
An Ensemble of Cooperative Extended Kohonen Maps for
Complex Robot Motion Tasks 1

Kian Hsiang Low

bryanlow@cs.cmu.edu

Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes

Avenue, Pittsburgh, PA 15213-3890, USA

Wee Kheng Leow

leowwk@comp.nus.edu.sg

Department of Computer Science, National University of Singapore, 3 Science Drive 2, Singa-

pore 117543, Singapore

Marcelo H. Ang, Jr.

mpeangh@nus.edu.sg

Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge

Crescent, Singapore 119260, Singapore

Self-organizing feature maps such as Extended Kohonen Maps (EKMs) have

been very successful at learning sensorimotor control for mobile robot tasks.

This paper presents a new ensemble approach called cooperative EKMs with

indirect mapping to achieve complex robot motion. An indirect-mapping

EKM self-organizes to map from the sensory input space to the motor con-

trol space indirectly via a control parameter space. Quantitative evaluation

reveals that indirect mapping can provide finer, smoother, and more effi-

cient motion control than does direct mapping by operating in a continuous,

rather than discrete, motor control space. It is also shown to outperform ba-

sis function neural networks. Furthermore, training its control parameters

with recursive least squares enables faster convergence and better perfor-

mance compared to gradient descent. The cooperation and competition of

multiple self-organized EKMs allow a non-holonomic mobile robot to nego-

tiate unforeseen, concave, closely spaced, and dynamic obstacles. Qualita-

tive and quantitative comparisons with neural network ensembles employ-

ing weighted sum reveal that our method can achieve more sophisticated

1The final version of this article has been published in Neural Computation, Vol. 17, Issue

6, pages 1411-1445, Jun 2005, published by The MIT Press.

1

motion tasks even though the weighted-sum ensemble approach also oper-

ates in continuous motor control space.

1 Introduction

Goal-directed, collision-free motion in a complex, dynamic, and unpredictable

environment is an important task for an autonomous mobile robot operating

alone or in a team. In particular, this task is widely employed in service and

field robotics (Shastri, 1999), which includes sewer inspection (Hertzberg et al.,

1998), cleaning and housekeeping (Fiorini et al., 2000), surveillance (Rybski

et al., 2002), sensor network coverage (Howard et al., 2002), search and rescue

(Davids, 2002), and tour guides (Burgard et al., 1999). All these applications

require the mobile robot to perform target or goal reaching movements while

avoiding undesirable and potentially dangerous impact with obstacles or other

robots in its team. The robot motion control problem can be stated succinctly

as follows: Given an initial state described by the sensory input vector u(0) in

the sensory input space U , determine a collision-free sequence of motor control

vectors c(t), t = 0, . . . , T − 1, in the motor control space C that moves the robot

towards a desired goal state described by u(T) ∈ U .

Three general classes of algorithms have been investigated for learning sen-

sorimotor control, which is required for the above task: multivariate regression,

reinforcement learning, and feature mapping. The first approach formulates

the problem as a nonlinear multivariate regression problem and trains a mul-

tilayer perceptron (MLP) to perform continuous mapping from U to C (Pomer-

leau, 1991; Sharkey, 1998; Tani and Fukumura, 1994). It offers good generaliza-

tion capability. However, prior to training the network, training samples have

to be collected for every time step t = 0, . . . , T − 1 to define the quantitative

error signals. This sample collection process can be very difficult and tedious,

if not impossible, for a mobile robot.

The reinforcement learning approach (Kaelbling et al., 1996; Sutton, 1998)

circumvents the above difficulty by providing a qualitative success or failure

feedback only at the end of executing the motor control sequence. It estimates

how well each previously executed motor control vector c(t) contributes to the

overall success or failure of achieving the desired goal and modifies the algo-

rithm accordingly. The training process tends to converge slowly due to sparse

reinforcements and imprecise estimate of each motor control vector’s contribu-

tion.

The third approach uses a Self-Organizing Feature Map (SOFM) (Kohonen,

2

2000) such as the Extended Kohonen Map (EKM) (Ritter and Schulten, 1986) that

self-organizes to partition the continuous input (or output) space into local-

ized regions. The generalization capability of the feature map arises from its

self-organization during training such that each neuron is trained to map a lo-

calized sensory region to a desired motor control output. As compared to pre-

defined, uniform partitioning of the feature space (Kuperstein, 1991; Schaal and

Atkeson, 1998; Zalama et al., 1995), self-organization may lead to better perfor-

mance and learning efficiency because more neural resources are automatically

allocated to frequently encountered sensory regions during learning (Martinetz

et al., 1990; Santamária et al., 1998). This approach increases the resolution of the

sensory representation in the frequently encountered regions. Such a behavior

is reminiscent of biological sensorimotor systems where frequently practiced

movements become more fluid and accurate.

This paper describes a new feature map approach to learning sensorimo-

tor control called cooperative EKMs with indirect mapping. An indirect-mapping

EKM (Low et al., 2002) differs from existing direct-mapping methods (Cameron

et al., 1998; Heikkonen and Koikkalainen, 1997; Rao and Fuentes, 1998; Ritter

and Schulten, 1986; Smith, 2002; Touzet, 1997; Versino and Gambardella, 1995)

in two ways:

1. Direct-mapping methods map a sensory input directly to a motor control

command. In contrast, our indirect-mapping approach maps a sensory

input indirectly to a motor control command through control parameters.

2. As a consequence, the indirect-mapping approach maps continuous sen-

sory input space to continuous motor control space (see Section 3.1 for

detailed discussion). On the other hand, direct-mapping methods map

continuous sensory input space to discrete motor control commands.

The motor control space is often discretized into a set of commands to be used

by reinforcement learning algorithms (Millán et al., 2002; Santamária et al., 1998;

Smith, 2002; Touzet, 1997), committee machines with voting schemes (Battiti

and Colla, 1994; Hansen and Salamon, 1990; Kittler et al., 1998; Sharkey and

Sharkey, 1997), and robot action selection mechanisms (Decugis and Ferber,

1998; Huntsberger and Rose, 1998; Maes, 1995; Rosenblatt, 1997). However, re-

cent autonomous agent research in dynamical systems theory (Beer, 1995; Port

and van Gelder, 1995) and reinforcement learning (Millán et al., 2002; Smart

and Kaelbling, 2000) advocates operating in continuous motor control space,

which enables our indirect-mapping method to provide finer, smoother, and

more efficient motion control than does direct mapping (Section 4.1). Such a

3

high degree of smoothness, flexibility, and precision in motion control is essen-

tial for efficiently executing complex tasks and interacting with humans.

It is well understood how a SOFM or EKM is used for learning sensorimo-

tor control (Littmann and Ritter, 1996; Walter and Schulten, 1993). However,

the non-trivial problem of combining multiple SOFMs or EKMs for sophisti-

cated control (e.g., negotiation of unforeseen complex obstacles and coopera-

tive multi-robot tracking of moving targets (Low et al., 2003)) is not well stud-

ied. If solved poorly, the control outputs produced while performing a com-

plex motion task may be unexpected or undesirable. For example, a widely

used ensemble technique for motion control that combines neural network

outputs via weighted sum (e.g., ensemble averaging and mixture of experts)

(Hashem, 1997; Haykin, 1999; Jacobs, 1995) causes the robot to be trapped eas-

ily by unforeseen, complex obstacles. This navigation issue is central to the

robotics community as it is often encountered during robot motion in a real-

world environment (Kim and Khosla, 1992; Koren and Borenstein, 1991; Rimon

and Koditschek, 1992). Note that such a problem will arise even when SOFMs

or EKMs are utilized in the weighted-sum ensemble (Section 4.2).

To solve this robot motion problem, we propose a new ensemble approach

called cooperative EKMs. The cooperation and competition of multiple EKMs

(Low et al., 2003) that self-organize in the same manner can enable a non-

holonomic mobile robot to negotiate unforeseen, concave, and closely spaced

obstacles (Section 4.2). In contrast, a robot controlled by weighted-sum ensem-

ble (Low et al., 2002) may fail in such tasks even though the networks also use

continuous motor control space (Section 4.2). Before proceeding into the details

of cooperative EKMs, we will discuss some related work first.

2 Related Work

In a MLP, all the training data are used to fit a single global model or represen-

tation. Therefore, during learning, all the network weights are susceptible to

negative interference that may arise due to dynamically changing data distri-

butions (Schaal and Atkeson, 1998). On the other hand, an EKM fits localized

regions of data, rather than the entire region of interest, into local models or

representations, thus localizing the effects of interference. Consequently, learn-

ing of a single new training data affects fewer network weights in an EKM

than in a MLP (Atkeson et al., 1997; Martinetz et al., 1990). The cost of train-

ing in an EKM is kept small by imposing a topology among the neurons such

that each learning step involves a subset of neighboring neurons. Initially, the

4

subsets are chosen large, resulting in rapid learning of the coarse sensorimotor

mapping. As learning progresses, the size of the subsets is gradually reduced

to refine the mapping more and more locally. This strategy allows computa-

tionally efficient and accurate training of many neurons and facilitates scaling

up the EKM to a larger number of neurons for further improved accuracy. An

EKM also uses a smaller proportion of network weights for motor control pre-

diction and has been reported to achieve more precise robot positioning than a

MLP (Gorinevsky and Connolly, 1994; Jansen et al., 1995; van der Smagt et al.,

1994). However, like other local model networks, an EKM suffers from the

“curse of dimensionality”. That is, the proportion of training data lying within

a fixed-radius neighborhood of a point decreases exponentially with increasing

number of dimensions of the input space.

Basis function network (BFN) is another type of local model network like

EKM. However, it is architecturally different from EKM in that each incoming

sensory input is reduced to activation strengths by basis functions, which are

in turn linearly mapped to a corresponding control output. To do so, the out-

put weights of all BFN neurons are required in predicting the target reaching

motion. In contrast, the EKM uses only the winning neuron’s output weights

to map each sensory input to a control output (Section 3.1). During network

learning, BFN updates all its output weights with each training data. On the

other hand, only the output weights of the winning neuron and its neighbors in

the EKM are updated (Section 3.5). As such, BFN may experience much more

interference during online learning than an EKM.

Our indirect-mapping EKM resembles the EKM models of (Littmann and

Ritter, 1996; Walter and Schulten, 1993), which utilize locally linear mappings.

In their models, each neuron stores both the motor control vector and the ma-

trix of motor control parameters as output weights (Eq. 1). On the other hand,

each neuron in the indirect-mapping EKM only stores the matrix of motor con-

trol parameters. In the context of our paper, their EKM models and indirect-

mapping EKM, respectively, use 1800 and 1350 parameters in a network of

15×15 neurons (Table 1). The extra parameters employed by their models are

not necessary in achieving good target reaching performance, as demonstrated

by the indirect-mapping EKM in this paper (Section 4.1). Furthermore, we have

shown that training the control parameters with recursive least squares en-

ables faster convergence and better performance compared to gradient descent.

Their EKM models (Littmann and Ritter, 1996; Walter and Schulten, 1993) have

only used gradient descent to learn the control parameters.

It is typical for a robot to require a very large number of training data for

accurate sensorimotor learning. The collection of these data for offline training

5

is a very difficult, tedious, if not impossible, task. Therefore, online learning

is preferred over offline to eliminate the need of storing these data and avoid

running complex batch training algorithms such as support vector machines

(Schaal et al., 2002). Hence, our focus in this paper will be on online learning.

Previously, Walter and Ritter (1996) have proposed an ensemble of mul-

tiple SOFMs called hierarchical PSOM (Parameterized Self-Organizing Maps)

for learning sensorimotor control of robot arm under different system contexts.

PSOM is a variant of SOFM that can learn with a small set of training data

and still achieve good accuracy. To be able to do so, PSOM performs interpola-

tion on a continuous mapping manifold using a small set of predefined, data-

independent basis functions, and weight vectors constructed directly from the

data samples. To ensure good interpolation, the data samples have to be topo-

logically ordered to form the weight vectors. Furthermore, the minimization of

the distance function in SOFM algorithm (Eq. 2) turns into a continuous search

problem for PSOM due to its continuous manifold. For hierarchical PSOM,

each PSOM is trained separately, resulting in different weight values for dif-

ferent PSOMs. In contrast, for our cooperative EKMs, all EKMs are trained

simultaneously to obtain the same input weight values (Section 3.5). More-

over, training of our EKMs is performed online rather than offline, as is the

case for PSOM.

In the absence of precise quantitative error signals for training, reinforce-

ment learning algorithms can be used if qualitative feedback signals are avail-

able. Nevertheless, they suffer from problems of generalization and continuity.

Many reinforcement learning methods encode discrete sensory states and mo-

tor commands (Dietterich, 2000; Mahadevan and Connell, 1992; Rohanimanesh

and Mahadevan, 2003), which cannot apply directly to the continuous sen-

sorimotor domains of the real-world control tasks. A priori discretization of

the continuous space may introduce hidden states and weak generalization,

if done poorly. By combining with function approximators (e.g., MLP or fea-

ture map) that are capable of generalizing across continuous sensory input and

motor control output spaces (Baird, 1995; Gross et al., 1998; Millán et al., 2002;

Santamária et al., 1998; Smart and Kaelbling, 2000; Smith, 2002; Touzet, 1997),

this limitation can be overcome. However, generalizing with function approxi-

mators does not guarantee that the algorithms will learn to produce continuous

motor commands that vary smoothly and accurately in response to continuous

changes in sensory state. In effect, some reinforcement learning algorithms

(Millán et al., 2002; Santamária et al., 1998; Smith, 2002; Touzet, 1997) that are

combined with function approximators map from continuous sensory input

space to discrete motor control commands, which is exactly what the direct-

6

mapping EKM does (Section 3.1). The drawbacks of such a continuity problem

will be demonstrated in Section 4.1. To resolve this problem, some methods

(Baird, 1995; Gross et al., 1998; Smart and Kaelbling, 2000) map to continuous

motor control space but are burdened by very slow iterative search for the op-

timal action.

3 Ensemble of Cooperative EKMs

3.1 Overview

An EKM is a neural network that extends Kohonen’s SOFM (Kohonen, 2000).

Its self-organization of the input space is similar to Voronoi tessellation such

that each tessellated region is encoded by the input weights of an EKM neuron.

In addition to encoding a set of input weights that self-organize the sensory in-

put space, the EKM neurons also produce outputs that vary with the incoming

sensed inputs. The EKMs described in this paper adopt an egocentric repre-

sentation of the sensory input vector: u(t) = {α, d}T where α and d are the

direction and the distance of a target location relative to the robot’s current

location and heading. At the goal state at time T , u(T) = (α, 0)T for any α.

In many proposed EKMs (Cameron et al., 1998; Heikkonen and Koikkalainen,

1997; Rao and Fuentes, 1998; Ritter and Schulten, 1986; Smith, 2002; Touzet,

1997; Versino and Gambardella, 1995), each sensory input u is mapped directly

to a motor control command c. In such a direct-mapping EKM (Fig. 1A), each

neuron i has a sensory weight vector wi = (αi, di)
T that encodes a tessellated

region in U centered at wi. It also has a weight vector ci that encodes the motor

control outputs produced by the neuron. With an incoming sensory input u,

the winning neuron s is determined such that its sensory weight vector ws is

nearest to u (Eq. 2). This winning neuron s outputs its motor control vector

cs to move the robot (Fig. 1A). Note that any incoming sensory input u that

lies within the tessellated region encoded by ws will produce the same motor

control vector cs.

If sensorimotor control is a linear problem, then the motor control vector c

would be related to the sensory input vector u by the linear equation:

c = Mu (1)

where M is a matrix of motor control parameters. The control problem would

be reduced to one of determining M from the training samples.

7

C
U

s
w s

c
s

u
U

M

CM

c
s

u
ws

s

A B

Figure 1: EKM architectures. (A) Neurons of a direct-mapping EKM map the

sensory input space U directly to discretized points in the motor control space

C. (B) Neurons of an indirect-mapping EKM map the sensory input space U in-

directly to the continuous motor control space C through the control parameter

space M. It resembles the EKM model of (Walter and Schulten, 1993), which

stores both motor control vectors and matrices of control parameters as output

weights. On the other hand, the indirect-mapping EKM only stores matrices of

control parameters as output weights.

In practice, however, sensorimotor coordination is typically a nonlinear pro-

blem because a real motor takes a finite but non-zero amount of time to ac-

celerate or decelerate in order to change speed. This problem is exacerbated

in non-holonomic robots. A non-holonomic robot has restrictions in the way

it can move due to kinematic or dynamic constraints such as limited turning

abilities or momentum at high velocities (e.g., car) (Arkin, 1998). Hence, a non-

holonomic robot is much harder to control and to achieve smooth motion than

a holonomic robot (Russell and Norvig, 1995).

To solve the nonlinear problem, our indirect-mapping EKM (Low et al.,

2002) is trained to partition the sensory input space U into locally linear re-

gions. Each neuron i in the EKM has a sensory weight vector wi similar to that

of a neuron in the direct-mapping EKM. However, unlike the direct-mapping

approach, the output weights of neuron i represent control parameters Mi in

the parameter space M (Fig. 1B) instead of the motor control vector ci. The

control parameter matrix Mi is mapped to the actual motor control vector c by

the linear model of Eq. 1.

To elaborate, the direct-mapping approach maps all the sensory inputs u in

a tessellated region in the sensory input space U , represented by a neuron s, to

the same discrete point cs in the motor output space C, i.e., c = cs. Thus, only

a small number of points in C are represented by the neurons’ outputs, i.e., C

is very sparsely sampled. In contrast, our indirect-mapping approach maps

8

. .

.

.
.

b
obstacles

obstacle

EKM

hb

localization
target

EKM

control

motor

EKM

module
neural integration

c

local

localization
faster

a
target

module
target reachingtime scale

slower

1
localization

obstacle

EKM

module
obstacle avoidance

actuators

Figure 2: Framework of Cooperative EKMs.

each u in a local region in U to a different point c in C through Eq. 1. Since

this mapping is linear and continuous, the indirect-mapping approach maps

a region in U to a region in C (Fig. 1B). This method permits finer, smoother,

and more efficient sensorimotor control of the robot’s target reaching motion

compared to the direct-mapping approach (Section 4.1).

Cooperative EKMs (Low et al., 2003) are implemented by connecting an en-

semble of EKMs into three modules: target reaching, obstacle avoidance, and

neural integration (Fig. 2). The target localization EKM in the target reaching mod-

ule is activated by the presence of a target within the robot’s target sensing

range. The EKM receives a sensed target location and outputs corresponding

excitatory signals to the motor control EKM in the neural integration module

at and around the locations of the sensed target.

The obstacle localization EKMs in the obstacle avoidance module are activated

by the presence of obstacles within the robot’s obstacle sensing range. Each

EKM receives a sensed obstacle location and outputs corresponding inhibitory

signals to the motor control EKM in the neural integration module at and

around the locations of the sensed obstacles.

The motor control EKM in the neural integration module serves as the sen-

sorimotor interface, which integrates the activity signals from the EKMs for

cooperation and competition to produce an appropriate motor signal to the ac-

tuators. This motor signal allows a robot to approach a target and negotiate

9

obstacles.

The cooperative EKMs framework allows the modules to operate asyn-

chronously at different rates, which is the key to preserving reactive capabili-

ties. For example, the target reaching module operates at about 256 ms between

servo ticks while the obstacle avoidance module can typically operate faster at

intervals of 128 ms. The neural integration module is activated as and when

neural activities are received.

3.2 Target Reaching

The target reaching module uses the target localization EKM to self-organize

the sensory input space U . Each neuron i in the EKM has a sensory weight

vector wi = (αi, di)
T that encodes a region in U centered at wi. Based on each

incoming sensory input u of the target location, the target localization EKM

outputs excitatory signals to the motor control EKM in the neural integration

module (Section 3.4). The target localization EKM is activated as follows:

Target Localization

Given a sensory input u of a target location,

1. Determine the winning neuron s in the target localization EKM. The win-

ning neuron s is the one whose sensory weight vector ws = (αs, ds)
T is

nearest to the input u = (α, d)T :

D(u,ws) = min
i∈A(α)

D(u,wi). (2)

The difference D(u,wi) is a weighted difference between u and wi:

D(u,wi) = βα(α − αi)
2 + βd(d − di)

2 (3)

where βα and βd are constant parameters. The minimum in Eq. 2 is taken

over the set A(α) of neurons encoding very similar angles as α:

|α − αi| ≤ |α − αj|, for each pair i ∈ A(α), j /∈ A(α) . (4)

In other words, direction has priority over distance in the competition

between EKM neurons. This method allows the robot to quickly orien-

tate itself to face the target while moving towards it. An EKM contains

a limited set of neurons, each of which has a sensory weight vector wi

that encodes a point in the sensory input space U . The region in U that

encloses all the sensory weight vectors of these neurons is called the local

workspace U ′. Even if the target falls outside U ′, the nearest neuron can

still be activated (Fig. 3A).

10

+

U’

+

U’

+

XX

X

U’

+

XX

X

U’

A B C D

Figure 3: Conceptual description of cooperative EKMs. (A) In response to the

target ⊕, the nearest neuron (black dot) in the target localization EKM (ellipse)

of the robot (gray circle) is activated. (B) The activated neuron produces a target

field (dotted region) in the motor control EKM. (C) Three of the robot’s sensors

detect obstacles and activate three neurons (crosses) in the obstacle localization

EKMs, which produce the obstacle fields (dashed ellipses). (D) Subtraction of

the obstacle fields from the target field results in the neuron at 4 to become

the winner in the motor control EKM, which moves the robot away from the

obstacle.

2. Compute output activity ai of neuron i in the target localization EKM.

ai = Ga(ws,wi) . (5)

The function Ga is an elongated Gaussian:

Ga(ws,wi) = exp

(

−
(αs − αi)

2

2σ2
aα

−
(ds − di)

2

2σ2
ad

)

. (6)

Parameter σad is much smaller than σaα, making the Gaussian distance-

sensitive and angle-insensitive. These parameter values elongate the Gaus-

sian along the direction perpendicular to the target direction αs (Fig. 3B).

This elongated Gaussian is the target field, which plays an important role

in overcoming concave obstacles. The effects of these parameters on the

robot’s target reaching capabilities will be examined in Section 4.2.

The output activities of the neurons in the target localization EKM are aggre-

gated in the motor control EKM to produce a motion that moves the robot

towards the target. This will be explained in Section 3.4. In the next section,

we will present the obstacle localization EKMs, which are activated in a similar

manner as the target localization EKM.

11

3.3 Obstacle Avoidance

The obstacle avoidance module uses obstacle localization EKMs. The robot

has h directed distance sensors around its body for detecting obstacles. Hence,

each activated sensor encodes a fixed direction αj and a variable distance dj of

the obstacle relative to the robot’s heading and location. Each sensor’s input

uj = (αj , dj)
T induces an obstacle localization EKM. Note that each distance

sensor (e.g., laser) can only reflect the nearest obstacle in its sensing direction.

Hence, the number of obstacle localization EKMs that are activated does not

depend on the number of obstacles but rather, on the number of distance sen-

sors. The obstacle localization EKMs have the same number of neurons and

input weight values as the target localization EKMs, i.e., each neuron i in the

obstacle localization EKM has the same input weight vector wi as the neuron i

in the target localization EKM. The EKMs output inhibitory signals to the mo-

tor control EKM in the neural integration module (Section 3.4). The obstacle

localization EKMs are activated as follows:

Obstacle Localization

For each sensory input uj , j = 1, . . . , h (i.e., h distance sensors),

1. Determine the winning neuron s in the jth obstacle localization EKM.

The obstacle localization EKM is activated in the same manner as Step 1

of Target Localization (Section 3.2).

2. Compute output activity bi of neuron i in the jth obstacle localization

EKM:

bi = Gb(ws,wi) (7)

where

Gb(ws,wi) = exp

(

−
(αs − αi)

2

2σ2
bα

−
(ds − di)

2

2σ2
bd(ds, di)

)

σbd(ds, di) =







2.475 if di ≥ ds

0.02475 otherwise.

(8)

The function Gb is a Gaussian stretched along the obstacle direction αs so

that motor control EKM neurons beyond the obstacle locations are also

inhibited to indicate inaccessibility (Fig. 3C). If no obstacle is detected,

Gb = 0. In the presence of an obstacle, the neurons in the obstacle lo-

calization EKMs at and near the obstacle locations will be activated to

produce obstacle fields. The neurons nearest to the obstacle locations have

the strongest activities. The effects of the parameters σbd and σbα on the

robot’s obstacle avoidance capabilities will be investigated in Section 4.2.

12

3.4 Neural Integration and Motor Control

The neural integration module uses a motor control EKM to integrate the activ-

ities from the neurons in the target and obstacle localization EKMs. The motor

control EKM has the same number of neurons and input weight values as the

target and robot localization EKMs. The neural integration is performed as

follows:

Neural Integration

1. Compute activity ei of neuron i in the motor control EKM.

ei = ai −
h
∑

j=1

bji (9)

where ai is the excitatory input from neuron i of the target localization

EKM (Section 3.2) and bji is the inhibitory input from neuron i of the j-th

obstacle localization EKM (Section 3.3).

2. Determine the winning neuron k in the motor control EKM. Neuron k is

the one with the largest activity:

ek = max
i

ei . (10)

The motor control EKM also has a set of output weights, which encode the

outputs produced by the neuron. However, unlike existing direct-mapping

methods (Cameron et al., 1998; Heikkonen and Koikkalainen, 1997; Rao and

Fuentes, 1998; Ritter and Schulten, 1986; Smith, 2002; Touzet, 1997; Versino and

Gambardella, 1995), the output weights of neuron i of the motor control EKM

represent control parameters Mi in the parameter space M instead of the actual

motor control vector (Fig. 1). The control parameter matrix Mi is mapped to the

actual motor control vector c by a linear model (Eq. 11). With indirect-mapping

EKM, motor control is performed as follows:

Motor Control

Compute motor control vector c:

c =







Mku if |Mku| ≤ c
∗ and k = s

Mkwk otherwise
(11)

where s is the winning neuron in the target localization EKM, and Mk and wk

are, respectively, the control parameter matrix and sensory weight vector of

the winning neuron k in the motor control EKM (Step 2 of Neural Integration).

13

The constant vector c
∗ denotes the upper limit of physically realizable motor

control signal. For instance, for the Khepera robots, c consists of the motor

speeds vl and vr of the robot’s left and right wheels. In this case, we define

c ≤ c
∗ if vl ≤ v∗

l and vr ≤ v∗
r . Note that if c is beyond c

∗, simply saturating

the wheel speeds does not work. For example, if the target is far away and

not aligned with the robot’s heading, then saturating both wheel speeds only

moves the robot forward. Without correcting the robot’s heading, the robot

will not be able to reach the target. Hence, the winning neuron’s input weights

wk are used to generate the physically realizable motor control output. This

motor control would be the best substitution for the sensory input u because

wk is closest to u compared to other weights wi, i 6= k.

In activating the motor control EKM (Fig. 3D), the obstacle fields are sub-

tracted from the target field (Eq. 9). If the target lies within the obstacle fields,

the activation of the motor control EKM neurons close to the target location will

be suppressed. Consequently, another neuron at a location that is not inhibited

by the obstacle fields becomes most highly activated (Fig. 3D). This neuron pro-

duces a control parameter that moves the robot away from the obstacle. While

the robot moves around the obstacle, the target and obstacle localization EKMs

are continuously updated with the current locations and directions of the tar-

get and obstacles. Their interactions with the motor control EKM produce fine,

smooth, and accurate motion control of the robot to negotiate the obstacle and

move towards the target until it reaches the goal state u(T) at time step T .

Figure 4 shows the output activities of the neurons in different EKMs pro-

duced in response to the environment setup depicted in Fig. 3. In Fig. 4A, the

output activities of the neurons in the target localization EKM form the target

field (Fig. 3B). Since the neuron at d = 0.16 m and α = 0.1 radian (darkest

dot in Fig. 4A) is closest to the target location, it is most strongly activated

and thus produces the highest output activity. This neuron corresponds to the

black dot in Fig. 3B. Its neighboring neurons also produce relatively strong out-

put activities to form the target field used in overcoming the concave obstacle.

The obstacle localization EKMs shown in Figs. 4B, 4C, and 4D are activated by

distance sensors positioned at −π/6, 0, and π/6 radian respectively. For each

EKM induced by a sensor, the neuron that is closest to its sensed obstacle be-

comes most strongly activated. These activated neurons are at d = 0.132 m and

α = −0.4 radian (darkest dot in Fig. 4B), d = 0.165 m and α = 0 radian (darkest

dot in Fig. 4C), and d = 0.139 m and α = 0.4 radian (darkest dot in Fig. 4D).

They correspond to the three crosses in Fig. 3C. Figure 4E shows the combined

output activities of the neurons in the obstacle localization EKMs, which form

the obstacle fields (Fig. 3C). Since the target lies within the obstacle fields, the

14

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0.05

0.1

0

0.15

d
(m)

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0.05

0.1

0

0.15

d
(m)

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0.05

0.1

0

0.15

d
(m)

α
(rad)

A B C

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0.05

0.1

0

0.15

d
(m)

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0.05

0.1

0

0.15

d
(m)

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0.05

0.1

0

0.15

d
(m)

α
(rad)

D E F

Figure 4: Output activities of neurons in (A) target localization EKM, (B) obsta-

cle localization EKM activated by distance sensor at −π/6 radian, (C) obstacle

localization EKM activated by distance sensor at 0 radian, (D) obstacle localiza-

tion EKM activated by distance sensor at π/6 radian, (E) obstacle localization

EKMs combined, and (F) localization EKMs combined during neural integra-

tion. Each dot denotes the sensory weights wi = (αi, di)
T of a neuron. A darker

dot implies that the neuron has a stronger output activity. A lighter dot implies

the opposite.

strong excitatory activities from the target localization EKM neurons that are

close to the target location will be suppressed. As a result, another neuron at

d = 0.098 m and α = 0.9 radian (darkest dot in Fig. 4F) that is not inhibited by

the obstacle fields becomes most strongly activated in the motor control EKM.

This neuron corresponds to 4 in Fig. 3D. It produces a control parameter that

enables the robot to negotiate the concave obstacle.

Recall that the various modules run asynchronously at different rates (Sec-

tion 3.1). In particular, the obstacle avoidance module runs at a faster rate than

15

the target reaching module. During neural integration, the localization EKMs

remain activated until they are updated asynchronously at the next sensing

cycle. So, the motor control EKM can receive continuous inputs from the local-

ization EKMs and is always able to produce a motor signal as and when new

inputs are sensed.

3.5 Self-Organization of EKMs

In contrast to most existing offline learning methods (Bruske and Sommer,

1995; Gorinevsky and Connolly, 1994; Karayiannis and Mi, 1997; Moody and

Darken, 1989), online learning is adopted for the EKMs. Initially, the EKMs

have not been trained and the motor control vectors c generated are inaccu-

rate. Nevertheless, the EKMs self-organize, using these control vectors c and

the corresponding robot displacements v produced by c, to map v to c indi-

rectly. Note that v is used as the training input rather than sensory input u.

Since the untrained EKMs produce inaccurate motor control vectors c in re-

sponse to u (i.e., c does not move the robot to the target location specified by

u), the robot will learn the wrong sensorimotor mapping if u is used as the

corresponding training input. On the other hand, v is the actual displacement

that corresponds to c. Using v as the training input will enable the robot to

learn the correct mapping as it moves around. Hence, its sensorimotor control

becomes more accurate. At this stage, the online learning just fine-tunes the

indirect mapping. The self-organized learning algorithm (in an obstacle-free

environment) is as follows:

Self-Organized Learning

Repeat

1. Get sensory input u.

2. Execute target reaching procedure and move robot.

3. Get new sensory input u
′ and compute actual displacement v as a differ-

ence between u
′ and u.

4. Use v as the training input to determine the winning neuron k (same as

Step 1 of Target Localization except that u is replaced by v).

5. Adjust the weights wi of neurons i in the neighborhood Nk of the winning

neuron k towards v:

∆wi = η G(k, i)(v −wi) (12)

16

where G(k, i) is a Gaussian function of the distance between the positions

of neurons k and i in the EKM, and η is a constant learning rate. This step

is similar to the self-organization of Kohonen’s self-organizing map.

6. Update the weights Mi of neurons i in the neighborhood Nk to minimize

the error e:

e =
1

2
G(k, i)‖c − Miv‖

2 . (13)

That is, apply a recursive stochastic approximation algorithm, which can

be cast into this general form:

∆Mi = −η
∂e

∂Mi

Hi (14)

where Hi is a weighting matrix. If Hi = I, a first-order learning method,

gradient descent, is obtained from Eq. 14:

∆Mi = −η
∂e

∂Mi

I = η G(k, i)(c −Miv)vT . (15)

In the case of the quadratic error function e (Eq. 13), learning can be ac-

celerated by a second-order learning method (Battiti, 1992). This can be

achieved by setting Hi to R
−1
i where Ri is a Gauss-Newton approxima-

tion of the Hessian ∂2e/∂M
2
i . A second-order learning method, recursive

least squares (Glentis et al., 1999), is thus derived from Eq. 14 with η = 1

(optimum step size):

∆R
−1
i =

1

λ











(1 − λ)R−1
i −

R
−1
i vv

T
R

−1
i

λ

G(k, i)
+ v

T
R

−1
i v











(16)

∆Mi = −
∂e

∂Mi

R
−1
i = G(k, i)(c −Miv)vT

R
−1
i (17)

where λ is a constant forgetting rate and R
−1
i is initialized to I. Note that

the recursive online update of R
−1
i (Eq. 16) is obtained using matrix in-

version lemma to avoid the costly matrix inversion operation (Haykin,

2002). Each update of Mi requires O(n2) computations and O(n2) addi-

tional memory to store R
−1
i where n is the number of dimensions in v. In

contrast, gradient descent requires O(n) computations and no additional

memory. The performance of these two learning methods is compared in

Section 4.1.

17

The target and obstacle localization EKMs self-organize in the same man-

ner as the motor control EKM except that Step 6 is omitted. At each train-

ing cycle, the weights of the winning neuron k and its neighboring neurons

i are modified. The amount of modification is proportional to the distance

G(k, i) between the neurons in the EKM. The input weights wi are updated

towards the actual displacement v and the control parameters Mi are updated

so that they map the displacement v to the corresponding motor control c. Af-

ter self-organization has converged, the neurons will stabilize in a state such

that v = wi and c = Miv = Miwi. For any winning neuron k, given that

u = wk, the neuron will produce a motor control output c = Mkwk, which

yields a desired displacement of v = wk. If u 6= wk but close to wk, the motor

output c = Mku produced by neuron k will still yield the correct displace-

ment if linearity holds within the input region that activates neuron k. Thus,

given enough neurons to produce an approximate linearization of the sensory

input space U , indirect-mapping EKM can produce finer and smoother motion

control than direct-mapping EKM as shown in Section 4.1.

4 Experiments and Discussion

4.1 Online Learning of Target Reaching Motion

This section presents a quantitative evaluation of the indirect-mapping EKM

in online sensorimotor learning of the robot’s target reaching motion. For the

purpose of evaluating performance, the following network architectures were

compared:

1. B15: BFN with 15×15 neurons

2. D15: direct-mapping EKM with 15×15 neurons

3. G9: indirect-mapping EKM with 9×9 neurons trained by gradient descent

4. G12: indirect-mapping EKM with 12× 12 neurons trained by gradient

descent

5. G15: indirect-mapping EKM with 15× 15 neurons trained by gradient

descent

6. R15: indirect-mapping EKM with 15×15 neurons trained by recursive

least squares

18

Our implementation of BFN was similar to those proposed by Bruske and

Sommer (1995), Hartman and Keeler (1991), Karayiannis and Mi (1997), and

Moody and Darken (1989), except that it was trained online rather than of-

fline. The basis function centers were trained in a similar manner as the input

weights of indirect-mapping EKM (Eq. 12). Each basis function width was up-

dated to approach the Euclidean distance between itself and its nearest neigh-

bor (Hartman and Keeler, 1991; Moody and Darken, 1989; Platt, 1991). The

output weights were trained via gradient descent.

We also attempted to train the basis function centers with gradient descent

(Ghosh and Nag, 2001; Karayiannis, 1999; Platt, 1991; Poggio and Girosi, 1990;

Wettschereck and Dietterich, 1992) but learning was unsuccessful despite ex-

tensive tuning of parameters. Although the robot learned to move towards the

target locations successfully, it was not able to come to a stop at these locations,

even after prolonged training. One possible explanation, as detailed by Moody

and Darken (1989), is that gradient descent training of the basis function cen-

ters may lead to unpredictable target reaching motions because the centers are

sometimes squeezed out of the region of input space that contain data. Fur-

thermore, learning converges slowly due to non-linear optimization. In con-

trast, the self-organization of the input space in our implemented BFN is data-

centric. More neurons are committed to input regions with dense sampling

of data during online learning, which improves the resolution in these regions

(Section 1). Faster convergence in learning has also been reported in this case

(Moody and Darken, 1989).

The tests were performed using Webots (http://www.cyberbotics.com), a

3D, kinematic, sensor-based simulator for Khepera mobile robots, which in-

corporates 10% white noise in its sensors and actuators. The simulator com-

putes the trajectories and sensory inputs of a robot situated in an environment

corresponding to a given physical setup. The resulting simulation allows the

controller to be transferred to a real robot without changes (Michel, 2004). The

simulated behaviors are very close to those of a real robot, as demonstrated in

these works (Hayes et al., 2002; Ijspeert et al., 2001; Martinoli et al., 1999).

In the experiments, the neural networks were trained in a 5 m by 5 m

obstacle-free environment. Each training/testing trial took 100,000 time steps

and each time step for target reaching motion lasted 1.024 sec. During training,

the input weights were initialized to correspond to regularly spaced locations

in the sensory input space U . The robot began its network training at the center

of the environment and a randomly selected sequence of targets was presented.

The robot’s task was to move to the targets, one at a time, and weight modifi-

cation was performed at each time step after the robot had made a move. At

19

each time interval of 10,000 steps during training, a fixed testing procedure was

conducted. In each test, the robot began at the center of the environment and

was presented with 50 random target locations in sequence. The robot’s task

was to move to each of the target locations. No training was performed during

this testing phase. The above training/testing trial was repeated 5 times and

testing performance was averaged over the 5 trials.

Three testing performance indices are measured in the above training/testi-

ng trials. The first index is the mean positioning error E, which measures the

average distance εi between the center of the robot and the ith target location

after it has come to a stop (i.e., motor control c = 0):

E =
1

RN

∑

i

εi (18)

where R is the number of trials and N is the number of testing target locations.

The second index normalized time-to-target T measures how long it takes the

robot to reach the target locations:

T =
1

RN

∑

i

t̃i , t̃i =
ti
li

(19)

where ti is the time it takes the robot to reach the ith target, li is the straight line

distance between targets i−1 and i, and t̃i is the normalized time taken to reach

target i. That is, normalized time-to-target measures the average amount of

time the robot takes to travel a distance of 1 m towards a target. The third index

mean deviation from straight-line trajectory D measures how straight or wavy is

the robot’s trajectory:

D =
1

RN

∑

i

δ̃i , δ̃i =
|di − li|

li
(20)

where di is the distance traveled to reach the target location i, and δ̃i is the

deviation from straight-line trajectory for target i.

Figures 5A and 5B show respectively how the mean positioning error and

normalized time-to-target decreased during the self-organized learning of var-

ious network architectures. In Fig. 5A, both B15 and D15 stabilized as early as

10,000 time steps but achieved much poorer E performance compared to the

other networks. On the other hand, G9, G12, G15, and R15 stabilized more

gradually at about 70,000, 60,000, 50,000, and 15,000 time steps respectively but

they could all achieve lower E. Notice that the larger indirect-mapping EKMs

stabilized faster. To explain this counter-intuitive result, note that the standard

20

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

1

10

100

E
 (mm)

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

10

100

1000

D15

G9

G12

G15

T
 (m)

time steps

(x10,000)

-1

R15

B15

A B

Figure 5: Performance comparison between various network architectures in

(A) mean positioning error, and (B) normalized time-to-target.

deviations of the Gaussian functions in Equations 12 and 15 (Section 3.5) were

the same for all EKMs. That is, the proportion of neurons requiring weight

updates at each time step was greater in smaller EKMs than in larger EKMs.

As such, the neurons in smaller EKMs updated their weights more frequently,

thus stabilizing more slowly.

While the E performance shows the quality of the robot positioning at the

target location, the T and D performance demonstrate the quality of the robot’s

trajectory. We will only illustrate T in Fig. 5B; the convergence of D is similar.

The self-organization of D15 stabilized at about 50,000 time steps. On the other

hand, G9, G12, and G15 stabilized at about 90,000, 70,000, and 50,000 time steps

respectively, which supported the above observation that larger EKMs stabi-

lized more quickly. R15 stabilized at 40,000 time steps, which was faster than

that trained by gradient descent. Therefore, its training/testing process was

stopped at 50,000 time steps, which was sufficient for its self-organized learn-

ing to stabilize. Although B15 stabilized as early as 10,000 time steps, its poorer

performance, relative to the other networks, became obvious with increasing

training time.

Table 1 shows the test results after training. All indirect-mapping EKMs

achieved lower mean positioning errors, normalized time-to-target and mean

deviation from straight line trajectory than D15 and B15. R15 achieved much

lower E and D than G9, G12, and G15. Among the indirect-mapping EKMs

trained by gradient descent, G12 enabled the robot to travel the straightest path

to stop at the target location. Reducing the number of neurons to 9×9 caused

21

Table 1: Performance comparison between networks after training.

Network Total Performance indices
parameters E (mm) T (m−1) D

B15 1350 10.02 ± 3.81 166.40 ± 28.49 0.11 ± 0.06
D15 900 8.37 ± 2.25 36.78 ± 11.11 0.18 ± 0.15
G9 486 3.40 ± 1.83 15.31 ± 4.64 0.10 ± 0.04

G12 864 3.89 ± 1.61 19.31 ± 8.47 0.06 ± 0.02
G15 1350 3.23 ± 0.66 18.96 ± 4.37 0.07 ± 0.02
R15 1350 1.29 ± 0.14 17.00 ± 2.48 0.04 ± 0.01

the path to be more convoluted. Increasing the number of neurons to 15×15 in-

creased, instead of decreased, D slightly. This phenomenon could be explained

by how the neurons self-organized in the sensory input space U , which is elab-

orated in the next paragraph.

Neurons in G15 were self-organized into four clusters: d = 0 m and α =

−3, 0, +3 radian (Fig. 6C). On the other hand, neurons in G9 and G12 were self-

organized into two clusters only: d = 0 m and α = 0 radian (Figs. 6A, 6B). With

more neurons, G15 gained the flexibility of backward motion (α = −3, +3 ra-

dian). However, these two regions of input space were less well sampled by

the neurons than the region at α = 0 radian. As such, if a distant target ap-

peared behind the robot with G15, its backward motion would produce a more

wavy path. The robot with G12 would instead turn around to face the target

via the cluster at d = 0 m before moving forward in a much straighter path.

As for G9 (Fig. 6A), since its neurons sampled the input space at α = 0 radian

more sparsely than those in G15 at α = 0, +3,−3 radian (i.e., both forward and

backward motion), it would inevitably produce a more convoluted path than

G15 regardless of whether the target is in front or behind.

Table 1 also shows that smaller mean deviation did not necessarily imply

shorter normalized time-to-target. During learning, direction had priority over

distance in the competition between EKM neurons (Eq. 4). So, a larger EKM

had more neurons allocated for adjusting orientation without moving long dis-

tances (i.e., d = 0 m cluster in Fig. 6). Consequently, the robot might move short

motion steps to adjust its orientation first before moving straight to the target.

Therefore, its trajectory deviated less from the straight line path.

The advantages of indirect-mapping EKMs over D15 and B15 can also be

assessed from the self-organization results (Fig. 6). The neurons in the indirect-

22

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0

0.05

0.1

0.15

d
(m)

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0

0.05

0.1

0.15

d
(m)

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0

0.05

0.1

0.15

d
(m)

α
(rad)

A B C

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0

0.05

0.1

0.15

d
(m)

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0

0.05

0.1

0.15

d
(m)

-4
 -3
 -2
 -1
 0
 1
 2
 3
 4

0

0.05

0.1

0.15

d
(m)

α
(rad)

D E F

Figure 6: Self-organization results of (A) G9, (B) G12, (C) G15, (D) R15, (E) D15,

and (F) B15 taken after one of the training trials. Each dot denotes the weights

wi = (αi, di)
T of a neuron.

mapping EKMs cover larger areas in the sensory input space than those in

D15 or B15. Moreover, they sample distances up to 0.16 m whereas D15 and

B15 neurons sample distances only up to 0.12 m. Note that 0.16 m is the fur-

thest that a Khepera robot can move in a single time step of 1 second. That is,

indirect-mapping EKMs sample the sensory input space more completely than

does D15 and B15, and thus produce finer, smoother, and more efficient motor

control.

To determine whether there is statistically significant difference between

the test results of different networks, t-tests were performed. In Table 2, a large

value indicates that the test results between two networks are similar, i.e., not

significantly different (Mendenhall and Sincich, 1994). The E and T of indirect-

mapping EKMs are significantly different from those of D15 and B15 because

the t-test values are less than 0.1. However, the differences in E and T of G9,

23

Table 2: Significance levels from t-tests on similarity in performance between

networks after training.

E (mm) B15 D15 G15 G12 G9
R15 0.00 0.00 0.00 0.00 0.02
G9 0.00 0.00 0.42 0.33

G12 0.01 0.00 0.21
G15 0.00 0.00
D15 0.22

D B15 D15 G15 G12 G9
R15 0.01 0.04 0.01 0.04 0.00
G9 0.43 0.16 0.09 0.02

G12 0.04 0.06 0.09
G15 0.12 0.09
D15 0.19

T (m−1) B15 D15 G15 G12 G9
R15 0.00 0.00 0.20 0.29 0.25
G9 0.00 0.00 0.12 0.19

G12 0.00 0.01 0.47
G15 0.00 0.01
D15 0.00

G12, and G15 are not significant. This means that G9 is sufficient for the robot

to stop very close to the targets at a rate that is as fast as G12 or G15. While

the difference in E and D between R15 and indirect-mapping EKMs trained

by gradient descent is significant, the difference in T is not. The low D of G15

is not significantly different from that of B15. The difference in D of G9 from

D15 and B15 is also not significant. This means that G9 achieves similar D

performance as D15 and B15 even though it uses less network weights.

Often, a robot is required to move through several checkpoints in a complex

environment before stopping at the goal. Given that the radius of the Khep-

era robot is 30 mm, it is reasonable to regard the robot to have reached (and

touched) a target checkpoint if the distance-to-target ε is less than 30 mm. Fig-

ure 7 illustrates the performance comparison that evaluates this target reaching

criterion after the robot has been trained.

The target reaching probability P (ε) measures the probability of the robot

reaching closer than a distance of ε (with or without stopping) from the tar-

get locations. The normalized time-to-target T (ε) measures how long it takes

the robot to reach closer than a distance of ε (with or without stopping) from

the target locations. The mean deviation from straight-line trajectory D(ε) mea-

sures how straight or wavy is the robot’s trajectory.

Test results show that with indirect-mapping EKMs, the robot could get

much closer to the targets with higher probability (Fig. 7A) and reach the tar-

24

0
 5
 10
 15
 20
 25

0.5

0.6

0.7

0.8

0.9

1

P
()
ε

ε
(mm)

0
 5
 10
 15
 20
 25

1

10

100

1000

T
()(m)
ε

ε
(mm)

-1

A B

0
 5
 10
 15
 20
 25

0.01

0.1

1

D15

G9

G12

G15

D
()
ε

ε
 (mm)

B15

R15

C

Figure 7: Performance comparison between various network architectures in

(A) target reaching probability, (B) normalized time-to-target, and (C) mean

deviation from straight line trajectory after training.

gets much faster (Fig. 7B) than with D15 or B15. Moreover, it could travel in

straighter paths (Fig. 7C) than with D15.

Table 3 shows the test results for ε = 5 mm. R15 outperformed G12 and G15

in P (5), and G9, and G15 in D(5). Among the indirect-mapping EKMs trained

by gradient descent, G9 enabled a robot to reach closer than 5 mm from target

locations with higher probability than G15. This could be because there were

more neurons in G9 than in G15 at very small, non-zero d and |α| < 1.57 radian

in the input space. This set of neurons was responsible for moving the robot, at

less than 10 mm away from the target location, forward to closer than 5 mm. As

a result, a higher P (5) could be achieved. It was also observed that R15, which

achieved the highest P (5), had more neurons than G9 in this region of the input

space. On the other hand, G15 had much more neurons at approximately zero d

25

Table 3: Performance comparison between networks.

Network Total Performance indices
parameters P (5) T (5) (m−1) D(5)

B15 1350 0.84 ± 0.05 144.70 ± 20.16 0.04 ± 0.03
D15 900 0.54 ± 0.07 18.61 ± 1.66 0.18 ± 0.08
G9 486 0.95 ± 0.08 8.83 ± 0.96 0.07 ± 0.02

G12 864 0.92 ± 0.09 8.48 ± 0.74 0.03 ± 0.02
G15 1350 0.86 ± 0.04 8.96 ± 0.47 0.06 ± 0.01
R15 1350 1.00 ± 0.01 8.85 ± 0.35 0.03 ± 0.01

than at very small, non-zero d. G12 achieved lower D(5) than G9 and G15. This

outcome could be justified, in a similar manner, by the explanation provided

for the previous test results on D. By comparing the differences in normalized

time-to-target and mean deviation between Tables 1 and 3, we could notice a

greater amount of time and distance required for the robot to come to a stop.

One other interesting comparison is the total number of parameters or weig-

hts utilized by the various networks (Tables 1, 3). G12 uses fewer weights than

both D15 and B15 but still performs better comparatively.

Table 4 shows the t-test values at ε = 5mm. While the difference in P (5) and

D(5) between R15 and indirect-mapping EKMs trained by gradient descent is

significant, the difference in T (5) is not. Among the indirect-mapping EKMs

trained by gradient descent, the t-tests for P (5) show no significant difference

between G9 and G12, and between G12 and G15. The differences in T (5) be-

tween G9, G12, and G15 are also not significant.

To summarize, R15 achieved the best overall performance among the var-

ious networks, in particular, its performance in E, D, P (5), and D(5). Its T

and T (5) performance were not significantly different from those of the other

indirect-mapping EKMs. Among the indirect-mapping EKMs, it stabilized

most quickly. Although B15 stabilized much faster than the other networks,

it produced the poorest performance in E, T , and T (5). D15 offered the poorest

performance in D, D(5) and P (5).

26

Table 4: Significance levels from t-tests on similarity in performance at ε = 5mm

between networks.

P (5) B15 D15 G15 G12 G9
R15 0.00 0.00 0.00 0.04 0.12
G9 0.02 0.00 0.03 0.29

G12 0.06 0.00 0.11
G15 0.26 0.00
D15 0.00

T (5) (m−1) B15 D15 G15 G12 G9
R15 0.00 0.00 0.35 0.17 0.48
G9 0.00 0.00 0.40 0.27

G12 0.00 0.00 0.13
G15 0.00 0.00
D15 0.00

D(5) B15 D15 G15 G12 G9
R15 0.12 0.00 0.00 0.19 0.00
G9 0.09 0.01 0.14 0.02

G12 0.31 0.00 0.03
G15 0.20 0.01
D15 0.00

4.2 Neural Network Ensemble for Target Reaching Motion with

Obstacle Avoidance

This section evaluates qualitatively and quantitatively the performance of co-

operative EKMs in goal-directed, collision-free robot motion in complex, un-

predictable environments. The experiments were also performed using We-

bots. 12 directed long-range sensors were modelled around its body of radius

3 cm. Each sensor had a range of 17 cm, enabling the detection of obstacles at

20 cm or nearer from the robot’s center, and a resolution of 0.5 cm to simulate

noise.

Two tests were performed to compare cooperative EKMs with another en-

semble method (Low et al., 2002). The latter approach, termed command fusion,

linearly combines the motion control outputs, using weighted sum, of differ-

ent neural networks implementing different behaviors. This is a widely used

technique to integrate the motion control outputs produced by different neu-

ral networks (Hashem, 1997; Haykin, 1999; Jacobs, 1995). For our case, the

target reaching motion is produced by an indirect-mapping EKM while obsta-

cle avoidance is performed using the method of Braitenberg’s Type-3C vehicle

(Braitenberg, 1984). To elaborate, when the robot senses the presence of an ob-

stacle, say, in front and on the left, the right motor will rotate backward faster

than the left motor’s rotation forward, thus turning the robot away from the

27

-0.4
 -0.2
 0
 0.2
 0.4

-0.4

-0.2

0

0.2

0.4

-0.4
 -0.2
 0
 0.2
 0.4

-0.4

-0.2

0

0.2

0.4

Depth

Width

A B

Figure 8: Negotiating unforeseen concave obstacle that was 34 cm wide and

12 cm deep. (A) The robot using command fusion was trapped but (B) the one

adopting cooperative EKMs successfully moved around the obstacle.

obstacle.

For both ensemble methods, the target reaching and obstacle avoidance

modules ran at intervals of 256 ms and 128 ms respectively. The robot’s per-

formance was assessed in an environment under two unforeseen conditions: (1)

concave obstacle, and (2) narrow doorway between closely spaced obstacles.

In the first test (Fig. 8), the robot fitted with command fusion got trapped

by the concave obstacle (Fig. 8A). The target reaching behavior tried to move

the robot forward to reach the target while the obstacle avoidance behavior

moved it backward to avoid the obstacle. The combined output cancelled each

other, causing the robot to be trapped by the obstacle. On the other hand, the

robot with cooperative EKMs could overcome the obstacle to reach the goal

successfully (Fig. 8B).

It is noted that a robot with cooperative EKMs can still get trapped if the

obstacle is so concave that the obstacle fields cannot completely inhibit the

neurons at or near the target location. Figure 9 shows the maximum obstacle

width that a robot with cooperative EKMs can overcome with varying obstacle

depths and robot sensing ranges. Given a fixed sensing range, the maximum

negotiable obstacle depth decreases with increasing width. When the sensing

range increases, the robot with cooperative EKMs can negotiate extremely wide

concave obstacle if it is not too deep. Conversely, to be able to overcome a fairly

28

8

12

16

20
 12

17

22

27

0

100

200

300

400

500

600

700

0

100

200

300

400

500

600

700

Depth (cm)

Width (cm)

Sensing Range (cm)

Figure 9: Maximum width of concave obstacle (Fig. 8B) that a robot with co-

operative EKMs can overcome with different combinations of obstacle depths

and robot sensing ranges.

deep obstacle, its width cannot be too large.

The abovementioned limitation, however, does not diminish the signifi-

cance of our method as it is simpler than many existing reactive robot mo-

tion methods for overcoming unforeseen concave obstacles (Lagoudakis and

Maida, 1999; Liu et al., 2000; Zelek and Levine, 1996). In particular, it utilizes

only local information of the target location and the unforeseen obstacles, as

opposed to motion planners (Latombe, 1999) that require global knowledge of

the environment to operate.

In the second test (Fig. 10), the robot endowed with command fusion could

not pass through the narrow doorway between closely spaced obstacles (Fig. 10A)

because its obstacle avoidance behavior counteracted the target reaching be-

havior. In contrast, the robot with cooperative EKMs could always traverse

through the narrow doorway to the goal successfully (Fig. 10B).

These two simple tests show that for command fusion, though each neural

network proposes an action that is optimal by itself, the weighted sum of these

action commands produces a combined action that may not satisfy the overall

task. Cooperative EKMs, however, considers the activity signals of each local-

ization EKM and integrates them to determine an action that can satisfy each

localization EKM to a certain degree. Such tightly coupled interaction between

the localization EKMs and the motor control EKM in the cooperative EKMs

29

-0.4
 -0.2
 0
 0.2
 0.4

-0.4

-0.2

0

0.2

0.4

-0.4
 -0.2
 0
 0.2
 0.4

-0.4

-0.2

0

0.2

0.4

A B

Figure 10: Passing through unforeseen narrow doorway between closely

spaced obstacles that was 86 mm wide. (A) The robot using command fusion

was trapped but (B) the one adopting cooperative EKMs successfully passed

through the narrow doorway to the goal.

framework enables the robot to achieve more complex tasks.

Recall that the standard deviations σ of the Gaussian functions for the target

and obstacle fields play an important role in the robot motion capabilities of

cooperative EKMs (Sections 3.2 and 3.3). For the target field (Fig. 3A), σaα and

σad control the elongation of the target field perpendicular to and along the

target direction respectively. Parameters σbα and σbd achieve a similar effect

for the obstacle field. For the negotiation of concave obstacles (e.g., Fig. 8B),

the target field has to be considerably elongated perpendicular to the target

direction. This requires a large enough σaα parameter value. However, as this

value increases, the tendency of the robot moving along the shorter path to

the goal via the narrow doorway (Fig. 10B) decreases and the longer detour

featured in Fig. 8B is increasingly preferred in the situation of Fig. 10B. When

σaα is large, subtraction of the obstacle field from the highly elongated target

field (Fig. 3D) in the motor control EKM may result in the neuron at the edge of

the concave obstacle to be most highly activated, rather than the neuron at the

narrow doorway. Nonetheless, the above two tests and the subsequent ones

can be achieved by a single σaα value of 2.475. If σad is too small, the target

field may be totally suppressed by the obstacle field depending on σaα. This

may or may not cause the robot to be trapped in the concave obstacle since any

30

neuron not inhibited by the obstacle field can be potentially activated. If σad is

too large, the robot may get trapped in the concave obstacle. Superposition of

the fields may cause the neuron in the cavity of the concave obstacle to be most

highly activated, rather than the neuron at the edge of the obstacle. In all the

tests, σad is set to 0.0495.

The parameter values of σbα and σbd have to be large enough for the robot

to avoid collision with obstacles as well as discriminate whether a doorway is

wide enough to pass through. However, if these values are too large, the robot

cannot move to target locations near the obstacles nor detect the presence of

narrow but traversable doorways. In all the tests, σbα is set to 0.495 while σbd

uses the values given in Eq. 8. The above evaluation of the target and obstacle

field parameters highlights their significance to the robot motion capabilities of

cooperative EKMs. In our future work, we will consider using reinforcement

learning to train the appropriate parameter values for negotiating different ob-

stacles when the robot encounters them during motion.

The next two tests aim to demonstrate the capabilities of cooperative EKMs

in performing more complex motion tasks. The environment for the first test

consisted of three rooms connected by two doorways (Fig. 11). The middle

room contained two obstacles moving in anticlockwise circular paths. The

robot began in the left-most room and was tasked to move to the right-most

room. Test results show that the robot was able to negotiate past the extended

walls and the dynamic obstacles to reach the goal. Note that this target reach-

ing motion was completely determined by the cooperation and competition

between the EKMs and no global planning was used.

The environment for the second test consisted of three rooms connected by

two doorways and some unforeseen static obstacles (Fig. 12). The robot began

in the top corner of the left-most room and was tasked to move into the narrow

corner of the right-most room via checkpoints plotted by a planner (Low et al.,

2002). The robot was able to move through the checkpoints to the goal by

traversing between narrowly spaced convex obstacles in the first and the last

room, and overcoming an unforeseen concave obstacle in the middle room. The

results of these last two tests further confirm the effectiveness of cooperative

EKMs in handling complex tasks in complex, unpredictable environments.

5 Conclusion

This paper presents a new approach of learning sensorimotor control for com-

plex robot motion tasks using cooperative EKMs. Quantitative evaluation re-

31

-0.5
 -0.25
 0
 0.25
 0.5

-0.25

0

0.25

-0.5
 -0.25
 0
 0.25
 0.5

-0.25

0

0.25

-0.5
 -0.25
 0
 0.25
 0.5

-0.25

0

0.25

-0.5
 -0.25
 0
 0.25
 0.5

-0.25

0

0.25

Figure 11: Motion of robot (gray) in an environment with two unforeseen ob-

stacles (black) moving in anticlockwise circular paths. The robot could success-

fully negotiate past the extended walls and the dynamic obstacles to reach the

goal (small black dot).

-0.5
 -0.25
 0
 0.25
 0.5

-0.25

0

0.25

Figure 12: Motion of robot (dark gray) in a complex environment. The check-

points (small black dots) were located at the doorways and the goal position.

The robot could successfully navigate through the checkpoints to the goal by

traversing between unforeseen narrowly spaced convex obstacles (light gray)

in the first and the last room and overcoming an unforeseen concave obstacle

(light gray) in the middle room.

32

veals that indirect-mapping EKM can produce finer, smoother, and more ef-

ficient robot motion control than other local learning methods such as direct-

mapping EKM and BFN. Furthermore, training the control parameters of the

indirect-mapping EKM with recursive least squares allows faster convergence

and more superior performance than with gradient descent. The cooperation

and competition of multiple EKMs enable the non-holonomic mobile robot to

negotiate unforeseen concave, closely spaced, and dynamic obstacles. These

tasks can easily trap robots that are controlled by neural network ensembles

employing command fusion techniques. Cooperative EKMs can thus augment

the reactive capabilities of an autonomous mobile robot significantly. Recently,

we have enhanced cooperative EKMs further to achieve multi-robot motion

tasks such that multiple robots fitted with cooperative EKMs can coordinate

their tracking of moving targets (Fig. 13). Qualitative and quantitative test re-

sults of the improved cooperative EKMs for multi-robot tasks are presented

in (Low et al., 2003, 2004). Our continuing research goal is to generalize this

approach to other sensorimotor control problems such as those of static and

mobile robot manipulators.

References

Arkin, R. C. (1998). Behavior-Based Robotics. MIT Press, Cambridge, MA.

Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). Locally weighted learning.

Artificial Intelligence Review, 11(1-5), 11–73.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with func-

tion approximation. In Proc. 12th International Conference on Machine Learning

(ICML-95), pages 30–37.

Battiti, R. (1992). First and second-order methods for learning: Between steep-

est descent and Newton’s method. Neural Comput., 4(2), 141–166.

Battiti, R. and Colla, A. (1994). Democracy in neural nets: Voting schemes for

classification. Neural Networks, 7(4), 691–707.

Beer, R. D. (1995). A dynamical systems perspective on agent-environment

interaction. Artificial Intelligence, 72(1-2), 173–215.

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. MIT Press.

33

-0.35
 -0.175
 0
 0.175
 0.35

-0.15

-0.05

0.05

0.15

0.25

0.35

-0.35
 -0.175
 0
 0.175
 0.35

-0.15

-0.05

0.05

0.15

0.25

0.35

-0.35
 -0.175
 0
 0.175
 0.35

-0.15

-0.05

0.05

0.15

0.25

0.35

Figure 13: Cooperative tracking of moving targets. When the targets were mov-

ing out of the robots’ sensory range, the two robots moved in opposite direc-

tions to track the targets. In this way, all targets could still be observed by the

robots.

34

Bruske, J. and Sommer, G. (1995). Dynamic cell structure learns perfectly topol-

ogy preserving map. Neural Comput., 7(4), 845–865.

Burgard, W., Cremers, A. B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D.,

Steiner, W., and Thrun, S. (1999). Experiences with an interactive museum

tour-guide robot. Artificial Intelligence, 114(1-2), 3–55.

Cameron, S., Grossberg, S., and Guenther, F. H. (1998). A self-organizing neural

network architecture for navigation using optic flow. Neural Comput., 10(2),

313–352.

Davids, A. (2002). Urban search and rescue robots: From tragedy to technology.

IEEE Intelligent Systems, 17(2), 81–83.

Decugis, V. and Ferber, J. (1998). Action selection in an autonomous agent

with a hierarchical distributed reactive planning architecture. In Proc. 2nd

International Conference on Autonomous Agents, pages 354–361.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ

value function decomposition. J. Artificial Intelligence Res., 13, 227–303.

Fiorini, P., Kawamura, K., and Prassler, E., editors. (2000). Autonomous Robots,

Special Issue on Cleaning and Housekeeping Robots, 9(3).

Ghosh, J. and Nag, A. (2001). An overview of radial basis function networks.

In R. J. Howlett and L. C. Jain, editors, Radial Basis Function Networks 2: New

Advances in Design, pages 1–36. Physica-Verlag, New York.

Glentis, G.-O., Berberidis, K., and Theodoridis, S. (1999). Efficient least squares

adaptive algorithms for FIR transversal filtering. IEEE Signal Processing Mag.,

16(4), 13–41.

Gorinevsky, D. and Connolly, T. H. (1994). Comparison of some neural net-

works and scattered data approximations: The inverse manipulator kine-

matics example. Neural Comput., 6(3), 521–542.

Gross, H.-M., Stephan, V., and Krabbes, M. (1998). A neural field approach

to topological reinforcement learning in continuous action spaces. In Proc.

International Joint Conference on Neural Networks, volume 3, pages 1992–1997.

Hansen, L. K. and Salamon, P. (1990). Neural network ensembles. IEEE Trans.

Pattern Anal. Machine Intell., 12(10), 993–1001.

35

Hartman, E. and Keeler, D. (1991). Predicting the future: Advantages of semilo-

cal units. Neural Comput., 3(4), 566–578.

Hashem, S. (1997). Optimal linear combinations of neural networks. Neural

Networks, 10(4), 599–614.

Hayes, A. T., Martinoli, A., and Goodman, R. M. (2002). Distributed odor

source localization. IEEE Sensors, 2(3), 260–271.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall,

Upper Saddle River, NJ, second edition.

Haykin, S. (2002). Adaptive Filter Theory. Prentice Hall, Upper Saddle River, NJ,

fourth edition.

Heikkonen, J. and Koikkalainen, P. (1997). Self-organization and autonomous

robots. In O. Omidvar and P. van der Smagt, editors, Neural Systems for

Robotics, pages 297–337. Academic Press.

Hertzberg, J., Christaller, T., Kirchner, F., Licht, U., and Rome, E. (1998). Sewer

robotics. In R. Pfeifer, B. Blumberg, J.-A. Meyer, and S. W. Wilson, editors,

From Animals to Animats 5: Proc. International Conference on Simulation of Adap-

tive Behavior, pages 427–436. MIT Press: Cambridge, MA.

Howard, A., Matarić, M. J., and Sukhatme, G. S. (2002). Network deployment

using potential fields: A distributed, scalable solution to the area coverage

problem. In H. Asama, T. Arai, T. Fukuda, and T. Hasegawa, editors, Dis-

tributed Autonomous Robotic Systems 5: Proc. 6th International Symposium on

Distributed Autonomous Robotic Systems, pages 299–308. Springer: New York.

Huntsberger, T. and Rose, J. (1998). BISMARC: A biologically inspired system

for map-based autonomous rover control. Neural Networks, 11(7-8), 1497–

1510.

Ijspeert, A. J., Martinoli, A., Billard, A., and Gambardella, L. M. (2001). Collabo-

ration through the exploitation of local interactions in autonomous collective

robotics: The stick pulling experiment. Autonomous Robots, 11(2), 149–171.

Jacobs, R. A. (1995). Methods for combining experts’ probability assessments.

Neural Comput., 7(5), 867–888.

Jansen, A., van der Smagt, P., and Groen, F. C. A. (1995). Nested networks for

robot control. In A. F. Murray, editor, Applications of Neural Networks, pages

221–239. Kluwer Academic Publishers, Dordrecht, the Netherlands.

36

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learn-

ing: A survey. J. Artificial Intelligence Res., 4, 237–285.

Karayiannis, N. B. (1999). Reformulated radial basis neural networks trained

by gradient descent. IEEE Trans. Neural Networks, 10(3), 657–671.

Karayiannis, N. B. and Mi, G. W. (1997). Growing radial basis neural networks:

Merging supervised and unsupervised learning with network growth tech-

niques. IEEE Trans. Neural Networks, 8(6), 1492–1506.

Kim, J.-O. and Khosla, P. (1992). Real-time obstacle avoidance using harmonic

potential functions. IEEE Trans. Robot. Automat., 8(3), 338–349.

Kittler, J., Hatef, M., Duin, R. P. W., and Matas, J. (1998). On combining classi-

fiers. IEEE Trans. Pattern Anal. Machine Intell., 20(3), 226–239.

Kohonen, T. (2000). Self-Organizing Maps. Springer, New York, third edition.

Koren, Y. and Borenstein, J. (1991). Potential field methods and their inherent

limitations for mobile robot navigation. In Proc. IEEE International Conference

on Robotics and Automation (ICRA’91), pages 1394–1404.

Kuperstein, M. (1991). INFANT neural controller for adaptive sensory-motor

coordination. Neural Networks, 4(2), 131–146.

Lagoudakis, M. G. and Maida, A. S. (1999). Robot navigation with a polar

neural map, Student Abstract. In Proc. 16th National Conference on Artificial

Intelligence (AAAI-99), page 965.

Latombe, J.-C. (1999). Motion planning: A journey of robots, molecules, digital

actors, and other artifacts. International Journal of Robotics Research, 18(11),

1119–1128.

Littmann, E. and Ritter, H. (1996). Learning and generalization in cascade net-

work architectures. Neural Comput., 8(7), 1521–1539.

Liu, C., Ang Jr., M. H., Krishnan, H., and Lim, S. Y. (2000). Virtual obstacle con-

cept for local-minimum-recovery in potential-field based navigation. In Proc.

IEEE International Conference on Robotics and Automation (ICRA’00), volume 2,

pages 983–988.

Low, K. H., Leow, W. K., and Ang, Jr., M. H. (2002). A hybrid mobile robot

architecture with integrated planning and control. In Proc. 1st International

37

Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS-02),

pages 219–226.

Low, K. H., Leow, W. K., and Ang, Jr., M. H. (2003). Action selection for single-

and multi-robot tasks using cooperative extended Kohonen maps. In Proc.

18th International Joint Conference on Artificial Intelligence (IJCAI-03), pages

1505–1506.

Low, K. H., Leow, W. K., and Ang, Jr., M. H. (2004). Task allocation via self-

organizing swarm coalitions in distributed mobile sensor network. In Proc.

19th National Conference on Artificial Intelligence (AAAI-04), pages 28–33.

Maes, P. (1995). Modeling adaptive autonomous agents. In C. G. Langton,

editor, Artificial Life : An Overview, pages 135–162. MIT Press: Cambridge,

MA. Also appeared in Artificial Life, 1(1-2).

Mahadevan, S. and Connell, J. (1992). Automatic programming of behavior-

based robots using reinforcement learning. Artificial Intelligence, 55(2-3), 311–

365.

Martinetz, T. M., Ritter, H. J., and Schulten, K. J. (1990). Three-dimensional

neural net for learning visuomotor coordination of a robot arm. IEEE Trans.

Neural Networks, 1(1), 131–136.

Martinoli, A., Ijspeert, A. J., and Mondada, F. (1999). Understanding collective

aggregation mechanisms: From probabilistic modelling to experiments with

real robots. Robotics and Autonomous Systems, 29(1), 51–63.

Mendenhall, W. and Sincich, T. (1994). Statistics for Engineering and the Sciences.

Prentice Hall, fourth edition.

Michel, O. (2004). Cyberbotics Ltd. WebotsTM: Professional mobile robot sim-

ulation. International Journal of Advanced Robotic Systems, 1(1), 39–42.

Millán, J. del R., Posenato, D., and Dedieu, E. (2002). Continuous-action Q-

learning. Machine Learning, 49(2-3), 249–265.

Moody, J. and Darken, C. J. (1989). Fast learning in networks of locally-tuned

processing units. Neural Comput., 1(2), 281–294.

Platt, J. (1991). A resource-allocating network for function interpolation. Neural

Comput., 3(2), 213–225.

38

Poggio, T. and Girosi, F. (1990). Networks for approximation and learning.

Proc. IEEE, 78(9), 1481–1497.

Pomerleau, D. A. (1991). Efficient training of artificial neural networks for au-

tonomous navigation. Neural Comput., 3(1), 88–97.

Port, R. F. and van Gelder, T. (1995). Mind as Motion: Explorations in the Dynamics

of Cognition. MIT Press, Cambridge, MA.

Rao, R. P. H. and Fuentes, O. (1998). Hierarchical learning of navigational be-

haviors in an autonomous robot using a predictive sparse distributed mem-

ory. Machine Learning, 31(1-3), 87–113.

Rimon, E. and Koditschek, D. E. (1992). Exact robot navigation using artificial

potential functions. IEEE Trans. Robot. Automat., 8(5), 501–518.

Ritter, H. and Schulten, K. (1986). Topology conserving mappings for learning

motor tasks. In J. S. Denker, editor, Neural Networks for Computing, pages 376–

380. American Institute of Physics Publication, Conference Proceedings 151,

Snowbird, Utah.

Rohanimanesh, K. and Mahadevan, S. (2003). Learning to take concurrent ac-

tions. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neu-

ral Information Processing Systems 15, pages 1619–1626, Cambridge, MA. MIT

Press.

Rosenblatt, J. K. (1997). DAMN: A distributed architecture for mobile naviga-

tion. J. Expt. Theor. Artif. Intell., 9(2-3), 339–360.

Russell, S. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Pren-

tice Hall, Upper Saddle River, NJ.

Rybski, P. E., Stoeter, S. A., Gini, M., Hougen, D. F., and Papanikolopoulos, N. P.

(2002). Performance of a distributed robotic system using shared communi-

cations channels. IEEE Trans. Robot. Automat., 18(5), 713–727.

Santamária, J. C., Sutton, R., and Ram, A. (1998). Experiments with reinforce-

ment learning in problems with continuous state and action spaces. Adaptive

Behavior, 6(2), 163–218.

Schaal, S. and Atkeson, C. G. (1998). Constructive incremental learning from

only local information. Neural Comput., 10(8), 2047–2084.

39

Schaal, S., Atkeson, C. G., and Vijayakumar, S. (2002). Scalable techniques

from nonparametric statistics for real time robot learning. Applied Intelligence,

17(1), 49–60.

Sharkey, A. J. C. and Sharkey, N. E. (1997). Combining diverse neural nets.

Knowledge Engineering Review, 12(3), 231–247.

Sharkey, N. E. (1998). Learning from innate behaviors: A quantitative evalua-

tion of neural network controllers. Machine Learning, 31(1-3), 115–139. Also

appeared in Autonomous Robots, vol. 5, no. 3-4, pp. 317–334.

Shastri, S. V., editor. (1999). International Journal of Robotics Research, Special Issue

on Field and Service Robotics, 18(7).

Smart, W. D. and Kaelbling, L. P. (2000). Practical reinforcement learning in

continuous spaces. In Proc. 17th International Conference on Machine Learning

(ICML-00), pages 903–910.

Smith, A. J. (2002). Applications of the self-organising map to reinforcement

learning. Neural Networks, 15(8-9), 1107–1124.

Sutton, R. (1998). Reinforcement Learning: An Introduction. MIT Press, Cam-

bridge, MA.

Tani, J. and Fukumura, N. (1994). Learning goal-directed sensory-based navi-

gation of a mobile robot. Neural Networks, 7(3), 553–563.

Touzet, C. (1997). Neural reinforcement learning for behavior synthesis.

Robotics and Autonomous Systems, 22(3-4), 251–281.

van der Smagt, P., Groen, F. C. A., and van het Groenewoud, F. (1994). The

locally linear nested network for robot manipulation. In Proc. International

Conference on Neural Networks, volume 5, pages 2787–2792.

Versino, C. and Gambardella, L. M. (1995). Learning the visuomotor coordina-

tion of a mobile robot by using the invertible Kohonen map. In J. Mira and

F. Sandoval, editors, Proc. International Workshop on Artificial Neural Networks,

pages 1084–1091. LNCS 930, Springer, Berlin.

Walter, J. and Ritter, H. (1996). Investment learning with hierarchical PSOM.

In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in Neural

Information Processing Systems 8, pages 570–576, Cambridge, MA. MIT Press.

40

Walter, J. A. and Schulten, K. J. (1993). Implementation of self-organizing neural

networks for visuo-motor control of an industrial robot. IEEE Trans. Neural

Networks, 4(1), 86–95.

Wettschereck, D. and Dietterich, T. (1992). Improving the performance of radial

basis function networks by learning center locations. In J. E. Moody, S. J.

Hanson, and R. P. Lipmann, editors, Advances in Neural Information Processing

Systems 4, pages 1133–1140, Morgan Kaufmann: San Mateo, CA.

Zalama, E., Gaudiano, P., and Coronado, J. L. (1995). A real-time, unsupervised

neural network for the low-level control of a mobile robot in a non-stationary

environment. Neural Networks, 8(1), 103–123.

Zelek, J. S. and Levine, M. D. (1996). SPOTT: A mobile robot control archi-

tecture for unknown or partially known environments. In I. Nourbakhsh,

editor, Planning with Incomplete Information for Robot Problems: Papers from the

AAAI Spring Symposium, pages 129–140. AAAI Press.

41

