equality is due to ∂η/∂θ = H(θ). So, the natural
gradient can be evaluated by taking the derivative of L(q)
with respect to η (20). To simplify the derivation, the par-
tial derivatives of L(q) are taken with respect to η1 and η2

instead of differentiating it with η directly. To achieve this,
L(q) is first represented as a function of η1 and η2:

L(q) =
1

2
log |η2 − η1η

>
1 |+ η>1

(
1

σ2
n

P>DUyD + Λν

)
− 1

2
η>1 Ψη1 −

1

2
tr(Ψη2 −Ψη1η

>
1 ) + C ′

which can be straightforwardly verified using (11) and η’s
definition. The natural gradient of L(q) is then given by
∂L

∂η1
= −(η2 − η1η

>
1 )−1η1 +

1

σ2
n

P>DUyD + Λν , (21)

∂L

∂η2
=

1

2

((
η2 − η1η

>
1

)−1 −Ψ
)
. (22)

Finally, note that if (ν,Λ) is chosen to satisfy (12) and (13)
to guarantee that L(q) is maximized at q(fU ) ≡ q∗(fU )
(Theorem 4), then Ψ = Σ∗−1 and (1/σ2

n)P>DUyD + Λν =
Σ∗−1µ∗. In addition, by definition, θ1 = (η2− η1η

>
1 )−1η1

and θ2 = −(1/2)(η2− η1η
>
1 )−1. Hence, (21) and (22) can

be rewritten as
∂L

∂η1
= Σ∗−1µ∗ − θ1 and

∂L

∂η2
= −θ2 −

1

2
Σ∗−1 . (23)

So, if (µ∗,Σ∗) satisfies the decomposability conditions
(15) and (16), then it is possible to derive a stochastic nat-
ural gradient that is an unbiased estimator of the exact nat-
ural gradient (23), as formalized in the result below:

Theorem 6 Let S be a set of i.i.d. samples (i.e., |S| > 0)
drawn from a uniform distribution over {1, 2, . . . , P} and

∂L̂

∂η1
, G′(U)− θ1 +

P

|S|
∑
s∈S

G(U , yDs
) , (24)

∂L̂

∂η2
, −θ2 −

1

2
F ′(U)− P

2|S|
∑
s∈S

F (U , yDs
) . (25)

If (µ∗,Σ∗) satisfies (15) and (16), then E[∂L̂/∂η1] =

∂L/∂η1 and E[∂L̂/∂η2] = ∂L/∂η2.

Its proof is in Appendix B.5. The gradient ascent update in
(14) can now be revised to

θt+1
1 = θt1 + ρt

∂L̂

∂η1
(θt1, θ

t
2), θt+1

2 = θt2 + ρt
∂L̂

∂η2
(θt1, θ

t
2)

(26)
such that the parameters (µ,Σ) of q(fU ) can be recov-
ered from its natural parameters θ by setting (µt,Σt) =
(−(1/2)(θt2)−1θt1,−(1/2)(θt2)−1). Therefore, if q∗(fU ) ,
N (µ∗,Σ∗) is selected as that of DTC, then (26) recovers
the SNGA method of Hensman et al. (2013) to produce an
anytime variant of DTC, which is a special case spanned by
our unifying framework of anytime SGPR models.

5. Experiments and Discussion
This section empirically evaluates the predictive perfor-
mance and time efficiency of anytime SGPR models1 such
as the anytime variants of PIC and FITC, which we, re-
spectively, call PIC+ and FITC+, and the state-of-the-art
anytime variant of DTC (Hensman et al., 2013), which we
name DTC+2, spanned by our unifying framework on two
real-world datasets of a few million in size:

(a) The EMULATE mean sea level pressure (EMSLP)
dataset (Ansell et al., 2006) of size 1278250 spans a 5◦ lat.-
lon. grid bounded within lat. 25-70N and lon. 70W-50E
from 1900 to 2003. Each input denotes a 6-dimensional
feature vector of latitude, longitude, year, month, day, and
incremental day count (starting from 0 on first day). The
output is the mean sea level pressure (Pa).

(b) The AIRLINE dataset contains 2055733 records of in-
formation about every commercial flight in the USA from
January to April 2008. The input denotes a 8-dimensional
feature vector of the age of the aircraft (i.e., no. of years in
service), travel distance (km), airtime, departure and arrival
time (min.) as well as day of the week, day of the month,
and month. The output is the delay time (min.) of the flight.

Both datasets are modeled using GPs whose prior covari-
ance is defined by the squared exponential covariance func-
tion kxx′ , σ2

s exp(−0.5(x − x′)>Υ−2(x − x′)) with a
diagonal matrix Υ of d length-scale components and sig-
nal variance σ2

s being its defining hyperparameters. These
hyperparameters together with the noise variance σ2

n are
learned by generalizing the distributed, variational DTC-
like learning framework of Gal et al. (2014) to account for
the more relaxed structural assumptions of PIC and FITC.
Such a generalization can then handle massive datasets by
distributing the computational load of learning the hyper-
parameters of PIC and FITC among parallel computing
nodes; its details are deferred to a separate paper since
the focus of our work here is on scaling up the existing
SGPR models while assuming that the hyperparameters are
learned in advance. On a separate note, learning these hy-
perparameters in an anytime fashion is highly non-trivial
and beyond the scope of this paper, which we intend to
pursue in the future as a continuation of our current work.

For each dataset, 5% is randomly selected and set aside
as test data S. The remaining data (i.e., training data)
is partitioned into P blocks using k-means (i.e., k =
P ). All experiments are run on a Linux system with
Intelr Xeonr E5-2670 at 2.6GHz with 96 GB memory.

1In the case of performing multiple predictions for single test
inputs, the predictive means of FITC and DTC coincide with that
of FIC and SoR, respectively.

2DTC+ coincides with stochastic variational inference for
GPs in (Hensman et al., 2013), as discussed in Section 3.
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Figure 1. Graphs of RMSEs achieved by (a) PIC+, (c) FITC+,
and (e) DTC+ vs. number t of iterations, and graphs of predictive
efficiency (PE) vs. time efficiency (TE) showing the anytime effi-
ciencies of (b) PIC+, (d) FITC+, and (f) DTC+ with |U| = 512
inducing outputs and P = 1000 blocks for EMSLP dataset.

Four performance metrics are used to evaluate the any-
time SGPR models: (a) Root mean square error (RMSE):√
|S|−1

∑
x∈S(yx − µx|D)2, (b) mean negative log prob-

ability (MNLP): 0.5|S|−1
∑

x∈S((yx − µx|D)2/σxx|D +
log(2πσxx|D)), (c) incurred time, and (d) anytime effi-
ciency demonstrating the trade-off between time efficiency
(TE) vs. predictive efficiency (PE). Formally, TE (PE) is de-
fined as the incurred time (RMSE) of the SGPR model di-
vided by that of its anytime variant. Intuitively, increasing
TE (i.e., by decreasing the number of iterations of SNGA
update) reduces the incurred time of an anytime variant of
the SGPR model at the cost of degrading its PE.

EMSLP Dataset. Figs. 1 and 2 show results of RMSEs,
incurred times, and anytime efficiencies of PIC+, FITC+,
and DTC+ averaged over 5 random instances with varying
number t of iterations. It can be observed from Figs. 1a, 1c,
and 1e that the RMSEs of PIC+, FITC+, and DTC+ con-
sistently converge to within 0.75% of that of PIC (RMSE
of 762.263 Pa), FITC (RMSE of 870.857 Pa), and DTC
(RMSE of 870.878 Pa), respectively. The results of their
MNLPs show similar convergence behavior, as detailed in
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Figure 2. Graphs of (a) RMSEs and (b) total incurred times of
PIC+, FITC+, and DTC+ vs. number t of iterations with |U| =
512 inducing outputs and P = 1000 blocks for EMSLP dataset.

Appendix A. This corroborates our theoretical results in
Section 4 that the anytime variants spanned by our unify-
ing framework can achieve asymptotic convergence to the
predictive distributions of their corresponding SGPR mod-
els. In particular, the RMSEs of PIC+ and FITC+ de-
crease quickly with an increasing number t of iterations
of SNGA update and converge after 50 iterations, which
demonstrate their scalability to massive datasets. In fact,
during these first 50 iterations, the RMSEs achieved by
PIC+ and FITC+ are significantly lower than that achieved
by DTC+, as observed in Fig. 2a. On the other hand, the
RMSE of DTC+ decreases more gradually and can only
converge after 1000 iterations. This inferior predictive per-
formance of DTC+ may be caused by its more restrictive
structural assumption of deterministic relation between the
training and inducing outputs (Appendix D.1), thus making
it perform less robustly among heterogeneous datasets.

It can also be observed from Fig. 2a that the superior
predictive performance (i.e., lower RMSE) of PIC+ over
FITC+ becomes more pronounced with an increasing
number t of iterations, which is expected: PIC+ imposes
a more relaxed structural assumption of conditional inde-
pendence than FITC+. For example, unlike FITC+, PIC+
does not assume conditional independence between the test
and training outputs given the inducing outputs. Fig. 2b
shows linear increases of total incurred time in the number
t of iterations for PIC+, FITC+, and DTC+. Our experi-
ments reveal that PIC+, FITC+, and DTC+ incur, respec-
tively, an average of 1.53, 1.15, and 0.32 seconds per up-
date iteration. So, PIC+ and FITC+ take∼76.5 and∼57.5
seconds to converge after 50 iterations while DTC+ takes
∼320 seconds to converge after 1000 iterations.

Figs. 1b, 1d, and 1f reveal how the predictive efficiencies
of the anytime SGPR models can be traded off to improve
their time efficiencies to meet the real-time requirement
in time-critical applications. It can be observed that both
PIC+ and FITC+ can achieve a speedup of 22-24 (i.e., TE
= 25) while preserving 96% of the predictive efficiencies
of PIC and FITC (i.e., PE = 0.95); in other words, the RM-
SEs achieved by PIC+ and FITC+ are only 1/0.95 ≈ 1.05
times larger than that achieved by PIC and FITC. On the
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Figure 3. Graphs of RMSEs achieved by (a) PIC+, (c) FITC+,
and (e) DTC+ vs. number t of iterations, and graphs of predictive
efficiency (PE) vs. time efficiency (TE) showing the anytime effi-
ciencies of (b) PIC+, (d) FITC+, and (f) DTC+ with |U| = 100
inducing outputs and P = 2000 blocks for AIRLINE dataset.

other hand, with a speedup of 22, DTC+ can only reach
68% of the predictive efficiency of DTC.

AIRLINE Dataset. Figs. 3 and 4 show results of RM-
SEs, incurred times, and anytime efficiencies of PIC+,
FITC+, and DTC+ averaged over 5 random instances
with varying number t of iterations. The observations
are mostly similar to that of the EMSLP dataset: From
Figs. 3a, 3c, and 3e, the RMSEs of PIC+, FITC+, and
DTC+ converge to within 0.04% of that of PIC (RMSE of
33.3515 min.), FITC (RMSE of 39.5302 min.), and DTC
(RMSE of 39.5310 min.), respectively. The same observa-
tion can be made regarding the results of their MNLPs, as
detailed in Appendix A. The RMSEs of PIC+, FITC+, and
DTC+ decrease rapidly with an increasing number t of it-
erations and converge after 60 iterations. During these first
60 iterations, the RMSE achieved by PIC+ is much lower
than that achieved by FITC+ and DTC+, as observed in
Fig. 4a; this was previously explained in the discussion on
the experimental results for EMSLP dataset. Fig. 4b shows
linear increases of total incurred time in the number t of
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Figure 4. Graphs of (a) RMSEs and (b) total incurred times of
PIC+, FITC+, and DTC+ vs. number t of iterations with |U| =
100 and P = 2000 for the AIRLINE dataset.

iterations for PIC+, FITC+, and DTC+. Our experiments
reveal that PIC+, FITC+, and DTC+ incur an average of
0.97, 0.08, and 0.04 seconds per iteration of SNGA up-
date. So, it takes less than 1 minute for PIC+, FITC+,
and DTC+ to converge after 60 iterations. Figs. 3b, 3d,
and 3f reveal that PIC+, FITC+, and DTC+ can achieve a
speedup of 50 (i.e., TE = 50) while preserving almost 100%
of the predictive efficiencies of PIC, FITC, and DTC (i.e.,
PE = 1). But, as observed in Fig. 4a, PIC+ outperforms
FITC+ and DTC+ by a huge margin; the same observation
can be made for the EMSLP dataset (Fig. 2a).Hence, PIC+
offers the best predictive performance, anytime efficiency,
and robustness in both EMSLP and AIRLINE datasets.

6. Conclusion and Future Work
This paper describes a novel unifying framework of any-
time SGPR models (e.g., PIC+, FITC+, DTC+) that can
produce good predictive performance fast and trade off
between predictive performance vs. time efficiency. Af-
ter applying our reverse variational inference procedure, a
stochastic natural gradient ascent method can be derived
that is guaranteed to achieve asymptotic convergence to the
predictive distribution of any SGPR model of our choice.
We prove that if the predictive distribution of the chosen
SGPR model satisfies certain decomposability conditions,
then the stochastic natural gradient is an unbiased estimator
of the exact natural gradient and can be computed in con-
stant time at each iteration. Empirical evaluation on two
real-world million-sized datasets show that PIC+ outper-
forms FITC+ and state-of-the-art DTC+ (Hensman et al.,
2013) in terms of predictive performance and anytime ef-
ficiency. A limitation of our unifying framework is that
though it can produce the anytime variants of many existing
SGPR models (Quiñonero-Candela & Rasmussen, 2005),
it does not cover some recent ones like (Lázaro-Gredilla
et al., 2010; Low et al., 2015). So, in our future work, we
will extend our framework to address this limitation as well
as to learn the hyperparameters in an anytime fashion.
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A. MNLP Performances of Anytime SGPR
Models for EMSLP and AIRLINE
Datasets

Similar to Figs. 1 and 3 that show the convergence of the
RMSEs of PIC+, FITC+, and DTC+ to that of PIC, FITC,
and DTC, it can also be observed from Fig. 5 that the
MNLPs of PIC+, FITC+, and DTC+ converge rapidly
to that of PIC, FITC and DTC. Specifically, the MNLPs
of PIC+, FITC+, and DTC+, respectively, converge to
within 1.79% of that of PIC (MNLP of 8.3493), FITC
(MNLP of 8.3973), and DTC (MNLP of 8.3973) for the
EMSLP dataset. For the AIRLINE dataset, the MNLPs of
PIC+, FITC+, and DTC+ converge to within 0.53% of
that of PIC (MNLP of 5.6672), FITC (MNLP of 6.5211),
and DTC (MNLP of 6.5212). This corroborates both our
theoretical results in Section 4 and empirical analysis in
Section 5.
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Figure 5. Graphs of MNLPs achieved by PIC+, FITC+, and
DTC+ vs. number t of iterations with |U| = 512 inducing out-
puts and P = 1000 blocks for EMSLP dataset (left) and with
|U| = 100 inducing outputs and P = 2000 blocks for AIRLINE
dataset (right).

B. Proofs of Main Results
B.1. Proof of Theorem 2

Since q(fD|fU ) , p(fD|fU ), (8) can be plugged into (7) to
obtain

LU (q) =

∫
p(fD|fU ) log

p(fD,yD|fU )

p(fD|fU )
dfD

=

∫
p(fD|fU ) log p(yD|fD) dfD . (27)

By applying p(yD|fD) = N (fD, σ
2
nI) to (27),

LU (q) = EfD|fU

[
− 1

2σ2
n

(yD − fD)>(yD − fD)

]
+ C1

= EfD|fU

[
− 1

2σ2
n

f>D fD +
1

σ2
n

f>DyD

]
+ C2 (28)

where C1 absorbs all terms independent of fD and (28)
is obtained by C2 , C1 + (−1/2σ2

n)y>DyD. Since
p(fD|fU ) = N (PDU fU ,KDD − QDD) (8), the fol-
lowing Gaussian identities EfD|fU [fD] = PDU fU and
EfD|fU [f>D fD] = EfD|fU [fD]>EfD|fU [fD]+tr(KDD−QDD)
can be applied to (28) to obtain

LU (q) = − 1

2σ2
n

EfD|fU [f>D fD] +
1

σ2
n

EfD|fU [fD]>yD + C2

= − 1

2σ2
n

f>U P
>
DUPDU fU +

1

σ2
n

f>U P
>
DUyD + C

where C , C2 + (−1/2σ2
n)tr(KDD −QDD).

B.2. Proof of Theorem 3

By plugging (9) into (6),

L(q) =

∫
q(fU ) LU (q) dfU −DKL(q(fU )‖p(fU ))

= EfU

[
− 1

2σ2
n

f>U P
>
DUPDU fU +

1

σ2
n

f>U P
>
DUyD

]
−

DKL(q(fU )‖p(fU )) + C . (29)

Since q(fU ) , N (µ,Σ), the following Gaussian identities
EfU [fU ] = µ and EfU [f>U P

>
DUPDU fU ] = µ>P>DUPDUµ +

tr(P>DUPDUΣ) can be applied to (29) to obtain

L(q) = − 1

2σ2
n

(
µ>P>DUPDUµ+ tr(P>DUPDUΣ)

)
+

1

σ2
n

µ>P>DUyD −DKL(q(fU )‖p(fU )) + C . (30)

We will now express DKL(q(fU )‖p(fU )) in (30) as a func-
tion of µ and Σ. Recall that p(fU ) , N (ν,Λ−1), which
implies

− log p(fU ) =
1

2
(fU − ν)

>
Λ (fU − ν) + C3 (31)
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where C3 absorbs all terms independent of fU . Then,

DKL(q(fU )‖p(fU )) =

∫
q(fU ) log

q(fU )

p(fU )
dfU

= −H[q(fU )] + EfU [− log p(fU )]

= EfU

[
1

2
(fU − ν)>Λ(fU − ν)

]
−

1

2
log |Σ|+ C3 − C4

= EfU

[
1

2
f>U ΛfU − ν>ΛfU

]
−

1

2
log |Σ|+ C5 . (32)

The second equality is due to

H[q(fU )] , −
∫
q(fU ) log q(fU ) dfU .

The third equality follows directly from (31) and
H[q(fU )] = (1/2) log |Σ|+C4 where C4 absorbs all terms
independent of µ and Σ. The last equality (32) is obtained
by C5 , C3 − C4 + (1/2)ν>Λν, which does not depend
on µ and Σ. By applying the following Gaussian identities
EfU [fU ] = µ and EfU [f>U ΛfU ] = µ>Λµ+ tr(ΛΣ) to (32),

DKL(q(fU )‖p(fU )) =
1

2
µ>Λµ+

1

2
tr(ΛΣ)− µ>Λν −

1

2
log |Σ|+ C5 . (33)

Plugging (33) into (30) gives (11) where C ′ , C − C5 is
independent of µ and Σ.

B.3. Proof of Theorem 4

By plugging (13) into the definition of Ψ ,
(1/σ2

n)P>DUPDU + Λ in Theorem 3, Ψ = Σ∗−1. By
substituting Ψ = Σ∗−1 and (12) into (11) in Theorem 3,

L(q) = −1

2
µ>Σ∗−1µ− 1

2
tr
(
Σ∗−1Σ

)
+

1

2
log |Σ|+ µ>Σ∗−1µ∗ + C ′ . (34)

Differentiating both sides of (34) with respect to µ and Σ
gives

∂L

∂µ
= −Σ∗−1µ+ Σ∗−1µ∗ , (35)

∂L

∂Σ
= −1

2
Σ∗−1 +

1

2
Σ−1 . (36)

By setting ∂L/∂µ = 0 and ∂L/∂Σ = 0, (µ,Σ) =
(µ∗,Σ∗). In addition, since L(q) (34) is concave in both µ
and Σ and ∂L/∂µ and ∂L/∂Σ are, respectively, indepen-
dent of Σ and µ, it is clear that L(q) is maximized when its
derivatives go to zero.

B.4. Proof of Theorem 5

Since S be a set of i.i.d. samples (i.e., |S| > 0) drawn from
a uniform distribution over {1, 2, . . . , P},

E[F (U ,yDs
)] =

P∑
i=1

Pr(s = i) F (U ,yDi
)

=

P∑
i=1

1

P
F (U ,yDi

)

=
1

P

P∑
i=1

F (U ,yDi
) . (37)

Applying a similar argument to G(U ,yDs),

E[G(U ,yDs
)] =

1

P

P∑
i=1

G(U ,yDi
) . (38)

From (37) and (38),

E[G(U ,yDs
)− F (U ,yDs

)µ]

= E[G(U ,yDs
)]− E[F (U ,yDs

)]µ

=
1

P

P∑
i=1

G(U ,yDi
)− F (U ,yDi

)µ . (39)

By taking the expectation on both sides of (17) and apply-
ing (39),

E

[
∂L̂

∂µ

]
= G′(U) +

P∑
i=1

G(U ,yDi)−(
F ′(U) +

P∑
i=1

F (U ,yDi)

)
µ . (40)

By plugging (15) and (16) into the RHS of (40),

E

[
∂L̂

∂µ

]
= Σ∗−1µ∗ − Σ∗−1µ =

∂L

∂µ
(41)

where the last equality follows from (35). Similarly, by
taking the expectation on both sides of (18) and applying
(37),

E

[
∂L̂

∂Σ

]
=

1

2

(
Σ−1 −

(
F ′(U) +

P∑
i=1

F (U ,yDi
)

))

=
1

2

(
Σ−1 − Σ∗−1

)
=
∂L

∂Σ
(42)

where the last two equalities follow directly from (15) and
(36), respectively.
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B.5. Proof of Theorem 6

This proof can be constructed by reiterating the exact argu-
ments used in the proof of Theorem 5 (Appendix B.4). By
taking the expectation on both sides of (24) and applying
(38),

E

[
∂L̂

∂η1

]
= −

(
η2 − η1η

>
1

)−1
η1 +

G′(U) +

P∑
i=1

G(U ,yDi) . (43)

Then, plugging (16) into the RHS of (43) recovers (23),
which implies E[∂L̂/∂η1] = ∂L/∂η1. Similarly, by taking
the expectation on both sides of (25) and applying (37),

E

[
∂L̂

∂η2

]
=

1

2

(
η2 − η1η

>
1

)−1 −

1

2

(
F ′(U) +

P∑
i=1

F (U ,yDi)

)
. (44)

Finally, plugging (15) into the RHS of (44) recovers (23),
which implies E[∂L̂/∂η2] = ∂L/∂η2.

C. Proofs of Auxiliary Results
C.1. Derivation of (2)

Marginalizing out fx from both sides of (1),

p(fD|fU ) =

P∏
i=1

p(fDi
|fU ) . (45)

Using law of total probability,

p(fx|yD) =

∫
p(fx|yD, fU ) p(fU |yD) dfU . (46)

So, to derive (2), it suffices to prove that p(fx|yD, fU ) =
p(fx|yDP

, fU ). To do this, note that

p(fx|yD, fU ) =
p(fx,yD|fU )

p(yD|fU )
. (47)

To simplify (47), its denominator is first factorized:

p(yD|fU ) =

∫
p(yD|fD) p(fD|fU ) dfD

=

∫ P∏
i=1

p(yDi
|fDi

) p(fDi
|fU ) dfD

=

P∏
i=1

∫
p(yDi

|fDi
) p(fDi

|fU ) dfDi

=

P∏
i=1

p(yDi
|fU ) (48)

such that the second equality follows from (45) and the fac-
torization of p(yD|fD) =

∏P
i=1 p(yDi |fDi). Likewise, the

numerator on the RHS of (47) can be factorized:

p(fx,yD|fU )

=

∫
p(yD|fD) p(fx, fD|fU ) dfD

=

∫
p(yDP

|fDP
) p(fx|fDP

, fU ) p(fDP
|fU ) dfDP

×

P−1∏
i=1

∫
p(yDi

|fDi
) p(fDi

|fU ) dfDi

=

∫
p(fx,yDP

, fDP
|fU ) dfDP

×

P−1∏
i=1

∫
p(yDi

, fDi
|fU ) dfDi

= p(fx,yDP
|fU )

P−1∏
i=1

p(yDi
|fU )

= p(fx|yDP
, fU )

P∏
i=1

p(yDi
|fU ) (49)

such that the second equality follows from the above fac-
torization of p(yD|fD) and (1). Thus, plugging (48) and
(49) into (47) yields

p(fx|yD, fU ) = p(fx|yDP
, fU ) . (50)

Plugging (50) into (46) concludes our derivation of (2).

C.2. Proof of Lemma 1

For all fD and fU , p(yD) = p(fD, fU ,yD)/p(fD, fU |yD),
which directly implies

log p(yD) = log
p(fD, fU ,yD)

p(fD, fU |yD)
. (51)

Let q(fD, fU ) be an arbitrary probability density function
(PDF). Integrating both sides of (51) with q gives

log p(yD) =

∫
q(fD, fU ) log

p(fD, fU ,yD)

p(fD, fU |yD)
dfDdfU . (52)

Using the identity log(ab) = log a+ log b,

log
p(fD, fU ,yD)

p(fD, fU |yD)
= log

p(fD, fU ,yD)

q(fD, fU )
+ log

q(fD, fU )

p(fD, fU |yD)
.

Plugging this into (52),

log p(yD) =

∫
q(fD, fU ) log

p(fD, fU ,yD)

q(fD, fU )
dfDdfU +∫

q(fD, fU ) log
q(fD, fU )

p(fD, fU |yD)
dfDdfU . (53)

Using the definition of L(q) and DKL(.‖.), Lemma 1 fol-
lows directly from (53).
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C.3. Proof of Theorem 1

Using q(fD, fU ) = q(fD|fU ) q(fU ), L(q) (5) can be rewrit-
ten as

L(q) =

∫
fU

q(fU )

[∫
fD

q(fD|fU ) log
p(fD, fU ,yD)

q(fD, fU )
dfD

]
dfU .

(54)
Since p(fD, fU ,yD) = p(fD,yD|fU ) p(fU ) and
q(fD, fU ) = q(fD|fU ) q(fU ),

log
p(fD, fU ,yD)

q(fD, fU )
= log

p(fD,yD|fU )

q(fD|fU )
− log

q(fU )

p(fU )
. (55)

Thus, in order to simplify (54), we first use (55) to simplify∫
fD

q(fD|fU ) log
p(fD, fU ,yD)

q(fD, fU )
dfD

=

∫
fD

q(fD|fU ) log
p(fD,yD|fU )

q(fD|fU )
dfD − log

q(fU )

p(fU )

= LU (q)− log
q(fU )

p(fU )
. (56)

Plugging (56) into (54),

L(q) =

∫
fU

q(fU )

(
LU (q)− log

q(fU )

p(fU )

)
dfU

=

∫
fU

q(fU ) LU (q) dfU −DKL (q(fU )‖p(fU )) . (57)

D. SGPR Models Satisfying Decomposability
Conditions

This section demonstrates how the approximation
q∗(fU ) ≈ p(fU |yD) (i.e., (µ∗,Σ∗)) employed by SoR,
DTC, FITC, FIC, PITC, and PIC can satisfy the decom-
posability conditions listed in (15) and (16). For clarity,
we begin by deriving q∗(fU ) of these SGPR models in
Appendix D.1.

D.1. Characterizing SGPR Models using (3)

D.1.1. PIC

The partially independent conditional (PIC) approximation
(Snelson & Ghahramani, 2007) jointly specifies its test and
training conditionals via the factorization in (1), which re-
duces the GP predictive distribution to (2), as shown in Ap-
pendix C.1. Since (1) is the only assumption made in PIC,
its approximations q∗(fx|yDP

, fU ) and q∗(fU ) in (3) coin-
cide with p(fx|yDP

, fU ) and p(fU |yD), respectively. We
will now derive q∗(fU ) , p(fU |yD) and prove that com-
puting q∗(fU ) incurs O(|D||U|2) time. Since p(fDi |fU ) is
the exact training conditional for the subset Di of training
inputs,

p(fDi |fU ) = N (KDiUK
−1
UU fU ,KDiDi −QDiDi) (58)

where
QDiDi , KDiUK

−1
UUKUDi ,

KDiDi
, (kx′x′′)x′,x′′∈Di

, KUU , (kx′x′′)x′,x′′∈U ,
KDiU , (kx′x′′)x′∈Di,x′′∈U , and KUDi

, K>DiU . Us-
ing (45) and (58), the training conditional p(fD|fU ) can be
more compactly written as

p(fD|fU ) = N (KDUK
−1
UU fU , R) (59)

where R is a block-diagonal matrix constructed from the
P diagonal blocks of KDD − QDD, each of which is
KDiDi

− QDiDi
for i = 1, . . . , P . By combining with

p(fU ) = N (0,KUU ), the joint prior p(fU , fD) can be ex-
pressed as

N
(
0,

(
KUU KUD
KDU QDD +R

))
.

Then, since p(yD|fD) = N (fD, σ
2
nI), the joint prior

p(fU ,yD) (Rasmussen & Williams, 2006) can be derived
to be

N
(
0,

(
KUU KUD
KDU QDD + Γ

))
(60)

where Γ , R + σ2
nI . Using (60), q∗(fU ) = p(fU |yD) =

N (µ∗,Σ∗) where

µ∗ , KUD (QDD + Γ)
−1

yD , (61)

Σ∗ , KUU −KUD (QDD + Γ)
−1
KDU . (62)

Note that

(QDD + Γ)
−1

= Γ−1 − Γ−1KDUΦKUDΓ−1 (63)

follows directly from the matrix inversion lemma where
Φ ,

(
KUU +KUDΓ−1KDU

)−1
. Using (63),

µ∗ = KUD (QDD + Γ)
−1

yD

= KUD
(
Γ−1 − Γ−1KDUΦKUDΓ−1

)
yD

=
(
Φ−1 −KUDΓ−1KDU

)
ΦKUDΓ−1yD

= KUUΦKUDΓ−1yD (64)

where the last equality follows from the definition of Φ.
Likewise,

Σ∗ = KUU −KUD (QDD + Γ)
−1
KDU

= KUU −KUUΦKUDΓ−1KDU

= KUUΦ
(
Φ−1 −KUDΓ−1KDU

)
= KUUΦKUU (65)

where the last equality again follows from the definition
of Φ. As such, µ∗ (64) and Σ∗ (65) can be computed in
O(|D||U|2) time instead of O(|D|3) time incurred by (61)
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and (62). To see this, we can set P = O(|D|/|U|) and
|Di| = O(|U|) for i = 1, . . . , P to guarantee that comput-
ing

KUDΓ−1yD =

P∑
i=1

KUDi(KDiDi −QDiDi + σ2I)−1yDi

(66)
and

KUDΓ−1KDU =

P∑
i=1

KUDi
(KDiDi

−QDiDi
+σ2I)−1KDiU

(67)
incur O(|U|3 +

∑P
i=1(|Di|3 + |Di|2|U| + |Di||U|2)) =

O(|U|3 + (|D|/|U|)|U|3) = O(|D||U|2) time since |U| �
|D|. It follows that Φ can be computed in O(|D||U|2 +
|U|3) = O(|D||U|2) time. Computing q∗(fU ) ,
N (µ∗,Σ∗) = p(fU |yD) (i.e., (64) and (65)) therefore in-
curs O(|D||U|2) time.

D.1.2. PITC, FITC, AND FIC

The only difference between partially independent training
conditional (PITC) approximation (Quiñonero-Candela &
Rasmussen, 2005) and PIC (Snelson & Ghahramani, 2007)
is that the former has additionally assumed conditional
independence of fx and fDP

given fU , thus resulting in
q∗(fx|yDP

, fU ) , p(fx|yDP
, fU ) = p(fx|fU ) in (2). How-

ever, the training conditional p(fD|fU ) remains the same as
that of PIC (59), which implies that PIC and PITC share the
same approximation q∗(fU ) = p(fU |yD) as it is derived in-
dependently from the test conditional p(fx|yDP

, fU ). The
time needed to compute q∗(fU ) of PITC is therefore the
same as that of PIC.

On the other hand, fully independent training conditional
(FITC) approximation (Snelson & Gharahmani, 2005) is a
special case of PITC (Quiñonero-Candela & Rasmussen,
2005) whereby R in (59) is now a diagonal matrix con-
structed from the diagonal of KDD − QDD. As a result,
computing KUDΓ−1yD (66) and KUDΓ−1KDU (67) in-
cur O(|D||U|2) time. It follows that Φ can be computed in
O(|D||U|2) time. Computing q∗(fU ) , N (µ∗,Σ∗) (i.e.,
(64) and (65)) of FITC therefore incurs O(|D||U|2) time.

Finally, fully independent conditional (FIC) approximation
differs from FITC by assuming an additional factorization
across all the latent outputs for the test inputs, which only
affects the test conditional. The training conditional of FIC
remains the same as that of FITC, which implies that they
share the same approximation q∗(fU ) as it is derived in-
dependently from the test conditional. The time needed
to compute q∗(fU ) of FIC is therefore the same as that of
FITC.

D.1.3. DTC AND SOR

The only difference between deterministic training con-
ditional (DTC) approximation (Seeger et al., 2003) and
PITC (Quiñonero-Candela & Rasmussen, 2005) is that the
former replaces p(fDi |fU ) = N (KDiUK

−1
UU fU ,KDiDi −

QDiDi) (58) with N (KDiUK
−1
UU fU ,0). This effec-

tively replaces the training conditional p(fD|fU ) =
N (KDUK

−1
UU fU , R) (59) with N (KDUK

−1
UU fU ,0). So, R

in the definition of Γ (60) is replaced by 0. The result-
ing Γ is plugged into the expression of Φ (63). Finally,
the resulting Φ is plugged into (64) and (65) to derive
q∗(fU ) = N (µ∗,Σ∗) of DTC where

µ∗ =
1

σ2
n

KUU

(
KUU +

1

σ2
n

KUDKDU

)−1

KUDyD (68)

Σ∗ = KUU

(
KUU +

1

σ2
n

KUDKDU

)−1

KUU . (69)

Computing q∗(fU ) , N (µ∗,Σ∗) (i.e., (68) and (69)) of
DTC therefore incurs O(|D||U|2) time.

Lastly, subset of regressors (SoR) (Smola & Bartlett, 2001)
only differs from DTC (Seeger et al., 2003) by replacing its
exact test conditional p(fx|fU ) = N (KxUK

−1
UU fU , kxx −

Qxx) withN (KxUK
−1
UU fU , 0) (Quiñonero-Candela & Ras-

mussen, 2005). However, this change in test conditional
does not affect the training conditional of DTC, which
solely determines q∗(fU ), as explained previously in Ap-
pendix D.1.2. As a result, DTC and SoR share the same
q∗(fU ). Computing q∗(fU ) , N (µ∗,Σ∗) (i.e., (68) and
(69)) of SoR therefore incurs O(|D||U|2) time.

D.2. SGPR Models Satisfying Decomposability
Conditions

This section demonstrates how q∗(fU ) , N (µ∗,Σ∗) in-
duced by SoR, DTC, FITC, FIC, PITC, and PIC in Sec-
tion D.1 can satisfy the decomposability conditions in (15)
and (16). To simplify the analysis here, let us first re-
call that (a) PIC and PITC share the same q∗(fU ) (Ap-
pendix D.1.2), (b) SoR and DTC also induce the same
q∗(fU ), and (c) FITC and FIC are special cases of PITC and
PIC, respectively. Thus, it suffices to show that q∗(fU ) =
N (µ∗,Σ∗) induced by DTC (Appendix D.2.1) and PIC
(Appendix D.2.2) satisfy the decomposability conditions in
(15) and (16) here.
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D.2.1. DTC SATISFYING DECOMPOSABILITY
CONDITIONS

According to Appendix D.1.3, DTC’s induced approxima-
tion q∗(fU ) = N (fU |µ∗,Σ∗) of p(fU |yD) is given by

µ∗ =
1

σ2
n

KUUΦKUDyD , (70)

Σ∗ = KUUΦKUU , (71)

where Φ ,
(
KUU + (1/σ2

n)KUDKDU
)−1

. Then,

Σ∗−1 = K−1
UUΦ−1K−1

UU

= K−1
UU

(
1

σ2
n

KUDKDU +KUU

)
K−1
UU

=
1

σ2
n

K−1
UUKUDKDUK

−1
UU +K−1

UU (72)

where the first equality follows directly from (71). Now,

KUDKDU =

P∑
i=1

KUDi
KDiU . (73)

By plugging (73) into (72),

Σ∗−1 =

P∑
i=1

(
1

σ2
n

K−1
UUKUDi

KDiUK
−1
UU

)
+K−1

UU . (74)

Also, by plugging (70) and (71) into Σ∗−1µ∗ yields

Σ∗−1µ∗ =
1

σ2
n

K−1
UUKUDyD

=

P∑
i=1

1

σ2
n

K−1
UUKUDiyDi . (75)

Finally, by letting F ′(U) , K−1
UU and F (U ,yDi

) ,
(1/σ2

n)K−1
UUKUDiKDiUK

−1
UU in (74) and G(U ,yDi) ,

(1/σ2
n)K−1

UUKUDiyDi and G′(U) = 0 in (75), (15) and
(16) result.

D.2.2. PIC SATISFYING DECOMPOSABILITY
CONDITIONS

According to Appendix D.1.1, PIC (Snelson & Ghahra-
mani, 2007) induces the following approximation q∗(fU ) =
N (fU |µ∗,Σ∗) of p(fU |yD):

µ∗ = KUUΦKUDΓ−1yD , (76)
Σ∗ = KUUΦKUU (77)

where Φ = (KUU +KUDΓ−1KDU )−1 and Γ = R+ σ2
nI .

Using (67),

Φ−1 = KUU +KUDΓ−1KDU

= KUU +

P∑
i=1

KUDi
Γ−1
i KDiU (78)

where Γi , KDiDi − QDiDi + σ2I . Then, plugging (78)
into (77) yields

Σ∗−1 = K−1
UUΦ−1K−1

UU

= K−1
UU +

P∑
i=1

K−1
UUKUDiΓ

−1
i KDiUK

−1
UU . (79)

Thus, setting F ′(U) , K−1
UU and F (U ,yDi

) ,
K−1
UUKUDi

Γ−1
i KDiUK

−1
UU in (79) gives (15). On the other

hand,

Σ∗−1µ∗ = K−1
UUKUDΓ−1yD

= K−1
UU

P∑
i=1

KUDi
Γ−1
i yDi

=
P∑
i=1

K−1
UUKUDi

Γ−1
i yDi

(80)

where the first equality follows directly from (76) and (77)
and the second equality is due to (66). Finally, setting
G(U ,yDi

) , K−1
UUKUDi

Γ−1
i yi and G′(U) = 0 in (80)

gives (16).

D.3. Time Complexity of Computing Stochastic
Gradient (∂L̂/∂µ, ∂L̂/∂Σ) (i.e., (17) and (18))

By assuming |Di| = O(|U|) for i = 1, . . . , P , comput-
ingF ′(U), F (U ,yDs

), andG(U ,yDs
) incursO(|U|3) time

for SoR, DTC, FITC, FIC, PITC, and PIC (Appendix D.2).
So, computing stochastic gradient (∂L̂/∂µ, ∂L̂/∂Σ) (i.e.,
(17) and (18)) incursO(|S||U|3) time for SoR, DTC, FITC,
FIC, PITC, and PIC that reduces toO(|U|3) time by setting
|S| = 1 in our experiments. If the number t of iterations
of SGA update is much smaller than min(|D|/|U|, P ),
then the anytime variants spanned by our unifying frame-
work achieve a huge computational gain (i.e., O(t|U|3)
time) over their corresponding SGPR models that incur
O(|D||U|2) time. In practice, t can also be used to trade
off between time efficiency and the accuracy of estimating
q∗(fU ).

D.4. Time Complexity of Prediction

This section analyzes the time incurred to predict fx using
(3) by assuming that q(fU ) = N (µ,Σ) is readily available
from the SGA update (14) (Section 4). In particular, this
includes the time incurred to evaluate the test conditional
q∗(fx|yDP

, fU ) and the time incurred to analytically inte-
grate it with q∗(fU ) ≡ q(fU ) in (3) to obtain the approx-
imate predictive distribution q∗(fx) ≈ p(fx|yD) (3). To
achieve this, we analytically derive q∗(fx) in terms of µ
and Σ, as detailed next.
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D.4.1. PIC

Recall that q∗(fx|yDP
, fU ) , p(fx|yDP

, fU ). To de-
rive p(fx|yDP

, fU ), we use the fundamental definition of
GP (Rasmussen & Williams, 2006) to give the following
closed-form expression for the Gaussian joint distribution
p(fx, fU , fDP

):

N

0 ,

 kxx KxU KxDP

KUx KUU KUDP

KDPx KDPU KDPDP

 . (81)

Integrating (81) with p(yDP
|fDP

) = N (fDP
, σ2
nI) gives

the following closed-form expression for p(fx, fU ,yDP
):

N

0 ,

 kxx KxU KxDP

KUx KUU KUDP

KDPx KDPU KDPDP
+ σ2

nI

 .

Now, p(fx|fU ,yDP
) = N (E[fx|fU ,yDP

],V[fx|fU ,yDP
])

where

E[fx|fU ,yDP
] =

[KxU KxDP
]

[
KUU KUDP

KDPU KDPDP
+ σ2

nI

]−1 [
fU
yDP

]
,

V[fx|fU ,yDP
] = kxx−

[KxU KxDP
]

[
KUU KUDP

KDPU KDPDP
+ σ2

nI

]−1 [
KUx
KDPx

]
.

To simplify the above expressions, let

J ,

[
KUU KUDP

KDPU KDPDP
+ σ2

nI

]−1

=

[
JUU JUDP

JDPU JDPDP

]
(82)

where JUU , JUDP
, JDPU and JDPDP

can be derived by
applying the matrix inversion lemma for partitioned ma-
trices directly. Then, plugging (82) into the expression of
E[fx|fU ,yDP

],

E[fx|fU ,yDP
] = BfU + ` (83)

where B , KxUJUU + KxDP
JDPU and

` , (KxUJUDP
+KxDP

JDPDP
)yDP

. Then,
p(fx|fU ,yDP

) = N (BfU + `,V[fx|fU ,yDP
]). As

such, q∗(fx) can be analytically derived by integrating
p(fx|fU ,yDP

) with q(fU ) = N (µ,Σ):

q∗(fx) =

∫
N (BfU + `,V[fx|fU ,yDP

]) N (µ,Σ) dfU

= N (Bµ+ `,V[fx|fU ,yDP
] +BΣB>) . (84)

Since q(fU ) = N (µ,Σ) is already available from the SGA
update (14) (Section 4) and |DP | = O(|U|), computing
q∗(fx) (84) incurs O(|U|3) time and space.

D.4.2. PITC, FITC, FIC AND DTC

Since we only analyze the complexity of single-input pre-
diction at x∗, the approximated testing conditionals of
PITC, FITC, FIC and DTC are set to the same exact con-
ditional of GP (Quiñonero-Candela & Rasmussen, 2005;
Snelson & Ghahramani, 2007):

q∗(fx|yDP
, fU ) , p(fx|fU ) = N (PxU fU , kxx −Qxx)

(85)
where PxU , KxUK

−1
UU and Qxx , KxUK

−1
UUKUx. As

such, q∗(fx) can be analytically derived by integrating
p(fx|fU ) with q(fU ) = N (µ,Σ):

q∗(fx) =

∫
N (PxU fU , kxx −Qxx) N (µ,Σ) dfU

= N (PxUµ, kxx −Qxx + PxUΣP>xU ) . (86)

Since q(fU ) = N (µ,Σ) is already available from the
SGA update (14) (Section 4), computing q∗(fx) (86) in-
curs O(|U|3) time and space.

D.4.3. SOR

SoR (Smola & Bartlett, 2001) further simplifies the test
conditional in (85) by additionally imposing a determin-
istic relation between fx and fU :

q∗(fx|fU ,yDP
) , N (PxU fU ,0) . (87)

As such, q∗(fx) can be analytically derived by integrating
p(fx|fU ) with q(fU ) = N (µ,Σ):

q∗(fx) =

∫
N (PxU fU ,0) N (µ,Σ) dfU

= N (PxUµ, PxUΣP>xU ) . (88)

Since q(fU ) = N (µ,Σ) is already available from the
SGA update (14) (Section 4), computing q∗(fx) (88) in-
curs O(|U|3) time and space.

E. Canonical Parameterization of Gaussian
Distribution

This section features the canonical parameterization of
Gaussian distribution and highlights some of its proper-
ties that have been previously used in Section 4. For clar-
ity and ease of reading, we demonstrate this in the con-
text of q(fU ), which is originally specified using the mo-
ment parameterization q(fU ) , N (µ,Σ). In particular, let
θ , [θ1; vec(θ2)] where θ1 , Σ−1µ and θ2 , −(1/2)Σ−1.
We begin with the following re-parameterization of q(fU |θ)
with respect to θ:

q(fU |θ) = N (µ,Σ)

= h(fU ) exp(θ>T(fU )−A(θ)) (89)
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where T(fU ) , (fU ; vec(fU f
>
U )), h(fU ) , (2π)−|U|/2, and

the normalizing function A(θ) is defined as

A(θ) , −1

2
tr(θ2θ1θ

>
1 )− 1

2
log |−2θ2|

=
1

2
µ>Σ−1µ+

1

2
log
∣∣Σ−1

∣∣ . (90)

Alternatively, we can define Z(θ) such that A(θ) =
logZ(θ) and rewrite (89) as

q(fU |θ) =
1

Z(θ)
h(fU ) exp(θ>T(fU )) . (91)

Since
∫
q(fU |θ)dfU = 1, (91) implies

Z(θ) =

∫
h(fU ) exp(θ>T(fU )) dfU . (92)

Using the above results, we are now able to verify the iden-
tities employed in Section 4, as detailed in the subsections
below.

E.1. Evaluating η , E[T(fU )]

This section will show how E[T(fU )] can be derived as a
function of µ and Σ. To achieve this, we first use the defi-
nition of T(fU ) to obtain

E[T(fU )] = (E[fU ];E[vec(fU f
>
U )])

= (E[fU ]; vec(E[fU f
>
U ]))

=
[
µ; vec(µµ> + Σ)

]
(93)

where the second equality follows from the definition of
vec and expectation of vector while the last equality is
derived using the Gaussian identities E[fU ] = µ and
E[fU f

>
U ] = µµ>+Σ since q(fU ) = N (µ,Σ). In particular,

if η1 , µ and η2 , µµ> + Σ, then η , [η1; vec(η2)] =
E[T(fU )].

E.2. Evaluating H(θ)

This section focuses on explicitly representing the Fisher
information H(θ) in terms of A(θ). To achieve this, note
that

∂ log q(fU |θ)
∂θ

=
∂

∂θ

(
θ>T(fU )−A(θ)

)
= T(fU )− ∂A(θ)

∂θ
. (94)

By applying the identity ∂f(x)/∂x> = (∂f(x)/∂x)> to
(94),

∂ log q(fU |θ)
∂θ>

= T(fU )> −
(
∂A(θ)

∂θ

)>
= T(fU )> − ∂A(θ)

∂θ>
. (95)

Then, differentiating both sides of (95) with respect to θ
yields

∂2 log q(fU |θ)
∂θ∂θ>

= −∂
2A(θ)

∂θ∂θ>
. (96)

Plugging (96) into the definition of H(θ) reveals (19).

E.3. Proof of ∂η/∂θ = H(θ)

Let us differentiate A(θ) with respect to θ:

∂A(θ)

∂θ
=
∂ logZ(θ)

∂θ
=

1

Z(θ)

∂Z(θ)

∂θ

=
1

Z(θ)

∫
h(fU )

∂

∂θ
exp(θ>T(fU )) dfU

=
1

Z(θ)

∫
h(fU ) exp(θ>T(fU ))T(fU ) dfU

=

∫
q(fU |θ)T(fU )dfU = E[T(fU )] = η .

(97)

Thus, (97) implies η> = ∂A(θ)/∂θ>. Hence, differen-
tiating both sides of this equality with respect to θ yields
∂η>/∂θ = ∂2A(θ)/∂θ∂θ> = H(θ). Since H(θ) is sym-
metric, it follows that ∂η/∂θ = H(θ).


