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Abstract
In collaborative learning with streaming data,
nodes (e.g., organizations) jointly and continu-
ously learn a machine learning (ML) model by
sharing the latest model updates computed from
their latest streaming data. For the more resource-
ful nodes to be willing to share their model up-
dates, they need to be fairly incentivized. This
paper explores an incentive design that guarantees
fairness so that nodes receive rewards commensu-
rate to their contributions. Our approach leverages
an explore-then-exploit formulation to estimate
the nodes’ contributions (i.e., exploration) for re-
alizing our theoretically guaranteed fair incentives
(i.e., exploitation). However, we observe a “rich
get richer” phenomenon arising from the exist-
ing approaches to guarantee fairness and it dis-
courages the participation of the less resourceful
nodes. To remedy this, we additionally preserve
asymptotic equality, i.e., less resourceful nodes
achieve equal performance eventually to the more
resourceful/“rich” nodes. We empirically demon-
strate in two settings with real-world streaming
data: federated online incremental learning and
federated reinforcement learning, that our pro-
posed approach outperforms existing baselines in
fairness and learning performance while remain-
ing competitive in preserving equality.

1. Introduction
The problem of collaborative learning with streaming data
involves having multiple nodes collecting data incremen-
tally (Chen et al., 2020a; Le et al., 2021) to jointly and
continuously learn an ML model by sharing the latest model
updates computed from their latest streaming data (Jin et al.,

*Equal contribution 1Department of Computer Science, Na-
tional University of Singapore, Singapore. 2Institute for Infocomm
Research, A*STAR, Singapore. 3Institute of Data Science, Na-
tional University of Singapore, Singapore. Correspondence to:
Xinyi Xu <xinyi.xu@u.nus.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2021; Benczúr et al., 2018), for a possibly long-term col-
laboration (Xu & Wang, 2021; Yuan et al., 2021; Zhang
et al., 2022).1 The setting of streaming data is motivated by
scenarios where data collection is time-consuming and takes
place over a long term, e.g., hospitals collect 100 thousand
medical scans collaboratively over months (Flores, 2020;
Miller & Chin, 1996; van Leersum et al., 2013). Moreover,
due to data scarcity in the beginning of data collection, col-
laboration through data sharing can benefit the nodes by
providing them with an ML model trained on the shared
data, e.g., repeated interactions among 17 partners/nodes
(Hale, 2019). As the ML model is continuously trained,
it also finds application in real-time decision-making, e.g.,
provide real-time customized services (Zhao et al., 2020), or
make predictions in the stock market (Benczúr et al., 2018;
Bifet & Kirkby, 2009; Ntakaris et al., 2018). In contrast,
it is undesirable or infeasible to wait till the completion of
the data collection and model training, which can take over
weeks, months, or an indeterminate length (van Leersum
et al., 2013; Miller & Chin, 1996; Wang et al., 2021a).

To ensure the effectiveness of such collaboration of data
sharing through continuous learning,2 it is important to in-
centivize the nodes to share their latest data (indirectly) via
the latest model updates. In particular, a fair incentive mech-
anism is shown to be effective, by giving higher incentives
to nodes with higher contributions (Song et al., 2019; Sim
et al., 2020; Tay et al., 2022). One specific approach is
via ex post fair incentives (Chen et al., 2020b; Richardson
et al., 2020) based on the nodes’ true contributions from
all of their shared/uploaded model updates over the entire
training (Song et al., 2019; Wang et al., 2020). This faces
two practical obstacles: 1. it requires an additional external
resource (e.g., money) for such incentives, but it is unclear
who should provide this resource or what the denomination
is, e.g., the exact monetary value of model updates (Sim
et al., 2020); 2. the incentives are realized only after training
completes which can take a long and indeterminate time.
It means the nodes do not know up-front when or what
they will receive as incentives, which makes it difficult to
convince them to join the collaboration.

1Refer to Sec. 4.2 for a detailed example.
2We highlight it is different from continual learning (Yoon et al.,

2021) where a model is incrementally trained w.r.t. different tasks,
i.e., the distribution of data changes/shifts over time.
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In contrast, the approach of training-time incentive design
can avoid these obstacles by realizing some carefully de-
signed incentives during training (Xu et al., 2021a; Agus-
surja et al., 2022). However, this implies that at the time
of incentive realization during training, the true contribu-
tions (i.e., defined over the entire training) of the nodes are
not completely known. This presents a challenge because
the incentives are ideally designed w.r.t. the true contribu-
tions to guarantee fairness so that the nodes with higher true
contributions receive better incentives. (1) How to obtain
accurate estimates of the true contributions so that the
incentives which are fair w.r.t. the estimates, are also fair
w.r.t. the true contributions?

Regarding incentive realization, an existing approach of
using model updates (Xu et al., 2021a) can lead to non-
convergence behavior of the model (Sec. 4) and has a “local-
ized” fairness guarantee w.r.t. a particular iteration t instead
of overall. Another existing approach uses the estimates of
some latent variables in an asymptotic approach to ensure
fairness (Agussurja et al., 2022), but its theoretical result is
limited to only 2 nodes. (2) What is a suitable realization
of incentives during training, with a fairness guarantee
w.r.t. the overall training and applies to more than 2
nodes?

Lastly, an undesirable “rich get richer” outcome can arise
from the fairness guarantee and worse inequality. Specif-
ically, as nodes with higher contributions (e.g., the more
resourceful organizations/companies with better local data)
receive better incentives (e.g., better models), it can widen
the “gap” between the more resourceful and less resourceful
nodes. This can discourage the participation of the less re-
sourceful nodes, which is undesirable as their participation
can improve the overall utility (i.e., model performance) as
shown in Sec. 4. While (Li et al., 2020b) aims to address
equality, unfortunately, it cannot also guarantee fairness. (3)
How to address the dilemma between fairness to incen-
tivize the more resourceful nodes to join and equality to
encourage the less resourceful nodes to join?

We propose a collaborative incremental learning framework
to answer these questions under the streaming data setting:
For (1), as the nodes have stationary data distributions, their
true contributions can be estimated cumulatively, and im-
portantly, with more accuracy over more iterations. We
identify the classic explore-exploit paradigm: improving
the accuracy of contribution estimates (exploration) vs. us-
ing the current estimates to design incentives (exploitation),
and adopt an explore-then-exploit formulation by develop-
ing a stopping criterion for exploration. For (2), we utilize
the latest model during training as a valuable resource for
realizing incentives: the nodes with higher contributions
synchronize more frequently with the latest model in expec-
tation. We show this design guarantees fairness in terms of

the asymptotic convergence behaviors of the models of the
nodes instead of localized to certain iteration t’s. For (3),
we introduce an equality-preserving perspective so that all
nodes can receive the equally optimal model asymptotically
via a single equalizing coefficient to trade-off (empirical)
fairness with asymptotic equality.

Our specific contributions are summarized as follows:

• Leveraging the Hotelling’s one-sample test to design an
adjustable stopping criterion for contribution evaluation
as the exploration in an explore-then-exploit formulation;

• Proposing a novel node sampling distribution to guaran-
tee fairness (as in the Shapley value) so that the nodes
with higher contributions receive the latest model more
frequently, and thus they observe better convergence;

• Introducing an equalizing coefficient so that all nodes
receive the optimal model with equal asymptotic conver-
gence while guaranteeing fairness; and

• Empirically demonstrating on federated online incremen-
tal learning and federated reinforcement learning that
our proposed approach outperforms existing baselines in
terms of fairness and learning performance while remain-
ing competitive in preserving equality.

2. Preliminaries and Setting
Federated learning (FL) setting and notations. A set
[N ] := {i}i=1,...,N of N honest compute nodes3 collab-
orate by communicating via a trusted coordinating node,
coordinator to jointly learn an ML model parameterized by
θ ∈ Θ w.r.t. a minimizing objective J(θ) :=

∑
i pi L(θ;Di)

where Di is the local data of node i, L(θ;Di) is a loss func-
tion of θ on Di (e.g., cross-entropy loss for classification),
and pi := |Di|/

∑
i′ |Di′ | is the data size weighted coeffi-

cient (Brendan McMahan et al., 2017). Let θi,t (θt) denote
the model at node i (coordinator) in iteration t. At t = 0,
all nodes receive the same initialized model θi,0 := θ0 from
the coordinator. To begin iteration t > 0, the coordinator
selects a subset of size k ≤ N nodes which first synchronize
with the latest model θi,t−1 ← θt−1 and then compute the
derivative of the loss ∆θi,t−1 := ∇L(θi,t−1; si,t) where
si,t is a randomly selected subset/batch of Di (or from dis-
tribution of Di for streaming data). For technical reasons
(e.g., proving Proposition 2), we consider the data distribu-
tion of each node to be stationary over time and defer the
non-stationary setting to future work. These selected nodes
then upload ∆θi,t−1 to the coordinator to be aggregated as
∆θt :=

∑
selected i pi ∆θi,t−1 and updates the latest model

as θt ← θt−1 − ∆θt . All the notations are tabulated in
Appendix A.

3Honest nodes do not deviate from the proposed algorithm and
we provide a result from relaxing this assumption in Appendix D.
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Shapley value for contribution and incentive. Node i’s
contribution till iteration t is defined as

ψt := {ψi,t}i∈[N ] , ψi,t := t−1 ∑t
l=0 ϕi,l (1)

where ϕi,t := N−1
∑

S⊆[N ]\{i}
(
N−1
|S|

)−1
U(S ∪ {i}) −

U(S) is the Shapley value (SV) (Shapley, 1953) in it-
eration t. As ϕi,t has an exponential time complexity
in N , our implementation adopts a linear approximation
(Fatima et al., 2008) (details in Appendix D). The util-
ity function U : 2N 7→ R is defined as the inner prod-
uct ⟨∆θS,t,∆θ[N ],t⟩ between the aggregated model update
from a subset/coalition of nodes, ∆θS,t =

∑
i∈S pi ∆θi,t

and that from all the nodes, ∆θ[N ],t =
∑

i∈[N ] pi ∆θi,t.
Intuitively, node i’s contribution in iteration t is deter-
mined by how closely ∆θi,t aligns with other model up-
dates ∆θi′,t (Xu et al., 2021a). The implementation details
are in Appendix D. We denote i’s true contribution with
ψ∗
i := limt→∞ ψi,t,4 and define ψ∗ := {ψ∗

i }i∈[N ]. Subse-
quently, we refer to ψi,t as the contribution estimate and
the accuracy is w.r.t. ψ∗

i . Incentives (e.g., monetary (Song
et al., 2019), model updates (Xu et al., 2021a)) designed in
proportion to ψ∗ or ψ to guarantee fairness are often called
Shapley-fair (Sim et al., 2020; Agussurja et al., 2022; Zhou
et al., 2023).

Settings for the running example in Sec. 3. We use the
MNIST (LeCun et al., 1990) dataset with N = 30 nodes,
each with uniformly randomly sampled 600 images and a
standard convolutional neural network with two convolution
and two fully-connected layers. We reassign 20% of the la-
bels (to a randomly selected incorrect one) for a designated
subset of 30% of the nodes to have lower ψ∗

i (Song et al.,
2019) to simulate some nodes have noisy observation of
data due to different level of resourcefulness (e.g., hospitals
with different levels of budgets for data collection equip-
ment with different precision (Ward & Clarkson, 2004)).5

The accuracy of ψi,t is evaluated via the recall fraction :=
# nodes with designated low-quality data and lowest 30% ψt

# nodes with designed low-quality data (Wang et al.,
2020). We provide additional results under three more types
of low-quality/less valuable data in Appendix C.

3. Explore-Exploit in Contribution Evaluation
and Incentive Realization

Our proposed framework first “explores” sufficiently by
evaluating the contributions of the nodes (Sec. 3.1); and
then “exploits” the converged and approximately accurate
contribution estimates to realize the fair incentives (Sec. 3.2),
by sampling the nodes to receive the latest model according

4As ψi,t is empirically observed to converge as θt converges,
the limit is assumed to exist.

5Refer to Appendix B for more explanation on resourcefulness.

to their contribution estimates (i.e., a higher contribution
estimate leads to a higher sampling probability).

3.1. The Explore-Exploit Perspective and Contribution
Evaluation

We view the expected number of iterations for θt to con-
verge to optimal, T ∗ (an indeterminate and possibly large
number) as a fixed budget,6 and describe a stopping criterion
for contribution evaluation. From the definition of ψ∗

i , in-
creasing exploration (i.e., extending contribution evaluation
over more iterations) generally improves the accuracy in
ψi,t, as shown in Fig. 2. Then, as it takes T ∗ iterations for
θt to converge to optimal, effectively we have a fixed budget
of T ∗ iterations to allocate between contribution evaluation
(exploration) and incentive realization (exploitation). Fig. 1
shows two extreme cases when choosing the stopping itera-
tion for contribution evaluation. Specifically, allocating all
the iterations to contribution evaluation reduces the entire
framework to without incentive realization: All the nodes
receive the same model throughout (Song et al., 2019; Wang
et al., 2020), which is unfair (Xu et al., 2021a). In contrast,
allocating all iterations to incentive realization while per-
forming contribution evaluation concurrently (Nagalapatti
& Narayanam, 2021) is shown to have poor empirical per-
formance in guaranteeing fairness (Fig. 12 in Appendix C)
because the contribution estimates are inaccurate due to
insufficient exploration.

Figure 1. Illustration of the explore-exploit perspective. The ver-
tical axis is denotes the accuracy of the current contribution es-
timates (e.g., recall fraction in Sec. 2). If the stopping iteration
T = 0 (i.e., no-explore-all-exploit), fairness is not guaranteed; if
T = T ∗ (i.e., no-exploit-all-explore), then no iteration for incen-
tives. A carefully set T ′ avoids these two problematic situations.

Hypothesis testing-based stopping criterion. Though the
recall fraction can reflect the accuracy of ψt (Fig. 2), it
cannot be used in practice, e.g., because the true noise in the
node’s data is unknown. Fortunately, the convergence of the
observed past values of ψt (Fig. 2 right) somewhat reflects
the convergence of the recall fraction (Fig. 2 left). This

6(Li et al., 2019) provides a big O notation for T ∗ under sta-
tionary data setting, used in Sec. 3.2.
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Figure 2. Left: Recall fraction increases to 100% (i.e., optimal)
over iterations with shaded area denoting the 95% confidence
interval. Right: Fluctuations δψ,t := |ψt −ψt−1|∞.

inspires using Hotelling’s one-sample test (Hotelling, 1931)
to monitor the convergence of ψt to gauge its accuracy.

Precisely, at current iteration ts, we determine whether
ψts

:= t−1
s

∑ts
t=1 ϕt (where ϕt := {ϕi,t}i=1,...,N ) has

converged w.r.t. ψts−τ by testing whether {ϕt}t=1,...,ts−τ

and {ϕt}t=1,...,ts have the same mean. Informally, τ is
the size of test window (i.e., number of past iterations).
Define µ̂0,ts

:= (ts − τ)−1
∑ts−τ

t=1 ϕt and assume there
exist µts ∈ RN and Σts ∈ RN×N s.t. {ϕt}t=1,...,ts are ts
i.i.d. samples from the Gaussian N (µts ,Σts).

7 As such,
rejecting the null hypothesis h0,ts : µts = µ̂0,ts means
there is statistical evidence that ϕt is fluctuating between
ts − τ and ts, so ψts has not converged.

Proposition 1. For iteration ts, define T2 := ts(ψts −
µ̂0,ts)

⊤S−1(ψts − µ̂0,ts) where S is the estimated sam-
ple covariance matrix from {ϕt}t=1,...,ts . The follow-
ing stopping criterion guarantees at most α type-1 error:
p-value := Pr(T2 ≥ T 2

1−α,N ,2(ts−1)) ≥ α.
8

Proposition 1 presents a stopping criterion based on a test
for the lack of statistical evidence ψt is fluctuating between
ts− τ and ts w.r.t. a pre-set significance level α. We denote
the stopping iteration as Tα. The significance level α reflects
the strictness of the stopping criterion: a larger α rejects
h0,ts more easily and is stricter about the convergence and
accuracy of ψt. With more iterations, we expect h0,ts to
hold, i.e., ψt converges and the p-value to be relatively
large, so we choose a large α (e.g., 0.5) and obtain T0.5 =
55 in Fig. 2 (right) with relatively accurate contribution
estimates |ψT0.5

−ψ∗|∞ = 4.4e-3 where ψ∗ is empirically
approximated with ψt for the last iteration.

A technical caveat of Hotelling’s T 2 distribution is it re-
quires τ > N , which means to ensure the accuracy in ψt

for a larger number of nodes requires a longer contribution
evaluation. This implies the criterion is less feasible with
a larger N . To mitigate this limitation on the feasibility
with large N , we describe a sub-sampling technique: select

7We theoretically discuss and empirically verify this assump-
tion in Appendix D.

8T 2
1−α,N ,2τ−2 denotes the 1− α quantile for the Hotelling’s

T -squared distribution T 2
N ,2τ−2.

Figure 3. Left: The p-value with (orange) and without (black) sub-
sampling using τ = 20 (35). Red dashed line marks when p-value
reaches 0.99 (i.e., ψt has converged). Right: Average (over 10
trials) validation loss for the nodes with highest, 25-th percentile
and lowest ψi,Tα with β = 0.01.

a small random subset of M < N nodes for the stopping
criterion w.r.t. their ψi,t. Therefore, only τ > M is required.
Note that the training and update of ψi,t is as usual for all
N nodes. Fig. 3 (left) shows the original p-value (black)
and that with sub-sampling (orange) align well, and val-
idates this mitigation. Further verification is provided in
Appendix C. We apply sub-sampling in our experiments
in Sec. 4. Separately, as we focus on the cross-silo setting
(Wang et al., 2021a; Zhang et al., 2022) where the nodes
have reliable connections, we implicitly assume they all can
participate in each t during contribution evaluation. If this
assumption is not satisfied in practice, our framework can
still be applied with a simple modification (ϕi,t = 0 if i
does not participate in iteration t (Wang et al., 2020)), but it
will take longer for ψt to converge as shown in Appendix C.

Importantly, Fig. 3 (left) shows ψt converges (red dashed
line) earlier than θt, as the loss continues to decrease, mean-
ing that the incentive realization starts when θt is somewhat
close to but not quite at convergence. In practice, we ex-
pect the contribution evaluation to be relatively short, and is
observed to be about 1/5 in length to incentive realization
(i.e., train θt to convergence) in our experiments. The impli-
cation is that fairness is guaranteed when θt starts to have
competitive performance instead of at very early stage of
training. In other words, during contribution evaluation, all
nodes are willing to share because the performance of θt is
not very competitive. When it comes to incentive realization
where θt will be trained to convergence, it is important to
guarantee fairness for the nodes.

3.2. Convergence-based Incentive Realization

We design a convergence-based incentive realization by
carefully managing the convergence behaviors of the nodes’
models via the node sampling distribution, used in FL to
select k < N nodes to synchronize with the latest model in
each iteration t (and conduct local training to upload their
model updates). We adopt the sampling with replacement
scheme (Li et al., 2019; 2020a) as it admits closed-form
expressions for analysis. The sampling probability ϱi for i
is given by the softmax of ψi,Tα and an equalizing coeffi-
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cient β > 0 (a.k.a. the temperature parameter) as follows:

ϱi := exp (ψi,Tα
/β) /

∑
i′∈[N ] exp (ψi′,Tα

/β) . (2)

For subsequent discussion, define qi := 1− (1− ϱi)k as the
probability i is selected in the subset of size k following a
counting-based argument w.r.t. ϱi.

Fair convergence complexities. We design the incentives
so that the nodes with higher contributions receive the lat-
est model more frequently. This implies these nodes have
less expected staleness in their models and lower/better
convergence complexities. The staleness γi,t for node i in
iteration t is defined as the difference between the current
iteration t and the most recent iteration t′ in which node
i was selected to synchronize θi,t′ with θt′ . E.g., if node
i is selected in iteration t for the update, then t′ = t and
γi,t = 0 (staleness resets to 0 every time i is selected).
Subsequently, we define expected staleness for node i from
any t as Γi :=

∑∞
γ=0 P[stale for γ iterations]×γ, and show

that Γi = (1 − qi)/q2i (Appendix D). Utilizing a conver-
gence O(1/ϵ) for θt (Li et al., 2019, Theorem 2),9 we
derive an expected convergence complexity for node i as
Ci := O(1/ϵ) + Γi, as the sum of the expected number of
iterations for θt to converge, and the expected number of
iterations for i’s model to catch up to θt, with the following
fairness guarantee:

Proposition 2 (Fair Expected Convergence). The ex-
pected convergence complexity Ci satisfies:

• symmetry: ψi,Tα = ψi′,Tα =⇒ Ci = Ci′ ;
• strict desirability: ψi,Tα

> ψi′,Tα
=⇒ Ci < Ci′ ;

• strict monotonicity: Supposing ∀i′ ̸= i ψi′,Tα
is fixed,

ψ′
i,Tα

> ψi,Tα
=⇒ C ′

i < Ci .

Its proof with a formal discussion on the respective suf-
ficient conditions are in Appendix D. Symmetry implies
that nodes with equal contributions have equal convergence
complexities. Strict desirability guarantees a node with a
higher contribution has a lower convergence complexity.
Strict monotonicity incentivizes the nodes to make high
contributions because if a node makes a higher contribution
ψ′
i,Tα

> ψi,Tα , ceteris paribus, its corresponding conver-
gence complexity is lower. Fig. 3 (right) empirically illus-
trates this result (using MNIST with label noise to vary the
quality of data from different nodes) that the nodes with
higher ψi,Tα

converge faster (i.e., loss of local model de-
creases faster).

Asymptotic equality. The proposed Eq. (2) mitigates the
“rich get richer” by ensuring all nodes having controllable
non-zero probabilities of being selected in each t and resets

9The expected number of iterations for E[J(θt)] −
minθ J(θ) ≤ ϵ (assuming stationary data distribution).

it staleness to 0. This results in the asymptotically equal
convergence complexities.

Proposition 3. Let i∗ := argmini∈[N ] ψi,Tα
. (Γi∗ =

O(1/ϵ)) =⇒ (∀i ∈ [N ] Ci = O(1/ϵ)) .

Proposition 3 (its proof is in Appendix D) states that given
the sufficient condition, all nodes, regardless of the contribu-
tions, have asymptotically equal convergence complexities
at O(1/ϵ),10 which coincides with the complexity for the
node with lowest contribution due to the fairness guarantee.
The sufficient condition states in order to preserve equality,
no node can be left stale for too long: no longer than it takes
for θt to converge.

For a finite β > 0, Proposition 2 guarantees fairness in Ci

so we analyze the effect of β on Γi to find the suitable range
for β. We use some synthetic ψTα

to illustrate β → ∞
has an equalizing effect (i.e., Γi,∀i ∈ [N ] converges to
the same value) while β → 0 leads to the “rich get richer”
inequality in Fig. 4 where i = 1 (i = 10) has the lowest
(highest) ψi,Tα

with the correspondingly highest (lowest)
Γi. Intuitively, if β is too large and equalizes Γi (thus
also equalizes Ci), then it violates the fairness guarantee.
Specifically, the strict desirability is violated, since node i
with strictly higher contribution than some node i′ does not
receive strictly better incentive/lower complexity. Therefore,
it reduces the effectiveness of the incentives. In contrast,
if β is too small, the poor/nodes with lower contributions
start to ‘suffer’/have much larger expected staleness Γi and
be discouraged from collaborating. Ideally, β should be
set to achieve a proportionality 0 < r1 ≤ ψi/(1/Γi) ≤ r2
to guarantee fairness and preserve equality. Interestingly,
r1 = r2 coincides with Shapley fairness (Sim et al., 2020,
Definition 1). In Appendix D, we formalize β’s selection
via Lemma 1, further analyze the difficulties of preserving
equality via β and discuss how to prevent i∗ from having an
arbitrarily bad Γi∗ .
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Figure 4. Effects of β → ∞ (left) and β → 0 (right) on Γi. N =
10, k = 4, ψi,Tα

∝ i and |ψTα
|1 = 1, for illustration.

4. Experiments
Our implementation is publicly available at https://
github.com/xqlin98/Fair-yet-Equal-CML.

10O(1/ϵ) is an FL-dependent convergence complexity (Li et al.,
2019) and not specific to our framework.
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4.1. Experimental Settings

We investigate federated online incremental learn-
ing (FOIL) (Losing et al., 2018) and federated reinforcement
learning (FRL) (Qi et al., 2021) where new data become
available and used during training (Jin et al., 2021; Le et al.,
2021). Data setting. At each t, each node randomly selects
a batch si,t from its local data Di to simulate new data for
training, and the aggregation of batches from all nodes at
t+ 1 is used for testing the model updated at t. Online per-
formance and evaluation metrics. As nodes are interested
in the latest model θt during training instead of only the
final performance, we adopt an online performance (Los-
ing et al., 2018): Pi,online := t−1

∑t
l=1 P(θi,l−1, sl) where

st :=
⋃N

i=1 si,t is the collection of all nodes’ latest data
and P(θ, s) is a performance measure of θ on s (e.g., test
accuracy). To evaluate fairness, we adopt the Pearson corre-
lation coefficient: ρ := Pearson(contributions, incentives)
where a high value of ρ suggests fairness (Xu et al., 2021a).
The contributions are specified for both learning tasks sub-
sequently. For incentives, we use Pi,online (higher is better
incentive) or average staleness γ̄i := T−1

∑T
t=1 γi,t (lower

is better incentive). To evaluate equality, we use standard
deviation and worst-node performance (Li et al., 2020b).
Comparison baselines. (a) FedAvg as the vanilla FL frame-
work (Brendan McMahan et al., 2017), (b) q-fair FL (qFFL)
(Li et al., 2020b) aiming at equalizing model performance
across the nodes, (c) fair gradient rewards in FL (FGFL)
(Xu et al., 2021a) using model updates to ensure fairness, (d)
game of gradients (GoG) (Nagalapatti & Narayanam, 2021)
dynamically updating the sampling distribution according to
SV to favor high-quality nodes, and (e) standalone training
(Standalone) without collaboration. We also compare the
communication costs and running times of these approaches
in Appendix C. Apart from these existing baselines, we com-
pare a simple extension to FedAvg, namely Cons, which
uses constraints to achieve equality in Appendix C.

4.2. Federated Online Incremental Learning

Datasets and varying data quality to control true contri-
butions. We perform experiments on the following datasets:
(a) image classification tasks: MNIST (LeCun et al., 1990)
and CIFAR-10 (Krizhevsky, 2009), (b) medical image clas-
sification task: Pathmnist (PATH) (Yang et al., 2021) con-
taining images of tissues related to colorectal cancer, (c)
high frequency trading dataset (HFT) (Ntakaris et al., 2018)
as a time-series task to predict the increase/decrease of the
bid price of the financial instrument, and (d) electricity load
prediction task (ELECTRICITY) (Muehlenpfordt, 2020) as
a time-series task to predict the electricity load in German
every 15 minutes. Recall in Sec. 1, we described application
scenarios which require real-time decision making (HFT
and ELECTRICITY) or long-term medical data collection

(PATH).

To simulate the local data Di, each dataset is partitioned
into N subsets uniformly randomly and distributed to the
nodes. In addition, we vary data qualities/contributions of
different nodes by setting different levels of added noises
(e.g., due to observational errors (Ward & Clarkson, 2004;
Song et al., 2019; Wang et al., 2020)), quantities of data,
and levels of missing values in feature. Therefore, we can
control the true contributionsψ∗. So, we can verify whether
the incentives are fair, i.e., the node with the best/least noisy
data, receives the best incentive/online performance. For
noise, we consider two types of noise, in features or labels.
Specifically, for feature (label) noise, ζi proportion of data
on node i is added with independent zero-mean Gaussian
noise with variance 1 (has the label flipped to a random
label) where the noise ratio ζi varies between 0% and 90%
(0% and 20%) across nodes. For quantity, we follow a power
law partition of data to have data unequally distributed to
different nodes (Brendan McMahan et al., 2017) and ζi is set
to be the negative quantity of node i (i.e., −|Di|), so that a
larger ζi indicates a lower contribution. For missing values,
we select ζi (varies between 0% to 90%) proportion of data
on node i to assign 0 to 50% of its features/pixels randomly.
Due to space limitations, we present the comparative results
for feature noise and defer the rest to Appendix C.

Hyper-parameter details. In t, each of the N = 30 nodes
trains on their own latest data si,t for E = 1 epoch. For
contribution evaluation, we use the stopping criterion by
setting α = 0.7, τ = 15 on 10 sub-sampled nodes. The total
number of iterations is the same for all baselines (including
ours): 150 for CIFAR-10, HFT, ELECTRICITY and PATH
and 130 for MNIST. For incentive realization, k = 12 (i.e.,
40% ratio) and β = 1/150. For FedAvg, qFFL and FGFL,
the selection ratio is 40%. For MNIST, we use the same
CNN model as in Sec. 2. The optimization algorithm is
stochastic gradient descent with a learning rate of 0.002 on
si,t as a batch (for MNIST, |si,t| = 3). Additional details
on hyper-parameters are in Appendix B.

Results. We present the fairness results, averaged over 5
random trials (standard errors in brackets) in Table 1 where
a high correlation ρ between ζ and online loss/average stal-
eness indicates fairness. As both FedAvg and qFFL do not
consider fairness as in SV, they do not perform well. Both
FGFL and GoG achieve fairness inconsistently as they both
begin realizing the incentives immediately from t = 1 based
on possibly inaccurate contribution estimates (further illus-
trated in Appendix C), while our approach first ensures the
accuracy in ψTα

. To directly validate our theoretical results,
Table 17 in Appendix C shows ρ w.r.t. the average staleness
and our approach performs best overall.

Table 2a shows our approach performs the best overall
w.r.t. Pi,online, as it carefully manages the staleness among
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Table 1. ρ(online loss, ζ) in FOIL under the setting of feature
noise. Higher ρ implies better fairness.

MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg -0.020(0.097) 0.137(0.049) 0.038(0.045) -0.033(0.038) 0.135(0.026)
qFFL -0.022(0.114) -0.109(0.140) 0.060(0.078) 0.036(0.126) -0.236(0.030)
FGFL 0.556(0.032) 0.313(0.081) 0.055(0.033) 0.476(0.057) 0.419(0.098)
GoG 0.551(0.023) 0.130(0.067) 0.201(0.021) 0.512(0.027) 0.189(0.102)

Ours 0.647(0.018) 0.400(0.069) 0.378(0.055) 0.676(0.018) 0.557(0.060)

Table 2. Average/Minimum of online accuracy (standard error)
over all nodes under the setting of feature noise. For ELECTRIC-
ITY, we measure MAPE, so lower is better.

(a) Average of online accuracy

MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 0.483(0.019) 0.166(0.011) 0.499(0.046) 1.408(0.081) 0.255(0.004)
qFFL 0.101(0.011) 0.100(0.004) 0.281(0.079) 1.413(0.055) 0.101(0.011)
FGFL 0.485(0.018) 0.169(0.010) 0.496(0.056) 1.571(0.090) 0.154(0.009)
GoG 0.572(0.015) 0.193(0.006) 0.556(0.016) 1.394(0.032) 0.288(0.004)

Standalone 0.481(0.013) 0.153(0.004) 0.540(0.014) 1.581(0.083) 0.202(0.003)

Ours 0.611(0.009) 0.195(0.007) 0.581(0.014) 0.139(0.002) 0.302(0.005)

(b) Minimum of online accuracy

MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 0.478(0.020) 0.165(0.011) 0.497(0.046) 1.405(0.081) 0.250(0.005)
qFFL 0.101(0.011) 0.100(0.004) 0.281(0.079) 1.413(0.055) 0.101(0.011)
FGFL 0.437(0.030) 0.167(0.010) 0.493(0.058) 1.497(0.071) 0.153(0.008)
GoG 0.553(0.014) 0.189(0.006) 0.548(0.017) 1.383(0.032) 0.271(0.004)

Standalone 0.279(0.024) 0.131(0.006) 0.515(0.017) 1.281(0.065) 0.131(0.006)

Ours 0.603(0.010) 0.193(0.007) 0.581(0.014) 0.139(0.002) 0.298(0.005)

local models so that no one is left behind for too long. Fig. 5
(right) under the setting in Sec. 4.2 shows FGFL can lead
to non-convergence (mentioned in introduction). It implies
some nodes may leave before the end to prevent their perfor-
mance from deteriorating, and reduces the overall effective-
ness of the collaboration. In contrast, our approach (Fig. 5
left) ensures all nodes eventually have the optimal model
(i.e., coordinate node) and we compare our theoretical fair-
ness guarantee with theirs in Appendix D. Moreover, the
results for the poorest/best-performing nodes in Tables 2b
and 19 (Appendix C) show our approach gives a better
worst/best-performance than the baselines. Moreover, even
the best-performing nodes improve their performance (Ta-
ble 19 in Appendix C), which verifies that incentivizing
the less resourceful nodes to join can improve the overall
performance.
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Figure 5. Validation loss (over 5 random trials) of each node of
Ours vs. FGFL. Node C is the coordinator node. The setting is
label noise, N = 5, τ = 10, α = 0.5.

Lastly, Table 2b shows our approach performs the best over-
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Figure 6. Distribution of average (validation) accuracy of final 10
iterations (over 5 random trials) under label noise.

all in preserving the equality in terms of max-min (Li et al.,
2020b) (i.e., ensuring the worst-performing node has a high
online and final performance). Moreover, w.r.t. performance
variation (Li et al., 2020b), Fig. 6 (and quantitatively in
Table 21 in Appendix C) shows our method performs com-
petitively to qFFL, as the accuracy is concentrated with
small variation. However, qFFL performs poorly in terms
of validation accuracy (in Fig. 6 and Table 2a) because
of its exponentiation of local objectives which are biased
due to noise in data (i.e., optimizing the local objective for
the node having noisiest data with higher weight impairs
learning performance for the others). We provide additional
comparisons of the fairness and equality performance of
these approaches under different degrees of heterogeneity
among the local data of the nodes in Appendix C.

Empirical fairness vs. equality trade-off via β. We empir-
ically find a suitable range of β to be [1/150, 1] as shown in
Table 3 and verify the results in Fig. 4. Specifically, under
the setting of feature noise, we find that β ∈ [1/150, 1]
produces the most balanced results for fairness (via the cor-
relation coefficient ρ(online loss, ζ)) and equality (via the
standard deviation/std of online accuracy).11 We highlight
Proposition 2 guarantees fairness w.r.t. the expected con-
vergence complexities. Hence, as β increases, while the
expectations Γi and Ci are guaranteed to be fair, the actual
realized model performance (e.g., online loss) can observe
lower fairness.

Table 3. ρ(online loss, ζ) (std of online accuracy). Higher ρ (lower
std) means better fairness (equality).
β MNIST CIFAR-10 HFT ELECTRICITY PATH

1/350 0.642(9.52e-03) 0.490(1.86e-03) 0.448(6.04e-05) 0.581(1.63e-03) 0.516(3.18e-03)
1/150 0.647(2.2e-03) 0.400(6.5e-04) 0.378(5.8e-05) 0.676(2.95e-04) 0.557(1.41e-03)
1/100 0.705(1.13e-03) 0.507(3.80e-04) 0.415(1.05e-04) 0.572(1.63e-04) 0.312(1.15e-03)
1/50 0.641(5.66e-04) 0.297(2.67e-04) 0.476(8.88e-17) 0.286(8.17e-05) 0.282(8.32e-04)
1/20 0.466(4.91e-04) 0.131(3.05e-04) 0.217(1.84e-06) 0.166(5.15e-05) 0.127(7.91e-04)
1/10 0.120(4.97e-04) 0.034(2.91e-04) 0.090(1.24e-05) 0.068(6.01e-05) 0.018(7.49e-04)

1 0.171(3.79e-04) 0.063(2.43e-04) -0.187(1.30e-05) 0.193(6.11e-05) 0.082(6.41e-04)
1000 -0.005(3.88e-04) -0.185(2.77e-04) -0.079(1.61e-05) -0.034(5.18e-05) 0.157(7.19e-04)

11We adopt online accuracy to illustrate the rates at which the
nodes converge are comparable (i.e., asymptotic equality) instead
of final test accuracy which represents the (asymptotic) perfor-
mance (Table 25 in Appendix C)

7



Fair yet Asymptotically Equal Collaborative Learning

4.3. Federated Reinforcement Learning

We investigate FRL as a natural setting where the data
stream in as the agent explores a complex environment and
collects its observed states, actions and reward signals. Hav-
ing a latest model is beneficial in FRL as it guides the agent
to explore the environment more “cleverly” instead of ran-
domly. We investigate three Atari games: Breakout, Pong,
and SpaceInvaders where all N = 5 (and k = 2) nodes
explore copies of the same game in parallel for T = 450
iterations. We add different levels of noise to ζi propor-
tion of the observed states (images with pixel values from
[0, 255] are added with zero-mean Gaussian noise with vari-
ance 50 to each pixel) or reward signals (discrete values
from {−1, 0, 1} are randomly reassigned) by each node to
control their true contributions. ζ = [0.6, 0.4, 0.2, 0, 0] for
Breakout and SpaceInvaders and ζ = [0.2, 0.1, 0.05, 0, 0]
for Pong (more noise sensitive). We adopt the Deep Q-
Networks (DQN) (Mnih et al., 2015) with minor modifi-
cations (smaller learning rate and memory size). For our
approach, α = 0.95, τ = 20, and β = 0.01. Additional
details on other hyper-parameters are in Appendix B.

Online score evaluation and fairness results. We evaluate
θi,t via its average game score in 5 episodes by following
an ϵ-greedy (for ϵ = 0.02) policy as P(θi,t) for computing
Pi,online. Table 4 (brackets indicate standard errors over 3
independent trials) shows while FGFL and GoG perform
competitively, our approach performs best overall.

Table 4. ρ(online score, ζ) in FRL under the settings of reward
noise and state noise. Lower ρ indicates better fairness.

Reward Noise State Noise
Breakout Pong SpaceInvaders Breakout Pong SpaceInvaders

FedAvg 0.169(0.755) 0.329(0.298) -0.036(0.371) -0.160(0.343) 0.018(0.257) 0.164(0.262)
qFFL -0.229(0.251) 0.136(0.506) 0.407(0.361) -0.049(0.308) -0.486(0.360) -0.173(0.322)
FGFL -0.884(0.018) -0.861(0.028) -0.377(0.223) -0.858(0.049) -0.760(0.002) -0.054(0.043)
GoG -0.898(0.040) -0.869(0.060) -0.399(0.167) -0.481(0.172) 0.328(0.352) -0.298(0.390)

Ours -0.900(0.032) -0.946(0.010) -0.646(0.291) -0.978(0.012) -0.817(0.032) 0.283(0.261)

Additional RL-specific experiments. We investigate the
effects of two RL parameters, the memory size and explo-
ration ratio on the contributions in Fig. 7 for Breakout (more
results in Appendix C). Fig. 7 (left) shows the agent with
smallest memory size has the highest contribution as using
a large memory size hides the critical transitions among the
redundant trivial transitions and leads to inefficient learning
(Zhang & Sutton, 2017). Fig. 7 (right) shows the agent with
a moderated exploration ratio has the highest contribution.
The agent with no exploration (blue) has gradually higher
contribution because it starts contributing more by exploita-
tion after the environment has been sufficiently explored by
others collectively.
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Figure 7. Left (right): Contribution evaluation result ψt of nodes
with different memory size (exploration ratio).

5. Related Work
Designing fair incentives is growing as an important re-
search direction in collaborative learning, and FL in particu-
lar (Chen et al., 2020b; Cong et al., 2020; Yu et al., 2020),
through the means of external resources such as monetary
incentives (Richardson et al., 2020; Zhang et al., 2021) and
inherent resources such as model updates (Nagalapatti &
Narayanam, 2021; Xu et al., 2021a). However, few works
have specifically considered the accuracy in the contribution
estimates based on which the fair incentives are designed.
Importantly, this can negatively affect the fairness of said
incentives (shown in Appendix C). We address this by lever-
aging the classic explore-exploit paradigm,12 which has not
been considered for fair incentive design in FL. Some other
works have focused on analyzing incentives-aware collabo-
ration by examining the equilibrium (Blum et al., 2021) and
stable formation of coalitions (Donahue & Kleinberg, 2021)
in FL. However, these works do not consider the design of
the incentive mechanism to achieve fairness.

As highlighted by existing works (Li et al., 2021a;b; 2020b;
Mohri et al., 2019), equality is also important in FL.13 Our
investigation also confirms that an undesirable “rich get
richer” phenomenon (i.e., inequality) can arise from the fair-
ness guarantee. Hence, we introduce an equality-preserving
perspective in our fair incentive design. Sec. 4 empirically
compares our proposed method against (Li et al., 2020b)
which generalizes/is representative of (Mohri et al., 2019;
Li et al., 2021a;b).

We highlight our setting assumes honest nodes (e.g., they
do not strategize) which is commonly assumed in current
works (Sim et al., 2020; Xu et al., 2021a; Tay et al., 2022).
This assumption is also supported by quite a few applica-
tion scenarios. For example, nodes can be hospitals (Flores,
2020; van Leersum et al., 2013) or regulated financial insti-
tutions (Miller & Chin, 1996). Yuan et al. (2021); Zhang
et al. (2022) relax this assumption while they do not con-

12The explore-exploit paradigm is suitable for problems where
an accurate modeling (e.g., estimation) is first established and
subsequently used in decision making (Krause & Guestrin, 2007).

13Note while (Li et al., 2021b; 2020b) use the keyword fairness,
it is formalized via equality in performance across nodes, and does
not refer to the fairness in incentive design.
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sider fairness. It is an interesting future direction to relax
the honest node assumption while guaranteeing fairness.

6. Discussion and Future Work
We propose a novel framework to guarantee fair incentives
for the nodes in federated learning (to incentivize the more
resourceful nodes) while preserving asymptotic equality (to
encourage the less resourceful nodes). Interestingly, using a
single equalizing coefficient β, our framework sheds some
light on the intricate relationship between fairness and equal-
ity in collaborations with finite resources (e.g., the number
of nodes selected to synchronize is finite). Achieving abso-
lute equality violates fairness and reduces the effectiveness
of incentives. On the other hand, enforcing a larger improve-
ment in incentives due to some increase in contributions can
guarantee fairness but potentially creates/worsens inequal-
ity and thus discourages the less resourceful nodes from
collaborating. We describe how to find a suitable range
for β and empirically verify its effectiveness in the fairness
vs. equality trade-off.

For future work, it is interesting to explore whether such
fairness-equality relationship arises in other collaboration
paradigms such as collaborative supervised learning (Sim
et al., 2020; Nguyen et al., 2022), unsupervised learning
(Tay et al., 2022), parametric learning (Agussurja et al.,
2022), (personalized) model fusion (Lam et al., 2021; Hoang
et al., 2021), active learning (Xu et al., 2023), reinforcement
learning (Fan et al., 2021) or causal inference (Qiao et al.,
2023). Regarding fairness, it also is interesting to explore
whether or precisely how a larger number of nodes affects
the fairness via the Shapley value (Zhou et al., 2023). More-
over, as we adopt the gradient alignment (via the inner
product of the gradient vectors) to determine the contribu-
tions of the nodes, it is also interesting to investigate the
effectiveness of other data valuation methods (Sim et al.,
2022) such as (Ghorbani & Zou, 2019; Wu et al., 2022)
when a validation dataset is available or (Xu et al., 2021b)
specifically for regression tasks.
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A. Algorithm and Overview

Table 5. Specific notations
Notation Meaning
t Iteration index
N Number of nodes
θt Global model parameter in iteration t
θi,t Local model parameter for node i in iteration t
Di Local dataset for node i
L(θ;Di) Loss function with parameter θ on dataset Di

J(θ) Global loss function
pi Data size weighted coefficient for node i
k Number of nodes selected in each iteration
si,t Mini-batch data from node i in iteration t when using Stochastic Gradient Decent
st Aggregated mini-batch data from all nodes in iteration t: st :=

⋃N
i=1 Si,t.

∆θi,t Gradient of model parameter computed with mini-batch data si,t
∆θt Aggregated gradient computed by coordinator in iteration t
[N ] Grand coalition formed by all nodes {i}1,...,N
S Coalitions of nodes S ⊆ [N ]
U(S) Utility function that takes the coalition S as inpute
ϕi,t Shapley value for node i in iteration t
ϕt Vector of Shapley values for all nodes in iteration t: ϕt := {ϕi,t; i ∈ [N ]}
ψi,t Contribution estimate for node i up to iteration t
ψt Vector of contribution estimates for all nodes up to iteration t: ψt := {ψi,t; i ∈ [N ]}
ψ∗
i True contribution for node i: ψ∗

i = limt→∞ ψi,t

ψ∗ Vector of true contributions: ψ∗ = {ψ∗
i ; i ∈ [N ]}

β Equalizing coefficient (a.k.a. the temperature parameter)
ϱi Probability of node i been selected in exploitation phase
Γi Expected staleness for node i in exploitation phase
Ci Convergence complexity for node i
α Significance level of hypothesis testing for stopping criterion
τ Windows size for hypothesis testing
Tα Stopping iteration for exploration phase with significance level of α.
Pi,online Online performance for node i
γ̄i Average staleness in the experiment for node i.
ζi Level of noise/missing values/negative quantity for node i in experiment.
ζ Vector of level of noise/missing values/negative quantity in experiment: ζ := {ζi; i ∈ [N ]}.

Algorithm 1 outlines our framework where lines 1− 3 correspond to contribution evaluation (explore) in Sec. 3.1 and line 4
corresponds to incentive realization (exploit) in Sec. 3.2. Our proposed algorithm first performs contribution evaluation until
ψt converge, after which uses ψt to design a sampling distribution as in Eq. (2) and follows it in the remaining training for
realizing the incentives.

Algorithm 1 Framework Overview

1: Contribution Evaluation:
2: while ψt not converged via Proposition 1 do
3: Obtain ψt+1 as in Eq. (1)
4: end while
5: Perform Incentive Realization via Eq. (2) w.r.t. ψt

13



Fair yet Asymptotically Equal Collaborative Learning

B. Additional Details on Experiment Settings
B.1. Additional Description on Resourcefulness of Nodes

We use the term resourcefulness to describe a node’s data collection capability, in terms of both quantity and quality of
data. For example, a more resourceful node can utilize more resources to clean its data, fix missing values or features, or
collect more data. These are all explicitly considered in our experimental settings in FOIL (Sec. 4). Resourcefulness is a
conceptual description of the node’s data (and thus its contribution in FL) and it is made concrete in our implementation via
the above specific settings. Therefore, for simplicity, we treat the contributions of the nodes, which are observable in FL, to
be an indirect surrogate to the resourcefulness of the nodes, which is not observable. With this, a node i that chooses to
expend a considerable amount of resources (to collect, clean and preprocess the data) and contribute to the collaboration (by
training and uploading model updates on the high-quality data) will be recognized via high φi and rewarded with a better
convergence complexity. On the other hand, if a node does not wish to contribute at all, it can mean the node does not join
the collaboration in the first place. However, if a node does want to collaborate but is unfortunately not very resourceful
(e.g., on a low budget), then it is important (for equality) that the collaboration does not magnify the effect of this node’s less
resourcefulness (or widen the inequality gap between the resourceful and less resourceful), hence our equality-preserving
perspective.

B.2. Additional Hyper-parameters for Federated Online Incremental Learning

The model architectures for the datasets are as follows: (a) CNN with 2 convolution layers followed by 2 fully connected
(FC) layers, each convolutional layer is followed by a max-pooling layer for MNIST. (b) CNN with 2 convolution layers
and 3 FC layers, each convolutional layer is followed by a max-pooling layer for CIFAR-10 and PATH. (c) Multi-layer
perception (MLP) with 3 FC layers for HFT. (d) Recurrent neuron network with hidden size of 40 for ELECTRICITY.

For framework-dependent hyper-parameters, q = 0.1 in qFFL and the normalization coefficient Γ = 0.01 in FGFL and the
altruism degree βaltruism = 2. Other framework-independent hyper-parameters are as follows. Except for ELECTRICITY
(regression) which uses mean squred error, the other datasets use cross entropy for the loss function. Except MNIST and
PATH with a learning rate of 2e−3, the other datasets use a consistent learning rate of 2e−4. The size of latest available data
|si,t| for node i in iteration t is 3, 6, 14, 4 and 7 for MNIST, CIFAR-10, HFT, ELECTRICITY, and PATH, respectively. All
models use SGD as the optimization algorithm and use the batch size is |si,t|.

All the experiments have been run on a server with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz processor, 256GB RAM
and 4 NVIDIA GeForce RTX 3080’s.

B.3. Additional Hyper-parameters for Federated Reinforcement Learning

The Deep-Q-network (DQN) has 3 convolutional layers with [32, 64, 64] number of filters and [8, 4, 3] for filter size [4, 2, 1]
for stride, followed by an FC layer with 512 units. We use the rectified linear unit (ReLU) activation function for all
layers, and use the initialization method from (He et al., 2015) for the convolutional parameters. The input to the DQN is
a 84× 84× 4 images from the state. We follow most of the hyper-parameters from (Mnih et al., 2015) except a smaller
learning rate 2e−5, as we empirically observe even a marginally larger rate can lead to very ineffective learning and we
set a reduced memory size to 105 for each agent due to RAM limitation. We use the clipped reward as {−1, 0, 1} and
set the reward decay as γ = 0.99. The exploration ratio start from 1 and linearly decay to 0.1 after a total of 850K local
training steps. The batch size is 32. The local models synchronize with the coordinator model every 2000 local steps in the
environment, i.e., 2000 steps in the environment corresponds to an iteration in FL.
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C. Additional Experimental Results
C.1. Dataset License

MNIST (LeCun et al., 1990): Attribution-Share Alike 3.0 License; CIFAR-10 (Krizhevsky, 2009): MIT License;
HFT (Ntakaris et al., 2018): Creative Commons Attribution 4.0 International (CC BY 4.0); ELECTRICITY (Muehlenpfordt,
2020): Creative Commons Attribution 4.0 International (CC BY 4.0); PATH (Yang et al., 2021): Creative Commons
Attribution 4.0 International (CC BY 4.0).

C.2. Additional results for different settings of the running example

Regarding the experiment of using recall fraction to indirectly gauge the accuracy in the contribution estimates, we include
additional results with less quantity/missing values/feature noise data to simulate the low-quality data for designated nodes
and on CIFAR-10.

For less quantity data, we randomly drop 10% of the data points in the designated nodes to simulate nodes with less quantity
data. For missing values data, we randomly set 50% of the pixel of images to zero in the designated nodes to simulate that
the data have random unfilled features which is common in data collection. For feature noise data, we add standard Gaussian
noise ϵ ∼ N (0, 1) to each feature/pixel of the images in the designated nodes. The proportion of data in the designated
nodes with missing values/feature noise is the same with label noise.
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Figure 8. Recall fraction vs. iteration under different settings.

C.3. Empirical Validation of Sub-sampling for Hypothesis Testing

We empirically validate the effectiveness of using sub-sampling to side-step the technical requirement of Hotelling’s T 2

distribution of τ > N in Fig. 9. In these various settings, the p-values obtained with/without sub-sampling are well aligned
so that we can use the sub-sampled set of nodes instead of all N nodes for the stopping criterion.

C.4. Empirical Validation of Contribution Evaluation for Nodes with Unstable Connection.

In the setting with unstable connection, it is impractical for all the nodes to participates in every iteration for the contribution
evaluation. Though our framework does not target to this setting, a simple modification can be adopted to make it work. We
can simply let ϕi,t = 0 if node i does not participate in iteration t when evaluating the contribution of all nodes. And we
keep the rest part of our framework the same. Intuitively, if not all the nodes can participate in the contribution evaluation,
it would take more iterations for the ψt to converge. The result in Table 6 verifies the intuition, the stopping iteration for
contribution evaluation increases if a smaller proportion of nodes participate in the contribution evaluation.

The experiment setting is the same as the setting in Sec. 4.2. The p value for the stopping criterion is set to be 0.95, and
we have 10 nodes in the collaboration. We begin to sub-sample rsub proportion of the nodes to participate the contribution
evaluation after iteration Tα − 5 to simulate the case of unstable connection, where Tα is the stopping iteration for the full
participation.
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Figure 9. The p-value with (orange) and without (black) sub-sampling using τ = 20 (35). The p-value of original sampling (black) and
sub-sampling (orange) vs. iteration. The shaded area denotes the 95% confidence interval computed from 10 random trials. The results
show ψt converges (vertical red dashed line, which indicates p-value first reaches 0.99).

Table 6. The unstable connection and its effect to the stopping iteration: the stopping iteration (standard error under 3 runs) under different
subsampling ratio rsub.

Label Noise Feature Noise
rsub MNIST CIFAR-10 MNIST CIFAR-10

0.2 103.00(1.4e+01) 154.67(1.3e+01) 101.67(1.1e+01) 137.67(1.2e+01)
0.8 102.67(5.2e+00) 146.00(7.5e+00) 105.33(8.9e+00) 136.00(1.4e+01)
0.9 99.00(6.4e+00) 143.67(7.3e+00) 104.00(9.0e+00) 134.33(1.2e+01)
1.0 77.00(8.9e+00) 138.00(1.2e+01) 81.67(7.9e+00) 131.33(1.4e+01)

C.5. Additional comparisons of communication complexity and running time among all baselines

Denote T as the overall training iterations, ng as the number of dimensions of each gradient (i.e., the number of parameters
in the model θ) , and r as the selection ratio of nodes in each iteration. Denote T1 as number of iterations for exploration
phase and T2 for the exploitation phase. Thus T1 + T2 = T .

Table 7. The communication factors for different baselines. Where Communication costs = Accumulated communications ×
Cost per communication.

Baseline Accumulated communications Cost per communication Communication costs Comparison with ours

FedAvg r · T ·N 2ng 2ngrTN Lower than ours
qFFL r · T ·N 2ng + 1 2ngrTN + rTN Higher than ours iff T1 <

2ng

rT
FGFL T ·N 2ng 2ngTN Higher than ours
GoG r · T ·N 2ng 2ngrTN Lower than ours
Ours T1 ·N + r · T2 ·N 2ng 2ng(T1 + rT2)N N.A.

Comparisons of communication costs. In Table 7, Accumulated communications denotes the total number of communica-
tions between a node and the coordinator and Cost per communication denotes the cost per such communication. Take Fe-
dAvg for example, in one iteration, rN nodes are picked (hence rN communications), so the Accumulated communications
is rNT for a total of T iterations. In each communication, the node uploads and downloads the gradient containing ng
parameters, so the Cost per communication is 2ng .

Note that the Cost per communication and Communication costs denote how many floating point numbers are required.
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The actual cost in practice additionally depends on how many bits each floating point number requires in storage which
incurs a constant linear factor and is omitted for simplicity.

From Table 7, we have several observations. When r < 1, GoG and FedAvg have the lowest communication costs among all
baselines. For Ours, the shorter the exploration phase T1 is, the lower communication cost. However, a shorter exploration
phase might cause inaccurate contribution estimates as shown in Fig. 2 (left). When T1 < 0.2T which is observed in our
experiments, in the worst-case (i.e., r → 0), our method has an additional communication cost of 0.4ngTN more than GoG
(which has the lowest communication cost). Overall, the communication costs do not vary too much among all baselines.

Table 8. Time complexity of fairness mechanism for different baselines. FedAvg is omitted since it does not have a fairness mechanism.
M is the number of Monte Carlo simulations in GoG and ng|Dval| is from the forward passes of a model with ng parameters on the
validation dataset Dval.

Baseline Time complexity

qFFL O(rngNT )
FGFL O(ngNT )
GoG O(rMNng|Dval|T )
Ours O(N2ngT1)

Table 9. Running time of fairness mechanism in seconds and the fraction of time spent on fairness mechanism w.r.t. the overall training
time (in brackets) under the setting of label noise. Results are averaged over 5 runs.

Baseline MNIST CIFAR-10 HFT ELECTRICITY PATH

qFFL 7.778(1.2e-02) 24.064(4.0e-02) 4.565(3.1e-02) 20.188(4.5e-02) 28.289(4.5e-02)
FGFL 391.282(5.0e-01) 401.867(5.5e-01) 15.727(1.0e-01) 230.978(3.7e-01) 458.683(4.6e-01)
GoG 1656.071(9.0e-01) 1311.791(8.7e-01) 1640.153(9.3e-01) 1378.404(9.2e-01) 1400.977(8.8e-01)
Ours 444.587(3.9e-01) 400.780(4.1e-01) 7.598(5.9e-02) 237.968(3.7e-01) 241.410(2.8e-01)

Table 10. Running time of fairness mechanism in seconds and the fraction of time spend on fairness mechanism w.r.t. the overall training
time (in brackets) under the setting of quantity. Results are averaged over 5 runs.

Baseline MNIST CIFAR-10 HFT ELECTRICITY PATH

qFFL 4.346(8.4e-03) 12.173(2.1e-02) 7.768(3.5e-02) 10.829(2.6e-02) 8.793(1.9e-02)
FGFL 276.947(5.1e-01) 278.551(5.7e-01) 14.986(5.9e-02) 212.794(4.6e-01) 316.002(5.6e-01)
GoG 1237.899(8.3e-01) 835.653(7.7e-01) 2839.274(9.3e-01) 873.078(8.5e-01) 903.396(7.9e-01)
Ours 1099.390(5.7e-01) 999.485(5.9e-01) 7.179(3.3e-02) 879.026(6.2e-01) 741.787(5.3e-01)

Comparisons of running time. From Table 8, we have some observations. qFFL seems the most efficient since its fairness
mechanism is a re-weighting of the objective function using the reported losses from rN nodes and the dependence on ng is
due to calculating the norm of each gradient. The comparison between FGFL and ours depends on T vs. NT1: if T1 is
small (contribution estimates converge quickly), specifically T1 < T/N , then ours is more efficient. For GoG, the time
complexity for it depends on the number of Monte Carlo simulations M that is often set according to the number of nodes
N For example, (Nagalapatti & Narayanam, 2021) sets M = 10 for N = 5 and in our experiments we set M = 30 for
N = 10. Furthermore, GoG has an extra factor of O(|Dval|) due to the usage of an extra validation dataset. Therefore when
M = 30 and N = 10 which we used in our experiments later, GoG has the highest time complexity among all baselines.

To verify these observations, we perform experiments to compare the running time for the fairness mechanism and its
proportion in the whole training process. We consider two settings: label noise and quantity. We consider N = 10 nodes
and the total training iteration of T = 250 for all datasets and baseline. The fraction of nodes selected in each iteration for
qFFL, GoG, Ours is set to be r = 0.4. We note that FedAvg is excluded as it does not have an explicit fairness mechanism.
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Based on Table 9 and Table 10, we have some empirical observations. Since qFFL does not involve a contribution estimation,
its running time is always the lowest in Table 9 and Table 10 except on dataset HFT in Table 10 where Ours runs the fastest.
Previously in Table 8, if T1 < T/N , the time complexity of the fairness mechanism of Ours is lower than that of the FGFL,
which is empirically observed in Table 9 on CIFAR-10, HFT and PATH. Otherwise, FGFL has lower complexity as shown
in Table 10 on all datasets except HFT. Due to the usuage of validation dataset and M ’s dependence on the number of nodes
N , GoG almost always has the highest running time of fairness mechanism as shown in Table 9 and Table 10. From Table 8,
qFFL is 1/r times faster than FGFL (r = 0.4 in our experiments which means qFFL is 2.5 times faster than FGFL from
the expressions of the factor). However, from Table 9 and Table 10, qFFL is around 20 times faster than FGFL in most
experiments. The reason is that the constant facor in O(·) for FGFL is larger than that for qFFL due to the extra operations
in FGFL (e.g., flattening and unflattening gradients for calculating cosine-similarity, sparsifications of gradients). These
operations add to the constant factor but their exact runtimes w.r.t. ng depends on the implementation library and is not
known.

As an additional remark to the analyses and experiments above, we highlight that since our targeted scenario is the long-term
FL, the true bottleneck of time in practice would be the time for data collection/preprocessing instead of the running time of
our fairness mechanism.

C.6. Additional experiments to specifically investigate the effect of heterogeneity on model/predictive performance.

Our additional experiments below demonstrate that our method outperforms (compares favorably to) existing methods
in terms of predictive performance when there is heterogeneity, and the performance indeed degrades with the degree of
heterogeneity but the degradation is graceful.

To investigate how the degree of heterogeneity affects the model performance, we perform experiments for classification
tasks on N = 30 nodes; the detailed experiment setting can be found in Sec. 4.2. The difference here is that we vary the
degree of heterogeneity of nodes’ local data distributions by assigning them different numbers of classes. For example, in
the most homogeneous setting, each node has an equal amount of data uniformly randomly sampled from all 10 classes.
While in the most heterogenous setting, each node only has 2 classes (uniformly randomly sampled from 10 classes) of data
points. Under this setting, few nodes have the same data from one specific class, so we can quantify the heterogeneity by
the number of classes each node has. The lower the number of classes in each node, the higher the heterogeneity of the
nodes’ local data. Note that HFT and ELECTRICITY datasets are exempt from the experiments here since HFT is binary
classification and ELECTRICITY is a regression task to which the setting does not apply. Note that PATH only has 9 classes
in total, so we set the number of classes for each corresponding setting to round(9× Number of classes

10 ).

Table 11. The maximum of the final model accuracy among 30 nodes (standard error over 5 runs) for our approach under different levels
of heterogeneous local data distribution. Number of classes indicates the level of heterogeneity among nodes: a smaller number of classes
corresponds to a higher degree of heterogeneity.

Number of classes MNIST CIFAR-10 PATH

10 0.754(0.029) 0.220(0.012) 0.392(0.014)
8 0.723(0.017) 0.218(0.021) 0.393(0.009)
6 0.741(0.020) 0.168(0.007) 0.358(0.012)
4 0.702(0.022) 0.183(0.014) 0.335(0.005)
2 0.688(0.047) 0.149(0.015) 0.188(0.014)

From Table 11 and Table 12, heterogeneity does negatively affect the model performance. Specifically, when the heterogene-
ity increases (as the number of classes goes from 10 to 2), the model performance will degrade.

To compare how the different degrees of heterogeneity affect different federated learning baseline algorithms in our paper,
we perform experiments to see how different algorithms perform under the same degree of heterogeneity and how much
their corresponding performances degrade due to the heterogeneity of nodes’ local data. The heterogeneous setting refers
to the case when the number of classes = 2 (most heterogeneous) and the homogenous setting refer to the case when the
number of classes = 10. From Table 13, qFFL and FGFL perform relatively poorly in highly heterogenous data settings.
FedAvg performs better than qFFL and FGFL. Our approach and GoG perform significantly better than other approaches.
Our approach achieves the best performance among all datasets. Under the heterogeneous setting, our approach has a similar
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Table 12. The maximum of the online model accuracy among 30 nodes (standard error over 5 runs) for our approach under different
levels of heterogeneous local data distribution. Number of classes indicates the level of heterogeneity among nodes: a smaller number of
classes corresponds to a higher degree of heterogeneity.

Number of classes MNIST CIFAR-10 PATH

10 0.635(0.017) 0.181(0.009) 0.328(0.006)
8 0.624(0.015) 0.183(0.009) 0.340(0.006)
6 0.639(0.010) 0.146(0.006) 0.312(0.010)
4 0.624(0.014) 0.154(0.014) 0.290(0.007)
2 0.627(0.018) 0.139(0.007) 0.168(0.013)

Table 13. The maximum of the online model accuracy among 30 nodes under the heterogenous data setting (how much the performance
degrades compared to the homogenous data setting) for different FL algorithms.

Number of classes MNIST CIFAR-10 PATH

FedAvg 0.498(0.002) 0.118(-0.034) 0.151(-0.141)
qFFL 0.117(0.015) 0.096(-0.003) 0.105(0.020)
FGFL 0.188(-0.293) 0.114(-0.014) 0.129(-0.007)
GoG 0.599(-0.028) 0.136(-0.052) 0.155(-0.150)
Ours 0.627(-0.008) 0.139(-0.042) 0.168(-0.161)

degree of model performance degradation (shown in the brackets) as FedAvg and GoG.

These additional experimental results demonstrate that compared to baselines (1) our method performs well under the
heterogeneous data distributions compared to other baselines and (2) the performance of our method degrades gracefully as
the degree of heterogeneity increases.

C.7. Additional Fairness Comparison for FOIL and FRL

Corresponding results for label noise, quantity and missing values. We provide the fairness results under the setting of
label noise, quantity, and missing values corresponding in Tables 14 to 16.

Table 14. Correlation coefficient ρ between ζ and online loss under the setting of label noise, quantity, and missing values. Higher ρ
indicates better fairness result.

Label Noise
MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg -0.224(0.060) -0.072(0.041) 0.113(0.067) 0.000(0.102) 0.024(0.104)
qFFL 0.097(0.088) 0.095(0.144) 0.218(0.091) -0.162(0.088) -0.171(0.128)
FGFL 0.593(0.056) 0.396(0.031) -0.282(0.045) 0.834(0.017) 0.314(0.035)
GoG 0.119(0.034) 0.260(0.076) 0.091(0.034) 0.174(0.072) -0.054(0.053)

Ours 0.678(0.016) 0.455(0.059) 0.347(0.078) 0.376(0.073) 0.469(0.063)

Quantity Missing Values
MNIST CIFAR-10 HFT ELECTRICITY PATH MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg -0.094(0.055) -0.111(0.019) -0.020(0.065) 0.125(0.078) -0.026(0.039) 0.020(0.088) -0.041(0.140) -0.035(0.039) -0.095(0.059) 0.086(0.085)
qFFL 0.338(0.118) 0.131(0.048) -0.211(0.030) -0.115(0.058) 0.076(0.077) 0.167(0.081) -0.012(0.063) 0.093(0.078) -0.174(0.088) -0.075(0.145)
FGFL 0.682(0.004) 0.445(0.083) -0.071(0.073) -0.317(0.063) 0.279(0.109) 0.349(0.068) 0.347(0.070) -0.084(0.110) 0.933(0.012) 0.315(0.067)
GoG 0.252(0.027) 0.127(0.098) 0.079(0.028) 0.297(0.059) 0.090(0.026) 0.358(0.029) 0.198(0.037) 0.208(0.018) 0.262(0.020) 0.242(0.027)

Ours 0.785(0.005) 0.666(0.040) 0.050(0.070) -0.030(0.083) 0.580(0.022) 0.526(0.019) 0.581(0.015) 0.252(0.029) 0.223(0.059) 0.179(0.057)

Additional fairness results. We provide additional fairness results w.r.t. the average staleness, online accuracy Tables 17
and 18.

19



Fair yet Asymptotically Equal Collaborative Learning

Table 15. The average of the online accuracy (standard error) over all nodes under the setting of label noise, quantity, and missing values.
For ELECTRICITY, we measure mean absolute percentage error(MAPE), so lower is better.

Label Noise
MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 0.509(0.013) 0.161(0.009) 0.472(0.049) 1.386(0.052) 0.307(0.008)
qFFL 0.112(0.006) 0.103(0.002) 0.374(0.091) 1.618(0.117) 0.109(0.013)
FGFL 0.545(0.008) 0.157(0.007) 0.544(0.009) 1.703(0.041) 0.188(0.010)
GoG 0.599(0.007) 0.193(0.005) 0.536(0.017) 1.664(0.079) 0.321(0.006)

Standalone 0.519(0.007) 0.158(0.005) 0.580(0.017) 1.661(0.079) 0.233(0.002)

Ours 0.664(0.003) 0.206(0.009) 0.566(0.014) 0.125(0.004) 0.380(0.008)

Quantity Missing Values
MNIST CIFAR-10 HFT ELECTRICITY PATH MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 0.510(0.010) 0.138(0.009) 0.462(0.031) 1.755(0.128) 0.299(0.007) 0.467(0.011) 0.149(0.003) 0.461(0.047) 1.422(0.058) 0.292(0.006)
qFFL 0.114(0.010) 0.104(0.004) 0.350(0.071) 1.697(0.148) 0.129(0.007) 0.112(0.021) 0.108(0.004) 0.317(0.065) 1.425(0.080) 0.099(0.006)
FGFL 0.579(0.011) 0.169(0.006) 0.524(0.023) 1.845(0.071) 0.185(0.007) 0.582(0.005) 0.156(0.010) 0.556(0.016) 2.293(0.069) 0.184(0.018)
GoG 0.606(0.009) 0.185(0.004) 0.543(0.020) 1.978(0.072) 0.320(0.004) 0.564(0.012) 0.185(0.003) 0.576(0.013) 1.728(0.086) 0.299(0.005)

Standalone 0.606(0.006) 0.159(0.002) 0.536(0.014) 1.829(0.056) 0.236(0.003) 0.577(0.003) 0.148(0.005) 0.539(0.016) 1.805(0.055) 0.228(0.004)

Ours 0.652(0.009) 0.213(0.007) 0.571(0.012) 0.113(0.002) 0.352(0.005) 0.634(0.003) 0.195(0.004) 0.569(0.017) 0.126(0.003) 0.329(0.004)

Table 16. The minimum of the online accuracy (standard error) over all nodes under the setting of label noise, quantity, and missing values.
For ELECTRICITY, we measure mean absolute percentage error(MAPE), so lower is better.

Label Noise
MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 0.503(0.012) 0.160(0.009) 0.466(0.050) 1.381(0.053) 0.303(0.008)
qFFL 0.112(0.006) 0.103(0.002) 0.373(0.091) 1.618(0.117) 0.109(0.013)
FGFL 0.533(0.013) 0.155(0.007) 0.542(0.009) 1.533(0.037) 0.185(0.009)
GoG 0.578(0.008) 0.187(0.005) 0.531(0.018) 1.644(0.079) 0.306(0.005)

Standalone 0.396(0.009) 0.132(0.006) 0.567(0.020) 1.301(0.059) 0.182(0.004)

Ours 0.661(0.004) 0.204(0.009) 0.564(0.015) 0.124(0.004) 0.376(0.007)

Quantity Missing Values
MNIST CIFAR-10 HFT ELECTRICITY PATH MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 0.502(0.010) 0.138(0.009) 0.459(0.031) 1.749(0.129) 0.295(0.007) 0.462(0.011) 0.148(0.003) 0.456(0.047) 1.417(0.058) 0.288(0.006)
qFFL 0.113(0.010) 0.104(0.004) 0.350(0.071) 1.697(0.148) 0.129(0.007) 0.112(0.021) 0.108(0.004) 0.317(0.065) 1.425(0.080) 0.099(0.006)
FGFL 0.551(0.011) 0.165(0.007) 0.522(0.024) 1.704(0.075) 0.184(0.007) 0.580(0.006) 0.154(0.010) 0.555(0.016) 2.109(0.076) 0.183(0.018)
GoG 0.586(0.012) 0.180(0.003) 0.538(0.021) 1.953(0.071) 0.299(0.003) 0.553(0.010) 0.180(0.003) 0.574(0.013) 1.693(0.082) 0.288(0.005)

Standalone 0.392(0.009) 0.134(0.004) 0.487(0.026) 1.689(0.058) 0.177(0.002) 0.528(0.004) 0.121(0.005) 0.517(0.019) 1.671(0.056) 0.181(0.009)

Ours 0.643(0.011) 0.209(0.008) 0.571(0.012) 0.113(0.002) 0.345(0.006) 0.633(0.003) 0.193(0.004) 0.568(0.017) 0.126(0.003) 0.326(0.003)

Table 17. Correlation coefficient ρ between ζ and average staleness and higher ρ indicates better fairness. FGFL is excluded as staleness
is not well defined.

Feature Noise Label Noise
MNIST CIFAR-10 HFT ELECTRICITY PATH MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg -0.213(0.073) 0.000(0.173) 0.012(0.128) -0.098(0.194) 0.023(0.190) -0.213(0.073) 0.000(0.173) 0.012(0.128) -0.098(0.194) 0.023(0.190)
qFFL 0.407(0.056) 0.319(0.249) 0.035(0.219) 0.502(0.048) 0.268(0.121) 0.375(0.033) 0.421(0.117) 0.205(0.221) 0.596(0.065) 0.370(0.116)
GoG 0.378(0.054) -0.151(0.021) -0.066(0.002) -0.112(0.028) 0.338(0.029) -0.179(0.063) -0.104(0.016) -0.271(0.002) -0.093(0.006) 0.042(0.024)

Ours 0.650(0.038) 0.627(0.091) 0.387(0.092) 0.670(0.018) 0.646(0.121) 0.679(0.022) 0.583(0.049) 0.364(0.165) 0.376(0.172) 0.577(0.104)

Quantity Missing Values
MNIST CIFAR-10 HFT ELECTRICITY PATH MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg -0.088(0.116) -0.028(0.126) -0.067(0.162) -0.059(0.135) -0.080(0.100) 0.018(0.176) 0.028(0.130) -0.037(0.129) -0.154(0.135) -0.008(0.138)
qFFL 0.761(0.033) 0.801(0.055) 0.778(0.052) 0.728(0.041) 0.762(0.071) -0.066(0.140) 0.411(0.100) 0.042(0.165) 0.471(0.155) 0.386(0.164)
GoG 0.052(0.014) 0.250(0.035) 0.157(0.004) 0.298(0.031) 0.188(0.033) -0.018(0.008) 0.061(0.006) 0.162(0.001) 0.227(0.007) -0.247(0.024)

Ours 0.789(0.015) 0.717(0.069) 0.057(0.139) -0.106(0.073) 0.701(0.054) 0.572(0.040) 0.620(0.086) 0.249(0.058) 0.330(0.109) 0.355(0.113)
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Table 18. ρ calculated between between ζ and online accuracy. Lower ρ indicates better fairness, except for the ELECTRICITY dataset
where the MAPE is used and higher ρ value indicates better fairness.

Feature Noise Label Noise
MNIST CIFAR-10 HFT ELECTRICITY PATH MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg -0.015(0.123) -0.043(0.118) -0.035(0.093) -0.088(0.027) -0.093(0.089) 0.115(0.038) -0.060(0.028) -0.129(0.098) -0.031(0.098) 0.059(0.038)
qFFL -0.266(0.104) 0.023(0.071) -0.100(0.068) 0.176(0.136) -0.005(0.005) 0.013(0.017) -0.068(0.031) 0.063(0.040) 0.318(0.063) -0.161(0.161)
FGFL -0.484(0.051) -0.120(0.037) -0.039(0.130) -0.764(0.025) -0.306(0.133) -0.493(0.084) -0.144(0.180) 0.124(0.087) -0.784(0.012) -0.203(0.084)
GoG -0.296(0.050) -0.067(0.068) -0.268(0.112) -0.296(0.111) -0.213(0.115) -0.389(0.024) 0.029(0.061) -0.076(0.128) -0.093(0.065) 0.144(0.061)

Ours -0.621(0.026) -0.429(0.069) -0.087(0.057) 0.687(0.007) -0.072(0.138) -0.608(0.013) -0.484(0.047) -0.178(0.087) 0.384(0.080) -0.132(0.142)

Quantity Missing Values
MNIST CIFAR-10 HFT ELECTRICITY PATH MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 0.014(0.088) 0.039(0.046) -0.017(0.063) -0.057(0.097) 0.071(0.179) 0.024(0.073) -0.159(0.040) 0.018(0.041) -0.064(0.126) -0.172(0.057)
qFFL -0.556(0.184) 0.057(0.057) -0.025(0.077) 0.309(0.056) -0.003(0.003) -0.089(0.057) 0.026(0.026) 0.085(0.103) 0.278(0.088) 0.042(0.042)
FGFL -0.682(0.005) -0.554(0.065) -0.030(0.075) 0.278(0.156) -0.098(0.206) -0.167(0.087) -0.027(0.114) 0.179(0.077) 0.759(0.068) -0.386(0.074)
GoG -0.427(0.084) -0.269(0.074) -0.085(0.047) -0.195(0.045) -0.145(0.072) -0.156(0.075) -0.074(0.043) -0.047(0.063) -0.017(0.018) -0.085(0.089)

Ours -0.793(0.014) -0.412(0.281) 0.037(0.071) -0.101(0.040) -0.312(0.134) -0.524(0.024) -0.360(0.085) -0.133(0.109) 0.318(0.052) -0.048(0.120)
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Generally positive ψi,Tα
. We observe ψi,Tα

is all positive, and validate our assumption that a node with noisy data has
lower contributions in Fig. 10.
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Figure 10. ψTα
vs. node index in an increasing order of ζi, the proportion noisy data. In general, higher ζi leads to lower ψi,Tα .

Additional learning performance results. We provide the performance result on the maximum online accuracy (final
iteration accuracy) across different nodes in Table 19 which shows our approach outperforms other baselines overall. This
can incentivize the more resourceful nodes to join the collaboration using our framework for better performance.

Table 19. The maximum of the online accuracy (standard error) over all nodes. Lower is better for ELECTRICITY.
Feature Noise Label Noise

MNIST CIFAR-10 HFT ELECTRICITY PATH MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 0.487(0.019) 0.167(0.011) 0.501(0.045) 1.411(0.081) 0.258(0.004) 0.512(0.012) 0.162(0.009) 0.474(0.048) 1.388(0.052) 0.311(0.009)
qFFL 0.101(0.011) 0.100(0.004) 0.281(0.079) 1.413(0.055) 0.101(0.011) 0.112(0.006) 0.103(0.002) 0.374(0.091) 1.618(0.117) 0.109(0.013)
FGFL 0.491(0.017) 0.170(0.010) 0.548(0.013) 1.645(0.096) 0.155(0.009) 0.547(0.008) 0.159(0.008) 0.553(0.010) 1.946(0.046) 0.188(0.010)
GoG 0.588(0.014) 0.197(0.005) 0.559(0.015) 1.402(0.031) 0.300(0.004) 0.612(0.006) 0.197(0.005) 0.539(0.016) 1.674(0.079) 0.344(0.006)

Standalone 0.571(0.012) 0.174(0.004) 0.561(0.014) 1.946(0.073) 0.266(0.004) 0.587(0.004) 0.178(0.003) 0.587(0.014) 1.889(0.102) 0.263(0.002)

Ours 0.613(0.009) 0.196(0.007) 0.581(0.014) 0.140(0.002) 0.305(0.005) 0.664(0.003) 0.206(0.009) 0.566(0.014) 0.126(0.004) 0.384(0.008)

Quantity Missing Values
MNIST CIFAR-10 HFT ELECTRICITY PATH MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 0.512(0.010) 0.139(0.009) 0.464(0.031) 1.759(0.128) 0.303(0.007) 0.470(0.011) 0.150(0.003) 0.463(0.047) 1.429(0.057) 0.295(0.006)
qFFL 0.114(0.010) 0.104(0.004) 0.350(0.071) 1.697(0.148) 0.129(0.007) 0.112(0.021) 0.108(0.004) 0.317(0.065) 1.425(0.080) 0.099(0.006)
FGFL 0.580(0.011) 0.170(0.006) 0.533(0.020) 1.956(0.066) 0.185(0.007) 0.583(0.005) 0.157(0.010) 0.558(0.016) 2.614(0.066) 0.185(0.018)
GoG 0.615(0.009) 0.189(0.004) 0.545(0.020) 1.990(0.072) 0.333(0.005) 0.572(0.011) 0.189(0.003) 0.578(0.012) 1.740(0.087) 0.308(0.004)

Standalone 0.646(0.006) 0.178(0.003) 0.557(0.014) 1.926(0.052) 0.278(0.004) 0.630(0.003) 0.173(0.003) 0.554(0.013) 1.978(0.052) 0.260(0.003)

Ours 0.654(0.009) 0.214(0.007) 0.571(0.012) 0.114(0.002) 0.357(0.006) 0.635(0.003) 0.195(0.004) 0.569(0.016) 0.127(0.003) 0.333(0.003)

Additional contribution estimates vs. memory size/exploration ratio result in FRL on SpaceInvaders and Pong. We
provide the contribution estimates result of our framework on SpaceInvaders and Pong in Fig. 11. The results from both
these games/environments provide the consistent observations where a small memory size/a well-moderated exploration
ratio results in a high contribution.

Note that our finding from Fig. 7 (left) is consistent with (Zhang & Sutton, 2017) who has a similar setting to ours, and
empirically shows that a memory size of 104 leads to better performance and faster improvement than 106.
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Figure 11. Contribution estimates ψt of nodes with different memory size (exploration ratio), smoothing (over 5 consecutive ψi,t) is
applied for plotting.
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C.8. Additional Equality Comparison

We provide additional equality comparison across different baselines and settings in Table 20 w.r.t. loss and Table 21
w.r.t. accuracy. In general a lower standard deviation suggests the performance among the nodes are more equitable (Li
et al., 2019). While qFFL seems to have lowest standard deviation overall, the difference (in terms of standard deviation)
among baselines (excluding Standalone) is quite small (all smaller or around 10−3).

Table 20. Standard deviation of the online loss and (standard error over 5 runs) over all nodes.
Feature Noise

MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 4.8e-05(6.1e-06) 4.7e-06(1.5e-07) 7.1e-05(1.3e-05) 6.1e-05(3.8e-06) 1.9e-05(1.2e-06)
qFFL 6.0e-06(4.2e-07) 3.7e-06(3.8e-07) 3.4e-08(2.1e-09) 7.6e-05(5.0e-06) 9.7e-07(1.0e-07)
FGFL 2.5e-04(3.3e-05) 6.6e-06(1.3e-07) 8.9e-04(6.4e-04) 2.9e-04(5.6e-05) 4.3e-06(1.5e-06)
GoG 1.9e-04(7.6e-06) 1.3e-05(1.3e-06) 1.2e-04(5.1e-06) 1.1e-04(3.7e-06) 1.2e-04(1.0e-05)

Standalone 4.4e-03(2.8e-04) 1.5e-04(1.1e-05) 2.1e-03(9.6e-05) 4.4e-03(1.4e-04) 6.6e-04(1.3e-05)

Ours 4.1e-04(4.3e-05) 1.4e-05(1.4e-06) 2.1e-04(8.9e-05) 1.2e-04(7.1e-06) 2.9e-05(5.2e-06)

Label Noise
MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 5.7e-05(2.0e-06) 4.3e-06(2.3e-07) 6.5e-05(1.1e-05) 6.5e-05(4.7e-06) 1.7e-05(1.3e-06)
qFFL 6.7e-06(5.1e-07) 5.3e-06(7.8e-07) 3.8e-08(4.5e-09) 8.4e-05(4.0e-06) 1.1e-06(7.2e-08)
FGFL 1.0e-04(1.1e-05) 8.7e-06(1.4e-06) 8.0e-04(5.2e-04) 6.9e-04(3.0e-05) 2.1e-06(2.9e-07)
GoG 1.3e-04(5.1e-06) 1.3e-05(3.9e-07) 1.4e-04(6.1e-06) 1.0e-04(2.0e-06) 1.8e-04(1.8e-05)

Standalone 2.4e-03(5.0e-05) 1.9e-04(7.0e-06) 1.9e-03(5.0e-05) 2.1e-03(8.4e-05) 4.9e-04(2.9e-05)

Ours 1.2e-04(2.4e-05) 1.8e-05(6.6e-07) 7.8e-04(1.5e-04) 1.1e-04(1.9e-05) 3.5e-05(1.1e-05)

Quantity
MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 6.0e-05(3.0e-06) 4.7e-06(5.5e-07) 7.1e-05(6.7e-06) 1.5e-04(1.2e-05) 2.1e-05(7.3e-07)
qFFL 4.7e-06(6.7e-07) 5.1e-06(7.7e-07) 1.6e-06(2.4e-07) 1.8e-04(9.6e-06) 1.1e-06(1.2e-07)
FGFL 2.9e-04(1.2e-05) 8.1e-06(9.3e-07) 5.6e-04(1.5e-04) 1.4e-04(1.1e-05) 2.3e-06(3.9e-07)
GoG 1.1e-04(1.4e-06) 1.5e-05(1.7e-06) 1.3e-04(1.0e-05) 1.3e-04(7.9e-06) 2.8e-04(3.9e-05)

Standalone 1.8e-03(7.9e-05) 1.9e-04(8.2e-06) 3.2e-03(1.7e-04) 1.2e-03(7.3e-05) 6.5e-04(1.6e-05)

Ours 3.9e-04(2.8e-05) 3.5e-05(5.8e-06) 9.3e-04(2.0e-04) 7.9e-05(1.2e-05) 3.4e-05(6.0e-06)

Missing Values
MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 4.7e-05(4.3e-06) 4.5e-06(3.3e-07) 6.1e-05(5.3e-06) 8.8e-05(7.5e-06) 2.1e-05(1.9e-06)
qFFL 3.9e-06(6.7e-07) 4.6e-06(2.8e-07) 3.6e-08(6.4e-09) 7.5e-05(5.2e-06) 9.8e-07(1.3e-07)
FGFL 4.0e-05(5.3e-06) 6.6e-06(6.8e-07) 1.3e-04(2.3e-05) 7.2e-04(3.3e-05) 1.9e-06(1.4e-07)
GoG 9.5e-05(3.2e-06) 1.3e-05(4.3e-07) 1.2e-04(5.0e-06) 1.1e-04(8.6e-06) 2.3e-04(2.7e-05)

Standalone 1.6e-03(6.1e-05) 1.6e-04(1.6e-05) 1.7e-03(1.1e-04) 1.5e-03(5.0e-05) 5.1e-04(2.3e-05)

Ours 5.9e-05(3.6e-06) 1.7e-05(2.0e-06) 5.0e-04(5.4e-05) 8.0e-05(7.0e-06) 1.4e-05(1.1e-06)

C.9. Additional comparison to the simple extension of FedAvg using fairness or equality constraints

For fairness, to the best of our knowledge, there does not seem to be a simple/straightforward or sensible extension to
achieve fairness (i.e., giving commensurately more rewards to the nodes with higher contributions). As for equality, we can
consider the following simple extension (by penalizing the deviation from equal performance in the objective function):

min
θ

J(θ) =
n∑

i=1

piL(θ;D⟩) s.t.

n∑
i=1

n∑
j=1

(
L(θ;D⟩)− L(θ;D|)

)2≤ α .
Intuitively, it minimizes the overall federated objective and constraints difference of the losses among different nodes within
some α to achieve equality of model performance among nodes. To make this optimization tractable, we transform the
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Table 21. Standard deviation of the online accuracy and (standard error over 5 runs) over all nodes.
Feature Noise

MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 2.3e-03(3.1e-04) 4.2e-04(3.7e-05) 1.1e-03(4.2e-04) 1.3e-03(1.9e-04) 1.7e-03(4.7e-05)
qFFL 7.2e-05(1.5e-05) 1.8e-05(5.0e-06) 1.5e-06(9.7e-07) 5.1e-07(1.7e-07) 1.3e-05(1.3e-05)
FGFL 1.0e-02(3.3e-03) 6.5e-04(8.0e-05) 1.0e-02(9.1e-03) 3.3e-02(6.8e-03) 5.9e-04(2.3e-04)
GoG 9.1e-03(8.3e-04) 1.7e-03(1.4e-04) 2.3e-03(5.0e-04) 4.8e-03(5.5e-04) 6.8e-03(4.4e-04)

Standalone 6.8e-02(3.8e-03) 1.0e-02(7.8e-04) 1.1e-02(1.3e-03) 2.0e-01(1.2e-02) 3.2e-02(6.3e-04)

Ours 2.2e-03(4.0e-04) 6.5e-04(1.5e-04) 5.8e-05(4.4e-05) 3.0e-04(1.9e-05) 1.4e-03(2.1e-04)

Label Noise
MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 2.3e-03(1.5e-04) 4.8e-04(7.6e-05) 1.6e-03(5.0e-04) 1.6e-03(2.3e-04) 1.7e-03(1.9e-04)
qFFL 5.9e-05(2.3e-05) 1.0e-05(6.3e-06) 4.6e-06(2.9e-06) 5.8e-07(1.2e-07) 5.8e-06(5.8e-06)
FGFL 3.1e-03(1.3e-03) 1.0e-03(3.7e-04) 2.4e-03(1.1e-03) 1.1e-01(1.3e-02) 5.6e-04(8.2e-05)
GoG 6.9e-03(6.4e-04) 2.4e-03(1.2e-04) 2.0e-03(3.7e-04) 6.5e-03(2.7e-04) 8.6e-03(3.2e-04)

Standalone 4.1e-02(1.1e-03) 1.2e-02(7.0e-04) 4.9e-03(1.8e-03) 1.4e-01(1.5e-02) 2.0e-02(1.8e-03)

Ours 7.5e-04(2.1e-04) 6.3e-04(1.4e-04) 3.4e-04(2.5e-04) 3.3e-04(5.6e-05) 1.9e-03(1.6e-04)

Quantity
MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 2.1e-03(2.9e-04) 3.4e-04(3.2e-05) 1.2e-03(1.5e-04) 2.5e-03(2.7e-04) 1.6e-03(1.1e-04)
qFFL 1.5e-04(4.4e-05) 9.8e-06(6.2e-06) 4.1e-06(2.5e-06) 1.3e-06(2.5e-07) 1.3e-05(1.3e-05)
FGFL 5.2e-03(6.4e-04) 1.2e-03(3.0e-04) 2.2e-03(1.0e-03) 6.1e-02(9.4e-03) 1.9e-04(4.2e-05)
GoG 5.7e-03(6.7e-04) 2.5e-03(1.6e-04) 1.5e-03(3.3e-04) 7.2e-03(6.5e-04) 8.7e-03(7.2e-04)

Standalone 4.3e-02(1.0e-03) 1.1e-02(1.0e-03) 1.6e-02(2.3e-03) 6.4e-02(3.7e-03) 2.4e-02(1.1e-03)

Ours 1.8e-03(3.4e-04) 1.2e-03(3.4e-04) 5.4e-05(1.2e-05) 1.8e-04(2.1e-05) 2.7e-03(3.6e-04)

Missing Values
MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 1.9e-03(2.5e-04) 4.1e-04(3.3e-05) 1.7e-03(1.4e-04) 2.8e-03(2.8e-04) 1.6e-03(1.8e-04)
qFFL 3.8e-05(4.8e-06) 3.7e-06(3.7e-06) 7.3e-06(2.5e-06) 5.4e-07(5.0e-08) 2.2e-05(2.2e-05)
FGFL 7.0e-04(1.8e-04) 5.5e-04(9.9e-05) 7.9e-04(3.6e-04) 1.3e-01(8.7e-03) 4.3e-04(7.4e-05)
GoG 4.4e-03(2.9e-04) 1.9e-03(6.2e-05) 1.1e-03(2.3e-04) 1.1e-02(1.9e-03) 5.2e-03(2.7e-04)

Standalone 2.7e-02(4.3e-04) 1.3e-02(7.4e-04) 8.8e-03(1.7e-03) 8.9e-02(5.3e-03) 2.1e-02(1.6e-03)

Ours 3.3e-04(3.9e-05) 5.8e-04(8.2e-05) 2.7e-04(2.5e-04) 2.6e-04(2.9e-05) 1.4e-03(2.2e-04)

constraint to a penalty term in the objective as follows,

J(θ) =

n∑
i=1

piL(θ;D⟩) + λ

n∑
i=1

n∑
j=1

(
L(θ;D⟩)− L(θ;D|)

)2
where λ balances the importance of model performance and equality. Based on this, the modified FedAvg algorithm
computes gradient update (for each node) as

n∑
i=1

pi∇θL(θ;D⟩) + 2λ

n∑
j=1

n∑
k=1

(
L(θ;D|)− L(θ;D∥)

)(
∇θL(θ;D|)−∇θL(θ;D∥)

)
.

We compare the fairness, equality, and performance result of this constraint-based approach (denoted by Cons in the
following tables) with our approach and other baselines. The parameter λ is selected/tuned over the range [0, 1] to be
λ = 0.3 here since it achieves some degree of equality while maintaining a relatively good performance.

From Table 22, Cons achieves very poor fairness compared to our approach since it does not have a fairness mechanism.
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Table 22. Fairness comparison. ρ(online loss, ζ) FOIL under the setting of feature noise. Higher ρ implies better fairness.

MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg -0.020(0.097) 0.137(0.049) 0.038(0.045) -0.033(0.038) 0.135(0.026)
qFFL -0.022(0.114) -0.109(0.140) 0.060(0.078) 0.036(0.126) -0.236(0.030)
FGFL 0.556(0.032) 0.313(0.081) 0.055(0.033) 0.476(0.057) 0.419(0.098)
GoG 0.551(0.023) 0.130(0.067) 0.201(0.021) 0.512(0.027) 0.189(0.102)
Cons 0.101(0.103) -0.085(0.136) 0.115(0.092) 0.033(0.048) 0.380(0.072)

Ours 0.647(0.018) 0.400(0.069) 0.378(0.055) 0.676(0.018) 0.557(0.060)

Table 23. Average of online accuracy (standard error) over all nodes under the setting of feature noise. For ELECTRICITY, we measure
MAPE, so lower is better.

MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 0.483(0.019) 0.166(0.011) 0.499(0.046) 1.408(0.081) 0.255(0.004)
qFFL 0.101(0.011) 0.100(0.004) 0.281(0.079) 1.413(0.055) 0.101(0.011)
FGFL 0.485(0.018) 0.169(0.010) 0.496(0.056) 1.571(0.090) 0.154(0.009)
GoG 0.572(0.015) 0.193(0.006) 0.556(0.016) 1.394(0.032) 0.288(0.004)

Standalone 0.481(0.013) 0.153(0.004) 0.540(0.014) 1.581(0.083) 0.202(0.003)
Cons 0.410(0.005) 0.154(0.012) 0.531(0.011) 2.314(0.091) 0.201(0.008)

Ours 0.611(0.009) 0.195(0.007) 0.581(0.014) 0.139(0.002) 0.302(0.005)

Table 24. Standard deviation of the online loss and (standard error over 5 runs) over all nodes. A lower value implies better equality.

MNIST CIFAR-10 HFT ELECTRICITY PATH

FedAvg 4.8e-05(6.1e-06) 4.7e-06(1.5e-07) 7.1e-05(1.3e-05) 6.1e-05(3.8e-06) 1.9e-05(1.2e-06)
qFFL 6.0e-06(4.2e-07) 3.7e-06(3.8e-07) 3.4e-08(2.1e-09) 7.6e-05(5.0e-06) 9.7e-07(1.0e-07)
FGFL 2.5e-04(3.3e-05) 6.6e-06(1.3e-07) 8.9e-04(6.4e-04) 2.9e-04(5.6e-05) 4.3e-06(1.5e-06)
GoG 1.9e-04(7.6e-06) 1.3e-05(1.3e-06) 1.2e-04(5.1e-06) 1.1e-04(3.7e-06) 1.2e-04(1.0e-05)

Standalone 4.4e-03(2.8e-04) 1.5e-04(1.1e-05) 2.1e-03(9.6e-05) 4.4e-03(1.4e-04) 6.6e-04(1.3e-05)
Cons 3.8e-05(3.1e-06) 2.2e-06(3.3e-07) 5.7e-05(7.0e-06) 4.7e-04(1.1e-04) 1.3e-05(1.3e-06)

Ours 4.1e-04(4.3e-05) 1.4e-05(1.4e-06) 2.1e-04(8.9e-05) 1.2e-04(7.1e-06) 2.9e-05(5.2e-06)

From Table 23, Cons sacrifice performance by a lot (compared to FedAvg) due to its additional constraint in the objective
function.

From Table 24, Cons achieves slightly better equality than our approach (better than ours in MNIST, CIFAR-10, HFT, worse
than or similar to ours in ELECTRICITY and PATH). However, q-FFL outperforms Cons significantly in preserving equality.
Additionally, according to the result in Tables A and B, Cons sacrifices the model performance considerably to achieve the
marginal improvement of equality and achieves low fairness due to the lack of a fairness mechanism.

In conclusion, this simple extension can achieve equality reasonably well but unfortunately sacrifices two other important
aspects, fairness and model performance.
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C.10. Empirical Fairness vs. Equality Trade-Off

Tables 25 and 26 show the empirical trade-off between fairness equality. However, Table 25 calculates the standard deviation
w.r.t. final test accuracy while Table 26 calculates the standard deviation w.r.t. online test accuracy. The fairness results in
both tables are the same. Therefore, Table 25 shows the equality w.r.t. the asymptotic model performance, instead of whether
the models converge with the equal asymptotic complexities as guaranteed by Proposition 3 and verified in Tables 3 and 26.

Table 25. Empirical trade-off between fairness and equality via β: Pearson coefficient ρ between ζ and online loss (standard deviation of
final accuracy) under the setting of label noise. High ρ indicates fairness while lower standard deviation indicates better equality.

MNIST CIFAR-10 HFT ELECTRICITY PATH

1/350 0.713(1.05e-02) 0.555(1.35e-02) 0.357(3.01e-04) 0.279(3.06e-03) 0.486(1.98e-02)
1/150 0.678(2.2e-03) 0.455(3.2e-03) 0.347(3.4e-05) 0.376(9.85e-04) 0.469(2.27e-02)
1/100 0.657(3.13e-03) 0.361(5.43e-03) 0.357(8.45e-05) 0.323(5.71e-04) 0.316(1.30e-02)
1/50 0.427(3.56e-03) 0.182(3.14e-03) 0.374(0) 0.268(5.23e-04) 0.045(1.51e-02)
1/20 0.075(6.57e-03) 0.173(2.58e-03) 0.154(0) 0.133(5.28e-04) 0.033(1.04e-02)
1/10 0.015(1.86e-03) 0.048(4.07e-03) -0.027(0) 0.214(6.02e-04) 0.045(6.43e-03)

1 -0.180(2.19e-03) -0.033(5.98e-03) -0.153(0) -0.048(5.92e-04) -0.015(1.04e-02)
10 -0.192(2.44e-03) 0.109(4.58e-03) -0.222(0) 0.148(5.67e-04) -0.096(7.37e-03)

1000 -0.158(2.28e-03) -0.019(6.08e-03) -0.209(0) -0.006(5.94e-04) -0.155(8.88e-03)

Table 26. Empirical trade-off between fairness and equality via β: Pearson coefficient ρ between ζ and online loss (standard deviation of
online accuracy) under the setting of label noise. High ρ indicates fairness while lower standard deviation indicates better equality.

MNIST CIFAR-10 HFT ELECTRICITY PATH

1/350 0.713(1.75e-03) 0.555(2.62e-03) 0.357(8.03e-04) 0.279(1.34e-03) 0.486(4.35e-03)
1/150 0.678(7.5e-04) 0.455(6.3e-04) 0.347(3.4e-04) 0.376(3.30e-04) 0.469(1.85e-03)
1/100 0.657(5.25e-04) 0.361(4.53e-04) 0.357(9.55e-04) 0.323(1.86e-04) 0.316(1.21e-03)
1/50 0.427(1.94e-04) 0.182(2.33e-04) 0.374(2.10e-05) 0.268(1.11e-04) 0.045(9.74e-04)
1/20 0.075(2.33e-04) 0.173(2.84e-04) 0.154(3.34e-04) 0.133(8.40e-05) 0.033(1.27e-03)
1/10 0.015(3.04e-04) 0.048(2.89e-04) -0.027(6.77e-05) 0.214(8.66e-05) 0.045(1.09e-03)

1 -0.180(2.98e-04) -0.033(3.06e-04) -0.153(1.73e-04) -0.048(6.67e-05) -0.015(9.24e-04)
10 -0.192(2.45e-04) 0.109(2.96e-04) -0.222(4.76e-06) 0.148(7.46e-05) -0.096(1.03e-03)

1000 -0.158(2.52e-04) -0.019(2.58e-04) -0.209(1.71e-05) -0.006(8.07e-05) -0.155(9.60e-04)

C.11. Additional Results on Poor Fairness Performance from Inaccurate Contribution Estimates

In this experiment, we have N = 10 nodes on MNIST (each with uniformly randomly selected 600 images without noise)
using the same CNN model as before. There is no data partitioning to simulate the online setting. In each iteration t, 20%
nodes are randomly sampled with probabilities directly proportional to ψt, so their probabilities are dynamically updated
with ψt. The selected nodes synchronize their local models with the latest model (as their incentives), conduct training and
upload the updates. Importantly, ψt for only the selected nodes are evaluated and updated because the coordinator receives
no updates from the other nodes. We plot ψt and the validation accuracy in Fig. 12.

Since the data are i.i.d. without noise, the true contributions ψ∗ are statistically equal. However, we observe an increasing
separation in the contribution estimates ψt. For instance, ψ4,t (red line for node 4) is larger than ψ9,t (yellow line for
node 9) in the beginning, and the difference in ψ4,t, ψ9,t is increasing over iterations. As the true contributions should be
approximately equal, the fair incentives should result in approximately equal model performance. However, the inaccuracy
ψt affects the incentives as in Fig. 12 (right). This further validates our approach that decouples contribution evaluation
and incentive realization and first ensures the accuracy in the contribution estimates before constructing and realizing the
incentives.
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Figure 12. Contribution estimates (left) and validation accuracy (right) vs. iterations t under the paradigm which concurrently performs
contribution evaluation and incentive realization (updating the sampling probabilities).
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D. Proofs and Derivations
D.1. Shapley Value Approximation

A linear estimation to Shapley value. The contribution of node i in iteration t is computed as ϕi,t :=

N−1
∑

S⊆[N ]\{i}
(
N−1
|S|

)−1
U(S ∪ {i}) − U(S). Here we focus on the exponential complexity that arises due to the

summation i.e.,
∑

S⊆[N ]\{i}. This summation enumerates all 2N−1 coalitions that do not contain i. This complexity
becomes infeasible even with a medium number of nodes N so we need to provide an efficient estimation. For notational
simplicity, we omit the subscript t since we are referring to a particular iteration t.

Denote ∆i,S := U(S ∪ {i})−U(S). We use an unbiased estimator with time complexity linear in N as follows:

ϕ̂i := N−1 ∑N−1
m=0 ∆i,Sm

, Sm ∼ {S}S⊆[N ]\{i}:|S|=m (3)

where Sm is a uniformly randomly sampled coalition of size m. The Shapley value computes an average of the expected
marginal contribution that i makes to a coalition Sm of size m. The estimator ϕ̂i computes an average of the marginal
contribution that i makes to a randomly selected coalition Sm of size m.

Proposition 4 (Unbiased Estimator for SV). Assume the i’s marginal contribution to a random coalition of size m, ∆i,Sm

has mean and variance µm, σ
2
m, then ϕ̂i is an unbiased estimator for ϕi with variance Var(ϕ̂i) =

∑N−1
m=0(σm/N)2.

The assumption placed on ∆i,Sm (Fatima et al., 2008; Rozemberczki & Sarkar, 2021) states that the average effect node i
makes depends on the size of coalition that i joins. In our scenario, it means the relative value of i’s gradient in improving the
coordinator model depends on how many others gradients have already been applied to the coordinator model. Intuitively, if
many other nodes’ uploaded gradients have already been applied to the coordinator model, the relative value of i’s gradient
in improving the coordinator model further may be limited. On the other hand, if no gradient has been applied to the
coordinator model and applying i’s gradient improves the coordinator model, then node i can be viewed as making valuable
contributions.

D.2. Proof of Proposition 1, Normality Test for ϕ, and Empirical Verification on Independence of ϕ

Proof of Proposition 1. With a normality assumption (discussed below): {ϕt}t=1,...,ts are i.i.d. samples from an N -
dimensional multivariate Gaussian N (µts ,Σ), the statistic T2 follows Hotelling’s T -squared distribution T 2

N ,2(ts−1)

(Hotelling, 1931) when the null hypothesis (i.e., µts = µts′
) is true (Hotelling, 1931).

Therefore, we can reject the null hypothesis with at most α type-1 error if T2 ≥ T 2
1−α,N ,2(ts−1), the 1− α quantile for the

distribution T 2
N ,2(ts−1).

Remark 1. Contrast the hypothesis testing in Proposition 1 with how hypothesis testing is more commonly used where we
tend to reject the null hypothesis. For instance, in testing whether the parameters ϑ in a linear regression are 0, we usually
expect the null hypothesis h0 : ϑ = 0 to be rejected, so the p-value and the corresponding significance level α are often
small (e.g., set to 0.05) for rejecting h0. However, in our formulation, we expect h0,ts to hold (not to be rejected) over more
iterations, so we set larger α values (e.g., 0.5).

On the normality assumption. For notational simplicity, we suppress the subscript t in this theoretical analysis since we
are focusing on an arbitrary iteration t.

Define the marginal contribution from node i to a subset/coalition S ⊆ [N ] \ {i} as MCi,S := U(S ∪ {i})−U(S). Note
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that the linearity of inner product as U is useful in decomposing terms to compute the marginal contribution as follows:

MCi,S ≜
〈
∆θS∪{i} ,∆θ[N ]

〉
−
〈
∆θS ,∆θ[N ]

〉
=

〈 ∑
i′∈S∪{i}

pi′ ∆θi′ ,
∑

i′∈[N ]

pi′ ∆θi′

〉
−

〈∑
i′∈S

pi′ ∆θi′ ,
∑

i′∈[N ]

pi′ ∆θi′

〉

=

〈
pi ∆θi ,

∑
i′∈[N ]

pi′ ∆θi′

〉

= pi
∑

i′∈[N ]

pi′ ⟨∆θi ,∆θi′⟩ . (4)

Next, we focus on arguing for the normality of ⟨∆θi,∆θi′⟩ since the factors pi, pi′ are constants and the summation does not
affect the normality. Recall ∆θi is an empirical mean estimate via a randomly selected mini-batch Bi of size B as follows:

∆θi ≜
1

B

∑
(x,y)∈Bi

∆θi,(x,y)

where ∆θi,(x,y) denotes the single-sample gradient/model update w.r.t. input data (x, y) on the selected loss function and
the model from the previous iteration (omitted for notational simplicity). Then,

⟨∆θi,∆θi′⟩ =
1

B2

∑
(x,y)∈Bi ,
(x′,y′)∈Bi′

⟨∆θi,(x,y) ,∆θi′,(x′,y′)⟩

is an empirical mean estimate dependent on the joint distribution of (x, y), (x′, y′) (since the loss function is fixed and the
model parameter from the previous iteration is also fixed). Note that in the case of i = i′, (x, y) = (x′, y′), but ⟨∆θi,∆θi′⟩
is an empirical mean estimate nonetheless.

Consequently, we can apply the central limit theorem so that as B → ∞, ⟨∆θi,∆θi′⟩ follows a normal distribution.
Since the linear scaling and summation in Eq. (4) does not affect normality, MCi,S also follows a normal distribution.
Subsequently, since ϕi is a linear combination of MCi,S with fixed constants, ϕi also follows a normal distribution.

Regarding the independence assumption over iterations, since each ϕi,t is calculated using the model updates from that
iteration, it is independent of previous ϕi,t′<t conditioned on the model parameter θt−1. Regarding the assumption on
identical distribution, we can view ϕi,t in each t is from some distribution that depends on node i’s true contribution.

Normality test and some implementation details. In experiments (i.e., implementation), we use cosine similarity
cos-sim(a, b) := ⟨a, b⟩/(∥a∥ × ∥b∥) (instead of inner product) for U as the utility function in Eq. (1) for the following
practical considerations: (i) cosine similarity empirically performs well as the additional normalization (compared to only
inner product) can be used to mitigate the vanishing/exploding gradient/model update issue (Xu et al., 2021a); (ii) the
normalization in cosine similarity makes the analytic argument difficult (see below), but in practice this small linear scaling
does not seem to violate normality, verified below.

In addition, since in practice we cannot have B → ∞, we perform the Henze-Zirkler test (Henze & Zirkler, 1990) on
the normality of {ϕt} in Table 27. The null hypothesis for this test is that {ϕt}t=1,...,ts are from a multivariate Gaussian
distribution, and we reject the null hypothesis if the p-value is less than 0.05. We take the samples from a fixed window size
of iterations as {ϕt}t=ts,...,ts+τ where τ = 50 and conduct multiple tests from a single trial and additionally perform 10
random trials. Each experiment is conducted on a batch size of 32, and other settings are the same as Sec. 2 with label noise.
We perform multiple random trials and show the percentage of trials of not rejecting the null hypothesis in Table 27. The
values in the brackets are the average p-values (all above 0.05).

Lastly we describe the difficulties in providing an analytical argument for normality if we use cosine similarity as U.
Specifically, the difficulty stems from the division by ∥a∥∥b∥ where a = ∆θS , b = ∆θ[N ]. We focus on ∆θS . Suppose
∆θS ∼ N (µ,Σ) for some unknown µ,Σ. If Σ = σ2I (i.e., isotropic), then ∥∆θi,t∥ follows a noncentral chi distribution,
which seems to suggest the overall expression (from cosine similarity) ⟨∆θS ,∆θ[N ]⟩/(∥∆θS∥∥∆θ[N ]∥) may not be
normal even if the numerator is normal (as discussed above w.r.t. inner product). Furthermore, E[∆θS ] has a complicated
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Table 27. The percentage of random trials of not rejecting the null hypothesis for the Henze-Zirkler test on the normality of {ϕt}t=1,...,ts .
The numbers in the brackets are the average p-values.

Label Noise Feature Noise

MNIST 0.949 (0.171) 0.984 (0.194)
CIFAR-10 0.930 (0.115) 0.924 (0.114)

expression (Mathai & Provost, 1992, Theorem 3.2b.5) which can further suggest the difficulties in deriving an analytic
expression.

Empirical verification on independence of ϕ from different iterations. An additional verification on the independence
of ϕi,t i.e. the contribution estimate of node i in iteration t is provided. The experiment setting can be found in Sec. 4.2.
We compute the autocorrelation function (ACF) for the series of contribution estimates of a specific node i {ϕi,t}t=0,...,Tα

.
The ACF gives the correlation between the series and a k step lag of the series. If a series has no significant non-zero
autocorrelation value in all k ≥ 1, it means that every step of the series is uncorrelated to each other, which can serve as an
empirical evidence of independence. Fig. 13 presents the ACF plot for different dataset under the setting of label noise. And
most autocorrelation values lie within the 95% confidence interval from 0, which means that no significant correlation is
found in all the series. Even though some series have non-zero values at lag k = 1, the correlation decreases to zero quickly
with a larger lag (k ≥ 2). This result verifies the rationality of our assumption by empirically showing that the contribution
estimates for a specific node from different iterations are uncorrelated (empirically independent) in general.
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Figure 13. Autocorrelation function (ACF) plot with different lags of the series {ϕ29,t}t=0,...,Tα , i.e., the contribution estimates series of
node 29 (the least contribution node). If the autocorrelation value lies within the 95% confidence interval (blue shadow area), it means
that we do not have enough evidence to conclude that the autocorrelation value is non-zero (no significant correlation is found in the
series) for a specific lag.

D.3. Proof of Proposition 2

We first derive the closed-form expression for the expected staleness Γi and then show the proof of Proposition 2.

Derivation of expected staleness Γi. We substitute P[stale for γ iterations] = (1−qi)γ and apply the formula for geometric
series. The derivation consists of two parts: (a) Show that Γi is a convergent series, and (b) determine the value it converges
to.

(a) By ratio test, we require

lim
n→∞

(1− qi)
n+ 1

n
< 1

which is satisfied if qi < 1.

(b) Next, we determine what Γi converges to. Observe the following:

∞∑
n=0

xnn = x

∞∑
n=0

xn−1n = x
d

dx

∞∑
n=0

xn = x
d

dx
1

1− x
=

x

(1− x)2
.

Substituting x = (1− qi) completes the derivation.
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Proof of Proposition 2. Firstly, note that the comparison between Ci and Ci′ boils down to that between the expected
staleness Γi and Γi′ since Ci and Ci′ share the other term of O(1/ϵ). Subsequently, we use the derived the closed-form
expression for Γi as above.

Symmetry follows directly. Strict desirability and strict monotonicity follow by observing Γi is monotonic in ψi,Tα
: a larger

ψi,Tα implies a smaller Γi.

Before we describe and interpret when the conditions Proposition 2 are satisfied (next), we first note that we exclude the
null player property as we assume positive contributions from the nodes that represent companies/organizations and are
unlikely to have zero contributions (e.g., free-riders) due to their reputations being at stake. Empirically, we observe ψi,t to
be generally positive (Fig. 10 in Appendix C).

We can view each iteration t as a game of N nodes and the ϕi,t is node i’s SV in this game, so ψi,t is the average of
node i’s SV in t such games and intuitively represents node i’s aggregate contributions. In particular, we can define
Ut(S) := U(∆θS,t,∆θ[N ],t) where the dependence on t is from the ∆θS,t. With this formulation, we have ϕi,t ≜ ϕi(Ut)
and can subsequently exploit the linearity in SV:

ϕi(U+U′) = ϕi(U) + ϕi(U
′) .

First, we focus on the game defined by Ut (i.e., in iteration t) and analyze the symmetry, strict desirability and strict
monotonicity guaranteed by the original SV w.r.t. ϕi(Ut):

1. symmetry (Shapley, 1953): ∀i, i′, (∀S ⊆ [N ] \ {i, i′},Ut(S ∪ {i}) = Ut(S ∪ {i′})) =⇒ ϕi(Ut) = ϕ′i(Ut).

2. strict desirability (Bahir et al., 1966): ∀i, i′, (∀S ⊆ [N ] \ {i, i′},Ut(S ∪ {i}) ≥ Ut(S ∪ {i′})) ∧ (∃P ⊆ [N ] \
{i, i′},Ut(P ∪ {i}) > Ut(P ∪ {i′})) =⇒ ϕi(Ut) > ϕ′i(Ut).

3. strict monotonicity (Young, 1985): for two Ut,U
′
t, (∀S ⊆ [N ] \ {i},Ut(S ∪ {i}) ≥ U′

t(S ∪ {i})) ∧ (∃P ⊆
[N ] \ {i},Ut(S ∪ {i}) > U′

t(P ∪ {i})) =⇒ ϕi(Ut) > ϕi(U
′
t).

Then by exploiting the linearity property, we can derive the corresponding sufficient conditions in Proposition 2 in a
straightforward way: adding and taking average of all the Ut and ϕi,t up to t = Tα to obtain ψi,Tα .

This affords us the following simple, albeit somewhat restrictive interpretations. For symmetry, if two nodes i, i′ contribute
to all possible S ⊆ [N ] \ {i, i′} equally over all iterations up to Tα (so that ϕi,t = ϕi′,t), then their contribution estimates
are equal, ψi,Tα

= ψi′,Tα
. The interpretation for strict desirability is similar by replacing the equality relationship with a

greater than relationship.

The interpretation for strict monotonicity is only slightly different as it concerns with two different Ut,U
′
t: if a node i does

something (e.g., makes a better contribution) in each iteration t to improve its contribution (i.e., ϕi,t := ϕi(Ut) > ϕ′i,t :=
ϕi(U

′
t)), then the corresponding overall contribution estimate is also improved (i.e., ψi,Tα

> ψ′
i,Tα

).

These interpretations, while theoretically straightforward, are fairly restrictive due to the two for all clauses (∀S ⊆ [N ]\{i, i′}
and ∀t ≤ Tα). In fact, for the sufficient conditions in Proposition 2, there is some leeway.

To illustrate, node i contributes more in some iteration t while node i′ contributes more in some other iteration t′, as
long as the difference in their contributions ‘balances out’ when averaged over Tα iterations, the symmetry property is
applicable in Proposition 2. Similar interpretations are available for the strict desirability and strict monotonicity. Intuitively,
Proposition 2 says to receive a good incentive/low convergence complexity, a node needs to do well/make high contributions
in aggregate/overall (over Tα iterations) and one such (restrictive) possibility is the node makes a high contribution in all the
iterations.

Comparison with FGFL (Xu et al., 2021a). Contrast this with (Xu et al., 2021a, Theorem 2), our result explicitly
guarantees fair model convergence (to global optimum), empirically compared in Fig. 5. Their result provides fairness
restricted to each iteration t instead of overall model performance or convergence. Furthermore, their fairness result requires
additional regularity conditions on the models and the objective function, which may be difficult to verify w.r.t. complicated
models such as deep neural networks.
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D.4. Honest Nodes Assumption and Its Relaxation

Honest nodes assumption. Honest nodes are assumed not to deviate from the proposed algorithm. In our context, honest
nodes do not have strategic behavior that exploits our algorithm. In contrast, a dishonest node may try to exploit the algorithm
by uploading contributions honestly in the exploration phase (when their contributions are evaluated) and deliberately
lowering contributions in the exploitation phase (e.g., via uploading random/zero values). The motivation for such dishonest
behaviors is that once the exploration phase is over, the contributions of the nodes are no longer evaluated and the nodes are
rewarded subsequently according to the latest contribution estimates (which are fixed after the exploration phase). This
assumption is plausible for cross-silo FL where each node represents a company or organisation (e.g., hospitals) where the
dishonest and exploitative behavior can damage their reputations, especially if they are in a long-term collaboration with
several partners. Nevertheless, we provide some additional discussion by relaxing this assumption and argue that honesty is
the optimal strategy under some mild conditions.

Proof of optimal strategy for nodes and empirical verification. Assume that the utility function U in Sec. 2 is a
submodular function. For example, when using the test accuracy or negative log-likelihood as the utility function, the
submodularity of the utility function means that as the size of coalition increases the improvement in the performance of an
ML model will be smaller and smaller (Wang et al., 2021b). Denote node is, that potentially has positive contribution, is
the dishonest node that tries to predict the stopping iteration of contribution evaluation as Tpred. Denote the contribution
estimate for node i in iteration t without the exploitative behavior of stopping contributions as ϕni,t, and the contribution
estimate for with such exploitative behavior for is stopping contributing after its predicted iteration as ϕsi,t. Denote
Tnext = min(Tα, Tpred + 1) and Cs

is,Tnext
(ρsis,Tnext

) as the convergence complexity (selection probability) for is in the setting
where the node is stop contributing after Tpred and the coordinator stops the contribution evaluation in Tnext. Similarly,
Cn

is,Tnext
(ρnis,Tnext

) is for is without stopping contributions (similar notations for other quantities under these two settings:
stop contributing vs. not stop contributing).

Proposition 5 (Optimal Strategy for Nodes). With a submodular utility function U and suppose ϕnis,t > 0 for all t > 0.
Then, E[ρsis,Tnext

] ≤ E[ρnis,Tnext
] and E[Cs

is,Tnext
] ≥ E[Cn

is,Tnext
]. Equality holds when

∑
Tα,Tpred:Tα>Tpred

p(Tα, Tpred) = 0.

Proof of Proposition 5. Since utility function U is a submodular function, i.e., for every S1,S2 ⊆ [N ] with S1 ⊆ S2
and every i ∈ [N ] \ S2, U(S1 ∪ i) − U(S1) ≥ U(S2 ∪ i) − U(S2). Denote the contribution estimate for non-stop
contribution setting as ψn

t = {ψn
i,t}i∈[N ] and the contribution estimate for the setting with node is stopping to contribute

after its predicted iteration as ψs
t = {ψs

i,t}i∈[N ]. For node is, we assume that it is a normally behaved node with positive
contribution in the non-stop contribution setting i.e., ϕnis,t > 0, while it makes no contribution in the stopping setting after
Tpred, i.e., ϕsis,t = 0 for all t > Tpred. In our framework, the node can simply upload gradient with all 0 elements to simulate
a 0 contribution node. Denote Tnext := min(Tα, Tpred + 1). Then, when i ∈ [N ] \ {is},

ETα,Tpred

[
ψs
i,Tnext

]
= ETα,Tpred

[
1

Tnext

Tnext∑
t=1

ϕsi,t

]

=
∑

Tα,Tpred:Tα≤Tpred

p(Tα, Tpred)
1

Tα

Tα∑
t=1

ϕsi,t +
∑

Tα,Tpred:Tα>Tpred

p(Tα, Tpred)
1

Tpred + 1

Tpred+1∑
t=1

ϕsi,t

=
∑

Tα,Tpred:Tα≤Tpred

p(Tα, Tpred)
1

Tα

Tα∑
t=1

ϕni,t +
∑

Tα,Tpred:Tα>Tpred

p(Tα, Tpred)
1

Tpred + 1

ϕsi,Tpred+1 +

Tpred∑
t=1

ϕni,t


≥

∑
Tα,Tpred

p(Tα, Tpred)
1

Tnext

Tnext∑
t=1

ϕni,t

= ETα,Tpred

[
ψn
i,Tnext

]
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where the inequality holds because when Tpred < Tα and t = Tpred + 1,

ϕsi,t =
1

N

∑
Ss⊆[N ]\{i}

(
N − 1

|Ss|

)−1

U(Ss ∪ {i})−U(Ss)

=
1

N

∑
Ss⊆[N ]\{i}

(
N − 1

|Ss|

)−1

U(Ss \ {is} ∪ {i})−U(Ss \ {is})

=
1

N

∑
Sn⊆[N ]\{i}

(
N − 1

|Sn|

)−1

U(Sn \ {is} ∪ {i})−U(Sn \ {is})

≥ 1

N

∑
Sn⊆[N ]\{i}

(
N − 1

|Sn|

)−1

U(Sn ∪ {i})−U(Sn)

= ϕni,t .

For node is,

ETα,Tpred

[
ψs
is,Tnext

]
= ETα,Tpred

[
1

Tα

Tα∑
t=1

ϕsis,t

]

=
∑

Tα,Tpred:Tα≤Tpred

p(Tα, Tpred)
1

Tα

Tα∑
t=1

ϕsis,t +
∑

Tα,Tpred:Tα>Tpred

p(Tα, Tpred)
1

Tpred + 1

Tpred+1∑
t=1

ϕsis,t

=
∑

Tα,Tpred:Tα≤Tpred

p(Tα, Tpred)
1

Tα

Tα∑
t=1

ϕnis,t +
∑

Tα,Tpred:Tα>Tpred

p(Tα, Tpred)
1

Tpred + 1

ϕsis,Tpred+1 +

Tpred∑
t=1

ϕnis,t


≤ ETα,Tpred

[
1

Tnext

Tnext∑
t=1

ϕnis,t

]
= ETα,Tpred

[
ψn
is,Tnext

]
where the inequality holds due to ϕnis,Tpred+1 > ϕsis,Tpred+1 = 0 and the equality only holds when∑

Tα,Tpred:Tα>Tpred
p(Tα, Tpred) = 0. It is impractical for the predictive model to guarantee this condition to hold. From the

two inequalities above, E[ρsis,Tnext
] ≤ E[ρnis,Tnext

] and E[Cs
is,Tnext

] ≥ E[Cn
is,Tnext

] which follow similar derivations. Equality
holds iff

∑
Tα,Tpred:Tα>Tpred

p(Tα, Tpred) = 0.

Proposition 5 states that, for a node that can give positive contribution to the collaboration, the optimal strategy for it to get
the best reward, i.e. lowest convergence complexity if the stopping iteration is Tnext, is to contribute all the time until the
training ends. Though we only consider the reward when Tnext is the stopping iteration due to the difficulty of analysis on
the following iterations, we empirically verify the effectiveness of the result on the reward of the ground truth stopping
iteration Tα.

Next, we empirically verify this by comparing the rewards (i.e., model performance via online loss) for nodes with different
behaviors. The experiment setting is exactly the same as that in Sec. 4.2 except that we choose the node i∗ that has maximum
contribution estimate under the non-stop contribution setting as the node that tries to predict the stopping iteration of the
contribution evaluation and stop contributing after that.

We consider two different prediction strategies used by i∗ on the stopping iteration: (a) Random guess (RANDOM):
P (Tpred = t|Tα) = 1/T ∗ for t = 0, . . . , T ∗. (b) Poisson predication (POISSON): P (Tpred = t|Tα) = T t

α exp(−Tα)/t! .
We also include the honest baseline, (c) Non-stop contribution (NONSTOP): contribute all the time until the end of the
training. The result for two utility functions is presented in the experiment: (A) negative loss on test set as utility function,
i.e., the utility function U(S) in iteration t is computed as the negative loss on a randomly sampled test set Dtest using
the model θS,t, i.e., θt−1 updated only using the data from coalition S, the detail can be found in (Song et al., 2019). (B)
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inner product utility function in Sec. 2. The negative loss utility function usually satisfies the submodularity assumption in
Proposition 5 and the inner product utility function may not satisfy the assumption. From Tables 28 and 29, the node i∗ can
achieve the best online loss when it contributes all the time in both cases.

Table 28. Online loss (standard error for 5 runs, not applicable for for NONSTOP, since we fix the randomness including using same
weight initialization for the model θ0 and the random seed for mini-batch and node selection during training) for the node i∗ under
different types of prediction and stopping patterns in the negative loss utility function setting.

Label Noise Feature Noise

MNIST CIFAR-10 MNIST CIFAR-10

RANDOM 0.05429(5.2e-04) 0.02685(3.6e-05) 0.05477(4.8e-04) 0.02684(3.6e-05)
POISSON 0.05660(1.1e-03) 0.02684(4.3e-05) 0.05514(8.8e-04) 0.02681(4.4e-05)

NONSTOP 0.05247 (N.A.) 0.02674 (N.A.) 0.05349 (N.A.) 0.02671 (N.A.)

Table 29. Online loss (standard error for 5 runs, not applicable for NONSTOP, since we fix the randomness including using same weight
initialization for the model θ0 and the random seed for mini-batch and node selection during training) for the node i∗ under different types
of prediction and stopping patterns in the inner product utility function setting.

Label Noise Feature Noise

MNIST CIFAR-10 MNIST CIFAR-10

RANDOM 0.05524(1.1e-04) 0.02696(4.1e-06) 0.05979(8.7e-05) 0.02743(7.1e-07)
POISSON 0.05554(1.1e-04) 0.02697(3.6e-06) 0.06003(1.2e-05) 0.02743(1.6e-07)

NONSTOP 0.05450 (N.A.) 0.02693 (N.A.) 0.05898 (N.A.) 0.02743 (N.A.)

D.5. Proof of Proposition 3

Proof of Proposition 3. First, by definition of Ci, Γi∗ = O(1/ϵ) =⇒ Ci∗ = O(1/ϵ). Next, by Proposition 2, we know
that ∀i ∈ [N ] Γi ≤ Γi∗ . So, ∀i ∈ [N ] Ci ≤ Ci∗ = O(1/ϵ).

Selection of the equalizing coefficient β. We write ψi = ψi,Tα to omit the notation of Tα for brevity.

Lemma 1 (Finding the Range for β). Suppose ∀i,M1 ≤ ψi ≤M2 and we want to select a β so that for some r2 ≥ r1 > 0,
r1 ≤ ψi/(1/Γi) ≤ r2. Then a suitable range for β to satisfy this can be found efficiently using the bisection method.

Proof of Lemma 1. Using the monotonicity of Eq. (2) we have

exp(ψi/β)

N exp(M2/β)
≤ ϱi ≤

exp(ψi/β)

N exp(M1/β)

which can be simplified to
1

N
exp

(
ψi −M2

β

)
≤ ϱi ≤

1

N
exp

(
ψi −M1

β

)
that leads to (

1− 1

N
exp

(
ψi −M1

β

))k

≤ (1− ϱi)k ≤
(
1− 1

N
exp

(
ψi −M2

β

))k

.

Substituting this inequality into

Γi ≜
(1− ϱi)k

[1− ((1− ϱi)k)]2
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gives (
1− 1

N
exp

(
ψi −M1

β

))k

[
1−

(
1− 1

N
exp

(
ψi −M1

β

))k
]2 ≤ Γi ≤

(
1− 1

N
exp

(
ψi −M2

β

))k

[
1−

(
1− 1

N
exp

(
ψi −M2

β

))k
]2

because Γi is monotonically increasing w.r.t. (1 − ϱi)k for 0 ≤ (1 − ϱi)k ≤ 1 where we have used the fact that ϱi is a
probability.

From this expression, we can derive the following inequalities on Γi/ψi by using M1 ≤ ψi ≤M2 as follows:

M1 ×

(
1− 1

N
exp

(
ψi −M1

β

))k

[
1−

(
1− 1

N
exp

(
ψi −M1

β

))k
]2 ≤ Γiψi ≤M2 ×

(
1− 1

N
exp

(
ψi −M2

β

))k

[
1−

(
1− 1

N
exp

(
ψi −M2

β

))k
]2 .

Observe the expression (
1− 1

N
exp

(
ψi −M1

β

))k

[
1−

(
1− 1

N
exp

(
ψi −M1

β

))k
]2

is monotonically decreasing w.r.t. ψi, so using M1 ≤ ψi ≤M2 again gives

M1 ×

(
1− 1

N
exp

(
M2 −M1

β

))k

[
1−

(
1− 1

N
exp

(
M2 −M1

β

))k
]2 ≤M1 ×

(
1− 1

N
exp

(
ψi −M1

β

))k

[
1−

(
1− 1

N
exp

(
ψi −M1

β

))k
]2 ≤

Γi

ψi

on the LHS of Γi/ψi and

Γi

ψi
≤M2 ×

(
1− 1

N
exp

(
ψi −M2

β

))k

[
1−

(
1− 1

N
exp

(
ψi −M2

β

))k
]2 ≤M2 ×

(
1− 1

N
exp

(
M1 −M2

β

))k

[
1−

(
1− 1

N
exp

(
M1 −M2

β

))k
]2

on the RHS of Γi/ψi.

Finally, set

M1 ×

(
1− 1

N
exp

(
M2 −M1

β

))k

[
1−

(
1− 1

N
exp

(
M2 −M1

β

))k
]2 = r1

and

M2 ×

(
1− 1

N
exp

(
M1 −M2

β

))k

[
1−

(
1− 1

N
exp

(
M1 −M2

β

))k
]2 = r2

to solve for the range of β using the bisection method since both expressions are monotonic in β.

36



Fair yet Asymptotically Equal Collaborative Learning

Difficulties and factors of preserving equality. While we restrict β to be finite, the following limit illuminates the
difficulties to preserve equality (in terms of how many iterations are required) due to N and k: limβ→∞ Γi = (1 −
1/N)k/[1− (1−1/N)k]2 for all i ∈ [N ]. To satisfy the sufficient condition in Proposition 3, we require ϵ ≤ (1−1/N)−k+
(1− 1/N)k − 2 (ignoring the constant terms in O(1/ϵ)). We highlight that a smaller upper-bound on ϵ translates to more
training iterations, which means it is harder to preserve equality since we need longer for the nodes with lower contributions
to ‘catch up’. As N represents a form of population (the number of nodes) and k effectively represents a resource bottleneck
(the number of nodes to synchronize in each t), if N increases/k decreases, the upper-bound on ϵ decreases (i.e., harder to
preserve equality).

Finding a β for a given Γ∗
i∗

. Recall from Proposition 3, i∗ := argmini ψi,Tα
, the probability of selecting i∗ is ϱi∗ =

exp(ψi∗,Tα
/β)/

∑
i∈N exp(ψi,Tα

/β). Since ∂ϱi∗/∂β > 0, ϱi∗ increases as β increases from 0 to ∞. Therefore, Γi∗

decreases as β increases. Since limβ→∞ Γi∗ = (1− 1/N)k/[1− (1− 1/N)k]2, for any given Γ∗
i∗
> (1− 1/N)k/[1− (1−

1/N)k]2, we can find a β (by using binary search, etc.) s.t. Γi∗ = Γ∗
i∗

. This result states that for any arbitrarily small ψi∗,Tα ,
as long as a given Γ∗

i∗
< (1− 1/N)k/[1− (1− 1/N)k]2, we can always find a β to make the worst expected staleness of

nodes be equal to Γ∗
i∗

. That is, we can always find β to avoid the nodes having arbitrarily bad worst expected staleness.
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