
Gradient-Driven Rewards to Guarantee Fairness in
Collaborative Machine Learning

Xinyi Xu1,5∗, Lingjuan Lyu2∗, Xingjun Ma3, Chenglin Miao4,
Chuan Sheng Foo5, and Bryan Kian Hsiang Low1

1Department of Computer Science, National University of Singapore, Republic of Singapore
2Sony AI, 3School of Information Technology, Deakin University, Australia

4Department of Computer Science, University of Georgia, USA
5Institute for Infocomm Research, A*STAR, Republic of Singapore

1{xuxinyi,lowkh}@comp.nus.edu.sg, 2lingjuan.lv@sony.com
3danxjma@gmail.com, 4cmiao@uga.edu, 5foo_chuan_sheng@i2r.a-star.edu.sg

Abstract

Collaborative machine learning provides a promising framework for different
agents to pool their resources (e.g., data) for a common learning task. In realistic
settings where agents are self-interested and not altruistic, they may be unwilling
to share data or model without adequate rewards. Furthermore, as the data/model
shared by the agents may differ in quality, designing rewards which are fair to
them is important so that they do not feel exploited and discouraged from sharing.
In this paper, we adopt federated learning as a gradient-based formalization of
collaborative machine learning, propose a novel cosine gradient Shapley value
to evaluate the agents’ uploaded model parameter updates/gradients, and design
theoretically guaranteed fair rewards in the form of better model performance.
Compared to existing baselines, our approach is more efficient and does not require
a validation dataset. We perform extensive experiments to demonstrate that our
proposed approach achieves better fairness and predictive performance.

1 Introduction

In collaborative machine learning (CML), multiple agents (e.g., researchers, organizations, compa-
nies) pool their resources (e.g., data) together for a common learning task. It spans a wide variety
of real-world applications such as digital healthcare [48], clinical trial research [13, 23], wake word
detection for smart voice assistants [27], and next word prediction on mobile devices [15].

Federated learning (FL) provides one natural formalization of CML [18, 40, 42, 55, 59]. In FL, the
agents perform local model training (e.g., via stochastic gradient descent) and share their resulting
model parameter updates/gradients [39, 54, 57]. An important distinction of our work here from the
common FL literature is that we allow the agents to be self-interested and so, they are not necessarily
cooperative like the worker nodes in distributed learning. The implication is that in order to achieve
competitive predictive performance for the learning task, it is imperative to incentivize/reward the
agents for contributing/sharing information in the form of gradients [46, 47, 51].

Our work here adopts FL as the particular formalization of gradient-based CML to investigate and
design a fair reward mechanism. So, the (self-interested) agents who contribute more would not feel
exploited, i.e., if these agents are rewarded equally with others who contributed much less. This is
often termed as fairness in cooperative game theory [41], mechanism design [4], and computational
social choice [11]. To design such a fair reward mechanism, we need to address three main questions.
∗Equal contribution.
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For the first question, what is a suitable notion of fairness? The Shapley value (SV) [49] from
cooperative game theory is an appealing choice and has been used in ML [14] and FL [53, 54].
However, the effectiveness of existing SV-based methods is limited by the validation process which
requires an auxiliary dataset and more time overhead [19, 54]. To address these challenges, we
propose to consider the vector alignment between the shared/uploaded gradients by the agents as it
circumvents the need for validation and implicitly captures model performance [12]. We therefore
propose our SV-based definition using the cosine similarity between gradients called the cosine
gradient Shapley value (CGSV) which can be efficiently and accurately approximated.

For the subsequent question, what shall we use as reward? Various choices such as monetary rewards
from a pre-allocated budget [62] or the total revenue generated from FL [9, 10] have been proposed.
Unfortunately, though it is natural to consider monetary incentives, these methods may not be readily
practical due to the open problem of the denomination between data/gradient and dollar value [1, 45].
Instead, we propose to consider the downloaded gradients from the server as the reward to agents. In
this manner, we can avoid the need of external resources and the ensuing practical challenges.

For the last question, how should rewards be allocated to guarantee fairness? Using the downloaded
gradients as rewards, we propose a mechanism which controls the quality of the gradients that the
agents download according to their uploaded model parameter update/gradients via a sparsifying
gradient trick [2, 7]. This mechanism allows us to provide fairness guarantees in the form of model
performance such that the agent who contributes/uploads the best model parameter updates/gradients
receives a model with the best performance (i.e., lowest training loss) [51].

In comparison with the related works, our proposed fair gradient reward mechanism has the following
practical advantages: (a) Evaluation without an auxiliary dataset: Our fair gradient reward mechanism
does not require any auxiliary dataset to evaluate the quality of the agents’ gradients, as opposed
to existing methods [36, 53, 54], hence saving the additional costs from procuring and processing
this dataset [51]. (b) Inherent rewards: Our fair gradient reward mechanism does not need external
resources and circumvents the challenge of determining the form and denomination between an
external resource such as money and gradients/data points [1, 45]. (c) Training-time rewards: Our fair
gradient reward mechanism dynamically determines the appropriate rewards (i.e., fair) to agents and
realizes them during training instead of post-hoc [47, 51, 62], hence saving post-processing costs.

In summary, the contributions of our work here to FL include the following:

• We propose a novel cosine gradient Shapley value (CGSV) to fairly evaluate the quality of uploaded
gradients without any auxiliary dataset and present an efficient approximation with bounded error.

• Based on CGSV, we design a novel training-time fair gradient reward mechanism to determine
and realize the rewards (i.e., the downloaded gradients by the agents) with theoretical fairness
guarantees (i.e., allocate models of lower training losses to agents who upload better gradients).

• We empirically demonstrate the effectiveness of our fair gradient reward mechanism on multiple
benchmark datasets in terms of fairness, predictive performance, and time overhead.

2 Related Work

Reward design and choice in CML. In related fields such as FL [29, 35, 37, 46, 57, 60, 63],
Bayesian CML [51], and data sharing [13, 23, 47], designing appropriate rewards to encourage
collaboration (e.g. sharing data, gradient, or other information) is a non-trivial practical problem. A
useful solution concept should provide a formalization of fairness, a suitable form and denomination
of reward, and a principled way to guarantee fairness via a carefully constructed reward design
mechanism. Previous approaches have considered monetary rewards from a pre-allocated budget [62,
63] or the total revenue generated from collaboration [9, 10], or simply an abstract and quantifiable
form of reward [46, 47]. These methods usually face the practical challenge of determining a suitable
denomination between money and data/gradients [1, 45]. The work of [63] has explored a different
avenue of using a reverse auction to guarantee truthfulness in its mechanism instead of fairness.

Fairness notions. Due to several desirable properties including symmetry and null player, the
Shapley value (SV) [49] from cooperative game theory is commonly considered as a theoretically
principled fairness formalization [4, 11, 41]. Existing SV-based methods consider fairness in the sense
of rewarding agents according to their contributions [19, 53, 54]. However, they typically encounter
two practical challenges: significant time incurred from computing the SV using validation (i.e.,
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further exacerbated by the long training time [14, 19, 54]) and additional cost to procure the auxiliary
validation dataset [36, 51]. In contrast, the work of [30] has adopted an egalitarian notion of fairness
by aiming to equalize the final individual performance among agents, which is fundamentally different
from SV.

Different from the fairness definition in [30], we adopt the fairness notion formalized by SV [14, 19,
51, 53, 54]. A novelty of our approach is in our application of SV: While previous works use the
validation accuracy [14, 19, 53, 54], we leverage the cosine similarity between gradient vectors in
gradient-based ML models [12]. We thus propose cosine gradient Shapley value (CGSV) to fairly
measure the quality of the uploaded gradients of the agents. Based on CGSV, we design a gradient
reward mechanism with fairness guarantees (Sec. 3.5) and empirically show that it outperforms
the adapted variants of some existing approaches in important aspects, including predictive model
performance and time overhead (Sec. 4.2).

3 Fair Gradient Reward Mechanism

3.1 Vanilla Federated Learning (FL) Problem Setting and Notations

The vanilla FL problem [54, 57] involves a set N := {i}i=1,...,N of N honest agents learning a
D-dimensional vector w ∈ RD of model parameters to minimize a loss function F(w) that can
be additively decomposed into N local differentiable loss functions Fi(w) defined using the local
dataset Di of agent i ∈ N and weighted by its importance pi ≥ 0 (e.g., proportional to |Di|). That is,
F(w) :=

∑
i∈N pi Fi(w) where

∑
i∈N pi = 1. We call N the grand coalition; a coalition S ⊆ N

is then a subset of the grand coalition N of N agents. In iteration t = 0, every agent i ∈ N starts
with the same initialized parameter vector wi,0 := w0 as the server. In iteration t > 0, every agent
i ∈ N calculates a parameter update ∆wi,t := −ηt∇Fi(wi,t−1) with step size ηt and gradient
∇Fi(wi,t−1) w.r.t. parameter vector wi,t−1 and uploads it to a trusted server who normalizes and
aggregates all agents’ parameter updates as follows:

ui,t := Γ ∆wi,t/‖∆wi,t‖ , uN ,t :=
∑
i∈N ri,t−1 ui,t (1)

where Γ is a normalization coefficient used to prevent gradient explosion [32, 44] and the importance
coefficient ri,t−1 will be described later in Sec 3.4. So, we call (1) the gradient aggregation step.
The gradient download step then follows where every agent i ∈ N downloads the aggregated
parameter update/gradient uN ,t (1) from the server (as reward) for updating its model parameters
wi,t := wi,t−1 + uN ,t to the same wt := wt−1 + uN ,t as the server. That is, wi,t = wt for all
i ∈ N and t ∈ Z+ ∪ {0}. We define uS,t for any coalition S ⊆ N in a similar way as uN ,t (1). For
brevity, we omit t from our notations in Secs. 3.2 and 3.3 since we only refer to iteration t.

3.2 Cosine Gradient Shapley Value (CGSV) for Fairness

In the gradient aggregation step (1), the quality/value of coalition S’s (normalized) aggre-
gated parameter update/gradient uS can be measured by its cosine similarity cos(uS ,uN ) :=
〈uS ,uN 〉/(‖uS‖‖uN ‖) to the grand coalition N ’s aggregated parameter update/gradient uN [12,
28, 34]. We use this cosine similarity measure as our gradient valuation function ν(S) :=
cos(uS ,uN ). Intuitively, if the direction of uS aligns more closely with that of uN , then its
quality/value ν(S) is higher. Using ν, the contribution φi of agent i ∈ N is defined based on the
notion of Shapley value (SV) [49] which measures its expected marginal contribution when joining
the other agents preceding it in any permutation and satisfies certain desirable fairness properties [5],
such as null player (i.e., an agent with no marginal contribution has zero SV), symmetry (i.e., agents
with identical marginal contributions have equal SVs), among others, as formally discussed in
Appendix A.1:

Definition 1 (Cosine gradient Shapley value (CGSV)). Let ΠN be a set of all possible permutations
of N and Sπ,i be the coalition of agents preceding agent i in permutation π ∈ ΠN . The CGSV of
agent i ∈ N is defined as

φi := (1/N !)
∑
π∈ΠN

[
ν(Sπ,i ∪ {i})− ν(Sπ,i)

]
. (2)

If φi is negative, then it follows from the weighted sum of parameter updates/gradients in (1) that ui
points in an opposite direction to some other parameter updates/gradients and hence has negative
cosine similarities to them. In practice, due to the noisy training arising from the use of stochastic
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gradient descent (SGD) and/or a highly non-convex loss function, φi may at times be negative even
for an honest agent i. When the number of such cases is limited, training via SGD can still converge
to yield a competitive predictive performance, as empirically validated in [12].

3.3 Efficient Approximation of CGSV

Since evaluating agent i’s CGSV φi (2) exactly incurs O(2ND) time and is thus costly, we propose
an efficient approximation by directly measuring the cosine similarity of its (normalized) parameter
update/gradient ui to the grand coalition N ’s aggregated parameter update/gradient uN , which
reduces the incurred time by a factor of 2N and has a bounded error from φi (Theorem 1):

φi ≈ ψi := cos(ui,uN ) . (3)

Theorem 1 (Approximation Error). Let I ∈ R+. Suppose that ‖ui‖ = Γ and |〈ui,uN 〉| ≥ 1/I
for all i ∈ N . Then, φi − Liψi ≤ IΓ2 where the multiplicative factor Li can be normalized away.

Its proof is in Appendix A.2. From Theorem 1, the approximation error is bounded and decreases
quadratically with normalization coefficient Γ. However, Γ cannot be reduced to be arbitrarily small,
which may cause |〈ui,uN 〉| ≥ 1/I not to hold. It also does not hold when ui is orthogonal to uN or
is close to the zero vector, hence implying the quality of that agent i’s parameter update/gradient is not
high enough. So, every agent is encouraged to contribute a parameter update/gradient of sufficiently
high quality in order to ensure the quality of the approximation ψi (Theorem 1).

We have performed a simple experiment to compare the quality of our approximation ψi with that
of a sampling-based (ε, δ)-approximation φ̄i [38], the latter of which is widely used by existing
works in data valuation and CML/FL [14, 19, 51, 54]. In this experiment, we have drawn N random
D-dimensional vectors from a standard multivariate normal distribution to simulate u1, . . . ,uN
and calculated the resulting exact CGSVs φ := (φi)i=1,...,N , our approximation ψ := (ψi)i=1,...,N ,
and the sampling-based (0.1, 0.1)-approximation φ̄ := (φ̄i)i=1,...,N . Fig. 1 shows the results for `1
error, `2 error, and the incurred time averaged over 10 runs: Our approximation ψ performs better in
all three metrics with varying D (right figure) and the performance gap widens with an increasing
number N of agents (left figure).

Figure 1: Comparison of `1 error (blue), `2 er-
ror (orange), and incurred time (green) (i.e., av-
eraged over 10 runs) between our approximation
ψ (solid lines) vs. a sampling-based approxima-
tion φ̄ (dashed lines) [38] of the exact CGSVs
φ with (left) varying number N of agents and
D = 1024, and (right) varying vector dimension D
and N = 10. For all metrics, lower is better.

Figure 2: (Left) `2 distance between model pa-
rameters of agent i = 1, . . . , 5 (abbreviated to
Ai) vs. that of the server, and (right) correspond-
ing training loss for an FL problem with N = 5
agents using local MNIST datasets of 600 im-
ages each to collaboratively learn 2-layer CNN
parameters where the datasets of A1 (blue), A2
(orange), and A3 (green) have 20%, 40%, and
60% randomly corrupted labels, respectively.
The brown line denotes `2 distance betweenw0

(initialization) vs. server’s model parameters.

3.4 Server-Side Training-Time Gradient Reward Mechanism

We will now describe the exact details of the gradient aggregation and download steps performed by
the server to implement our proposed fair gradient reward mechanism:

Gradient Aggregation Step. With a specified normalization coefficient Γ and an initialized coeffi-
cient ri,0, the server performs normalization and aggregation of all agents’ parameter updates into
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uN ,t using (1), as previously discussed in the FL problem setting (Sec. 3.1). Then, the server com-
putes our approximation ψi,t (3) of the CGSV φi,t (2) and updates (and normalizes) the importance
coefficient ri,t in iteration t via a moving average of ψi,t given the relative weight α on ri,t−1 from
previous iteration t− 1:

ri,t := α ri,t−1 + (1− α) ψi,t , ri,t ← ri,t/
∑
i′∈N ri′,t (4)

where ri,0 := 0. Note that ri,t (4) is used for deriving the sparsified gradient (5) in the gradient
download step as well as the aggregation of all agents’ parameter updates into uN ,t+1 (1) in iteration
t+ 1. The use of a moving average of ψi,t to compute ri,t (4) provides a smoothed estimate without
abrupt fluctuations and reduces the effect of noisy training due to the use of SGD in practice [30, 54].
It also allows a flexible weighting over the iterations of the entire training process: In particular,
setting α < 1 can effectively mitigate the noise from random initialization of model parametersw0

because the weight on ψi,t′ in earlier iteration t′ < t decays exponentially with t [53].

Gradient Download Step. Recall from the vanilla FL problem setting (Sec. 3.1) that in each iteration
t, this step involves all agents downloading an identical aggregated parameter update/gradientuN ,t (1)
from the server (as reward) for updating their model parameters to the samewt (as the server), which
is expected to converge to yield a competitive predictive performance [8, 31]. However, such equal
rewards to all agents is unfair and will discourage any agent from uploading/contributing a parameter
update/gradient of higher quality [36, 60] when it can afford to. To ensure fairness, each agent should
download some form of aggregated parameter update/gradient as reward that is commensurate to the
quality/value of its uploaded/contributed parameter update/gradient. Consequently, an agent who
uploads/contributes higher-quality parameter updates/gradients over the entire training process should
eventually be rewarded with converged model parameters whose resulting training loss (and hence
predictive performance) is closer to that of the server (Theorem 2).

To achieve this, we adopt the trick of sparsifying2 the aggregated parameter update/gradient uN ,t
downloaded by agent i as reward in each iteration t. Specifically, we zero out fewer of its smallest
components (hence higher-quality gradient reward) when the importance coefficient ri,t (4) (i.e.,
moving average of the approximate CGSV ψi,t) is larger:

vi,t := mask(uN ,t, qi,t) , qi,t := bD tanh(β ri,t)/maxi′∈N tanh(β ri′,t)c (5)
where mask(u, q) retains the largest max(0, q) components (in magnitude) of u and zeros out all
of its other components [2, 58], and β ≥ 1 specifies the degree of altruism: Greater altruism β
gives any agent with a smaller ri,t a larger improvement in the quality of its gradient reward, i.e.,
a larger reduction in the sparsity of its downloaded vi,t as reward. In the extreme case of β = ∞,
we recover the vanilla FL problem setting (Sec. 3.1) where all agents are rewarded equally with
uN ,t (i.e., best-quality gradient reward vi,t = uN ,t for all i ∈ N with no sparsification), albeit with
importance coefficients ri,t possibly differing across agents i ∈ N and dynamically updated over
iteration t ∈ Z+. Hence, increasing β from 1 to∞ trades off fairness for equality in gradient rewards
by being more altruistic to any agent with a smaller ri,t; we empirically show the effect of varying β
on training loss in Fig. 7 of Sec. 4.2. Note the agent i∗ := argmaxi′∈N tanh(β ri′,t) with the largest
possible ri∗,t does not benefit from such altruism since it already downloads the best-quality gradient
reward (i.e., uN ,t) according to (5).

Suppose that there exists a known threshold r > 0 s.t. ri,t ≥ r for all i ∈ N and t ∈ Z+

and we want to limit the sparsity of any downloaded vi,t or, equivalently, ensure the minimum
quality of any gradient reward: Specifically, given a predefined threshold c ∈ (0, 1], we want to
guarantee qi,t ≥ bD × cc holds for all i ∈ N and t ∈ Z+. By setting β s.t. tanh(β r) ≥ c,
it follows from (5) and maxi′∈N tanh(β ri′,t) ≤ 1 that tanh(β ri,t)/maxi′∈N tanh(β ri′,t) ≥
tanh(β ri,t) ≥ tanh(β r) ≥ c and hence qi,t ≥ bD × cc ensues. By using the property that
tanh(β r) = (exp(2β r) − 1)/(exp(2β r) + 1), β ≥ ln((1 + c)/(1 − c))/(2r) can be derived
and used for setting β. It further informs us that reducing the sparsity of any downloaded vi,t or,
equivalently, improving the minimum quality of any gradient reward (i.e., by increasing c) requires
greater altruism β to be introduced, while improving the minimum quality of uploaded/contributed
parameter updates/gradients by any agent over the entire training process (hence larger r) eases the
need of introducing greater altruism β.

To see why the sparsifying gradient trick (5) can ensure fairness, we illustrate its effect in an FL
problem with N = 5 agents using local MNIST datasets of 600 images each to collaboratively learn

2Sparsifying a parameter update/gradient vector means zeroing out some of its components and leaving the
others unchanged [7, 32].
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the parameters of a 2-layer convolutional neural network (CNN) where the datasets of agents 1, 2,
and 3 have 20%, 40%, and 60% randomly corrupted labels, respectively. The uploaded/contributed
parameter updates/gradients thus decrease in quality from agents 1 to 3 (i.e., ψ1,t = 0.194, ψ2,t =
0.088, and ψ3,t = 0.043 on average) due to increasingly noisy labels in their datasets, while agents
4 and 5 upload/contribute parameter updates/gradients of high quality (i.e., ψ4,t = 0.331 and
ψ5,t = 0.342 on average) due to uncorrupted labels in their datasets. Consequently, agents 1 to 3
have increasing sparsity (resp., 34.9%, 67.6%, and 83.0% on average) while agents 4 and 5 have
little/no sparsity (resp., 3.5% and 1.1% on average) in their downloaded vi,t as rewards (β = 1).
Fig. 2 shows that the converged model parameters of agents 1 to 3 grow in `2 distance from that of
the server (hence increasing training loss) while agents 4 and 5 have the closest converged model
parameters (hence lowest training loss).

We provide the pseudocodes performed by the server and agent i ∈ N in each iteration t below. We
will discuss in Sec 4.2 how to set the hyperparameters Γ, α, and β, in (1), (4), and (5) respectively in
our experiments.

Server (t)

1: for all i ∈ N do
2: Download ∆wi,t from agent i
3: . Gradient Aggregation Step
4: Compute ui,t and uN ,t (1)
5: for all i ∈ N do
6: Compute ψi,t (3) and ri,t (4)
7: . Gradient Download Step
8: for all i ∈ N do
9: Compute vi,t (5) for download by agent i

Agent (i, t)

1: Upload ∆wi,t = −ηt∇Fi(wi,t−1) to server
2: Download vi,t from server
3: Update wi,t = wi,t−1 + vi,t

3.5 Fairness Guarantee

We have previously discussed the intuition underlying our notion of fairness in Sec. 3.4 that an agent
who uploads/contributes higher-quality parameter updates/gradients over the entire training process
should eventually be rewarded with converged model parameters whose resulting training loss (and
hence predictive performance) is closer to that of the server. Note that the importance coefficient
ri,t (4) measures the overall quality of the parameter updates/gradients uploaded/contributed by agent
i over the entire training process till iteration t. Our main result below guarantees a notion of fairness
that under some conditions on loss function F and the server’s model parameters wt, if an agent
i has a larger importance coefficient ri,t and model parameters wi,t−1 closer to that of the server
(i.e., wt−1) than another agent by at least 2‖vi,t‖ in previous iteration t− 1, then it is rewarded with
model parameters wi,t incurring smaller training loss F(wi,t) in iteration t:
Theorem 2 (Fairness in Training Loss). Let δi,t := ‖wt − wi,t‖. Suppose that wt is near to a
stationary point of F for t ≥ t∗ ∈ Z+ and some regularity conditions on F hold. For all i, i′ ∈ N
and t ≥ t∗, if ri,t ≥ ri′,t and δi′,t−1 − δi,t−1 ≥ 2‖vi,t‖, then F(wi,t) ≤ F(wi′,t).

Its proof is in Appendix A.3. Our experiments in Appendix B.3 will empirically verify the fairness
guarantee in Theorem 2 (and fairness in test accuracy) without needing to impose its conditions.

4 Experiments and Discussion

4.1 Experimental Settings

Datasets. We perform extensive experiments on image classification datasets like MNIST [26] and
CIFAR-10 [21] and text classification datasets like movie review (MR) [43] and Stanford sentiment
treebank (SST) [20]. We use a 2-layer convolutional neural network (CNN) for MNIST [25], a
3-layer CNN for CIFAR-10 [22], and a text embedding CNN for MR and SST [20].

Baselines. We consider several existing FL baselines such as FedAvg [39], q-FFL[30], CFFL [36],
and an extended contribution index (ECI) method from [53] utilizing validation accuracy-based SV
and setting qi,t for i ∈ N in (5) to be proportional to the agents’ CIs. CFFL also utilizes the validation
accuracy but is more efficient by using a leave-one-out approach instead of SV, while q-FFL aims at
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Table 1: Average test accuracy (%) achieved by the agents collaborating via our fair gradient reward
mechanism with varying degrees of altruism β vs. tested baselines on all datasets. Each value in
brackets denotes the highest test accuracy achieved by any agent.

MNIST CIFAR-10 MR SST
No. Agents 10 20 10 5 5
Data Partition UNI POW CLA UNI POW CLA UNI POW CLA POW POW
Standalone 91 (91) 88 (92) 53 (92) 91 (91) 89 (92) 48 (90) 46 (47) 43 (49) 31 (44) 47(56) 31(34)
FedAvg 93 (94) 92 (94) 53 (93) 93 (93) 92 (94) 49 (92) 48 (48) 47 (50) 32 (47) 51(63) 33(35)
q-FFL 85 (91) 27 (45) 44 (64) 88 (91) 48 (53) 40 (59) 41 (46) 36 (36) 22 (28) 12(18) 23(25)
CFFL 90 (92) 85 (90) 34 (44) 91 (93) 88 (91) 39 (46) 39 (41) 35 (45) 22 (40) 44(53) 31(32)
ECI 94 (94) 92 (94) 53 (94) 94 (94) 92 (94) 49 (92) 49 (49) 47 (51) 31 (46) 56(61) 33(34)
DW 93 (94) 92 (94) 53 (93) 93 (93) 92 (94) 49 (92) 48 (48) 47 (50) 32 (47) 51(62) 33(35)
RR 94 (95) 95 (95) 64 (72) 94 (95) 94 (95) 50 (56) 47 (59) 49 (51) 26 (29) 63(65) 36(36)
Ours (EU) 94 (94) 94 (94) 54 (94) 94 (94) 94 (94) 49 (92) 49 (49) 49 (51) 32 (46) 54(59) 34(36)
Ours (β = 1) 96 (97) 94 (95) 74 (95) 95 (96) 96 (97) 65 (93) 61 (62) 60 (62) 35 (54) 62(76) 35(36)
Ours (β = 1.2) 94 (95) 95 (95) 75 (95) 96 (96) 96 (97) 65 (93) 61 (62) 60 (62) 35 (54) 62(75) 34(37)
Ours (β = 1.5) 97 (97) 95 (95) 75 (95) 96 (97) 94 (95) 65 (93) 61 (62) 59 (62) 35 (54) 62(74) 35(37)
Ours (β = 2) 96 (96) 95 (96) 73 (94) 97 (97) 95 (96) 66 (95) 62 (62) 61 (62) 36 (54) 62(75) 35(37)

achieving egalitarian fairness by equalizing the local training losses of the agents. Furthermore, we
implement simple FL baselines based on round robin (RR), dataset weighted download (DW), and
Euclidean distance (EU). RR is commonly adopted in mechanism design to ensure fairness [6, 33]
and also used in FL to schedule gradient downloads [50, 64]. For DW (EU), qi,t for i ∈ N in (5)
are set to be proportional to the agents’ local dataset sizes (negative Euclidean distance of their
unnormalized parameter updates from that of the server). We also include standalone agents as a
baseline, i.e., each agent trains its CNN using only its local dataset without involving FL.

Performance Metrics. To measure fairness, we consider the scaled Pearson correlation coefficient3

ρ := 100×pearsonr(ϕ, ξ) ∈ [−100, 100] between the test accuracies ϕ achieved by the agents when
standalone [36] vs. that ξ achieved by them when collaborating via a gradient reward mechanism in
FL after the entire training process has ended at iteration t = T . The corresponding experimental
results will be reported in Sec. 4.2. To empirically verify the fairness guarantee in Theorem 2, we
have also reported in Appendix B.3 results on the fairness metric ρ between the importance coeffi-
cients ϕ := (ri,T )i=1,...,N (4) (i.e., measuring overall qualities of the parameter updates/gradients
uploaded/contributed by the agents) vs. test accuracies (or negative training losses) ξ achieved by
them. We consider other performance metrics like predictive performance (i.e., average and highest
test accuracies achieved by the agents) and time overhead of the tested gradient reward mechanisms.

Data Partitions among Agents. We carefully construct two heterogeneous data partitions by varying
the agents’ local dataset sizes and corresponding numbers of distinct classes. For imbalanced dataset
sizes (POW), we follow a power law to partition the entire dataset among the agents. For MNIST,
we partition the entire dataset of size {3000, 6000, 12000}, respectively, among {5, 10, 20} agents
s.t. each agent has a randomly sampled local dataset of size 600 on average [39]. The size of the local
dataset increases from the first to the last agent. Since the local dataset sizes vary significantly (i.e.,
superlinearly) among the agents, the agents with larger local datasets are expected to achieve better
predictive performance. For imbalanced class numbers (CLA), we vary the number of distinct
classes in the local datasets of the agents, while keeping their sizes fixed at 600. For this setting, we
only consider MNIST and CIFAR-10 datasets and partition classes in a “linspace” manner as both
contain 10 classes. To illustrate, for MNIST with 5 agents, agents 1, 2, 3, 4, 5 own local datasets with
1, 3, 5, 7, 10 classes, respectively; so, agent 1 (5) has a local dataset with 1 (10) class(es). Similarly,
the agents with local datasets containing more classes are expected to achieve better predictive
performance. We also include the simplest setting of the uniform/homogeneous data partition (UNI)
where the agents are expected to achieve comparable predictive performance.

Additional details of the experimental settings are described in Appendix B.1.

4.2 Experimental Results

Predictive Performance. Table 1 shows results of the average and highest test accuracies achieved
by the agents collaborating via our fair gradient reward mechanism vs. tested baselines on all
datasets. Our fair gradient reward mechanism generally outperforms the tested baselines on both
metrics, especially for heterogeneous data partitions and on the MR dataset. On MNIST, for the

3The Pearson correlation coefficient has been applied to a similar use case in [19].
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Table 2: Fairness metric ρ ∈ [−100, 100] achieved by our fair gradient reward mechanism with
varying degrees of altruism β vs. tested baselines on all datasets. Higher value means greater fairness.

MNIST CIFAR-10 MR SST
No. Agents 10 20 10 5 5
Data Partition UNI POW CLA UNI POW CLA UNI POW CLA POW POW
FedAvg -45.60 55.24 24.12 0.85 -32.58 40.83 18.47 97.48 98.75 48.68 57.50
q-FFL -44.73 39.00 22.38 -22.01 38.71 48.07 -17.64 51.33 94.06 56.43 -75.92
CFFL 83.57 91.80 81.24 82.52 94.70 85.71 78.25 72.55 81.31 96.85 93.34
ECI 85.26 99.83 99.98 80.95 99.41 95.21 75.85 79.50 99.55 97.69 95.00
DW 89.15 98.93 65.34 86.94 99.63 35.21 -23.14 91.97 45.45 99.20 97.12
RR 83.77 71.17 -26.75 -18.64 25.47 95.86 30.67 0.70 90.67 44.16 -25.11
Ours (EU) 84.25 98.25 99.82 80.55 97.77 99.97 78.25 94.24 94.95 97.58 93.21
Ours (β = 1) 94.03 95.74 94.54 84.47 96.39 97.23 98.80 98.78 99.89 96.01 98.20
Ours (β = 1.2) 94.75 97.28 96.23 90.52 97.72 95.21 91.07 91.59 99.82 96.12 98.47
Ours (β = 1.5) 96.34 86.99 95.37 82.68 90.94 98.75 93.55 93.78 95.89 95.32 97.88
Ours (β = 2) 94.66 91.20 95.38 96.90 91.33 94.32 89.80 88.78 93.39 92.22 95.74

CLA data partition among 10 agents, our fair gradient reward mechanism achieves average (highest)
test accuracy of 75% (95%) at β = 1.5, while the best-performing ECI baseline achieves only
that of 53% (94%). On CIFAR-10, for the CLA data partition among 10 agents, our fair gradient
reward mechanism achieves average (highest) test accuracy of 36% (54%) at β = 2, while the
best-performing DW baseline achieves only that of 32% (47%). On the MR dataset, our fair gradient
reward mechanism achieves average (highest) test accuracy of 62% (76%) at β = 1, while the
best-performing RR baseline achieves that of 63% (65%). Its better performance may be attributed
to the adaptive re-weighting in the gradient aggregation step (1) via ri,t, which can dynamically
account for the heterogeneity in the agents’ local datasets [31]. While EU performs comparably to
both FedAvg and ECI (i.e., difference in average test accuracies between EU vs. FedAvg/ECI is less
than 3%), it does not perform better than our fair gradient reward mechanism (e.g., on MNIST, for the
CLA data partition among 10 agents, the difference in average test accuracies between EU vs. our fair
gradient reward mechanism at β = 1.5 is more than 20%) because unlike cosine similarity, Euclidean
distance fails to capture the directional difference between gradients, which is important since the
negative gradients are pointing in the direction of lower loss. Importantly, q-FFL aims to equalize the
local training losses w.r.t. the agent’s local datasets, which may be suboptimal for heterogeneous data
partitions like POW and CLA. We provide further results in Appendix B.5 empirically comparing the
predictive performances of our fair gradient reward mechanism vs. q-FFL.

Fairness. To empirically verify the fairness guarantee in Theorem 2, Table 2 shows results on the
fairness metric ρ achieved by our fair gradient reward mechanism vs. tested baselines on all datasets.
From Table 2, our fair gradient reward mechanism achieves a high degree of fairness of above 80,
while the commonly used FedAvg performs suboptimally s.t. it produces the lowest degree of fairness
of −45.6. On MNIST, for the POW data partition among 10/20 agents and the CLA data partition
among 10 agents, ECI outperforms our fair gradient reward mechanism, albeit at a much higher
time overhead of over 100 times and with additional information from an auxiliary dataset. CFFL
underperforms our fair gradient reward mechanism and ECI as it adopts the leave-one-out approach
which seems less accurate than SV in valuing the contributions of the agents [19]. Both q-FFL and
RR promote egalitarian fairness instead of our notion of fairness via SV and hence do not perform
optimally. DW achieves high degrees of fairness only for the POW data partition because it uses
the agents’ local dataset sizes to determine their gradient rewards. Fig. 3 illustrates an intuitive
trend of the predictive performances achieved by 10 agents collaborating via our fair gradient reward
mechanism for homogeneous and heterogeneous data partitions among the agents on MNIST and
CIFAR-10: For the UNI data partition, all agents achieve comparable predictive performance. Their
predictive performances vary more (most) for the POW (CLA) data partition, hence demonstrating
that our fair gradient reward mechanism can distinguish the contributions of the agents and reward
them with sparsified gradients fairly.

We have performed an additional experiment to understand our fair gradient reward mechanism for
homogeneous and heterogeneous data partitions among 3 agents on MNIST and CIFAR-10 where
for POW and CLA, agent 1 (3) uploads/contributes parameter updates/gradients of lowest (highest)
quality over the entire training process. Fig. 4 shows how ri,t for agent i = 1, 3 varies over iterations
t: Interestingly, for the CLA data partition, though agent 3 (brown solid line) is initially mistaken to
provide a low contribution, the dynamic update of r3,t (4) allows its true contribution to be recognized
quickly. Fig. 5 (Fig. 6) shows how the `2 distance between the downloaded sparsified gradient vi,t (5)
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Figure 3: Test accuracy achieved by agent i = 1, . . . , 10 (abbreviated to
Ai) collaborating via our fair gradient reward mechanism at β = 2 for
the UNI (left), POW (middle), and CLA (right) data partitions among
the 10 agents on MNIST (top) and CIFAR-10 (bottom). Their predictive
performances vary least, more, and most for the respective UNI, POW, and
CLA data partitions.

Figure 4: Graphs of
ri,t (4) for agent i = 1, 3
vs. iteration t for UNI,
POW, and CLA data par-
titions among 3 agents on
MNIST and CIFAR-10.

Figure 5: Graphs of `2 distance between down-
loaded vi,t (5) of agent i = 1, 3 and aggregated
uN ,t (1) vs. iteration t for UNI, POW, and CLA
data partitions among 3 agents on MNIST (left)
and CIFAR-10 (right).

Figure 6: Graphs of `2 distance between last
layer’s model parameters of agent i = 1, 3
and that of the server vs. iteration t for UNI,
POW, and CLA data partitions among 3 agents
on MNIST (left) and CIFAR-10 (right).

of agent i = 1, 3 and aggregated parameter update/gradient uN ,t (1) (last layer’s model parameters of
agent i = 1, 3 and that of the server) varies over iterations t: In particular, for the CLA data partition,
agent i = 1 (i = 3) who uploads/contributes parameter updates/gradients of lowest (highest) quality
over the entire training process downloads vi,t as reward that is further from (closer to) uN ,t, hence
training last layer’s model parameters to be further from (closer to) that of the server. Such results
further validate that in Fig. 2 previously.

Lastly, Fig. 7 confirms that for the CLA data partition among 10 agents on MNIST, increasing the
degree of altruism β leads to all agents downloading higher-quality gradient rewards vi,t (5) and
thus incurring smaller training loss. In particular, agent 1 (abbreviated to A1 and represented by a
blue solid line) who uploads/contributes parameter updates/gradients of lowest quality over the entire
training process benefits most as β increases, as explained previously in Sec. 3.4. Additional results
w.r.t. test loss are reported in Appendix B.4.

Time Overhead. Table 3 compares the time overhead (seconds) of our fair gradient reward mecha-
nism vs. tested baselines on all datasets; the ratio between the time overhead vs. training time is given
in brackets. Our fair gradient reward mechanism is much more efficient than ECI and CFFL which
also consistently achieve fairness. In particular, our fair gradient reward mechanism incurs a small
time overhead of at most 0.4× of the training time, while ECI incurs a significant time overhead of
up to 140× of the training time due to the calculation of the CI incurring O(2N ) time, even with the
permutation sampling-based approximation [38, 54] for 10/20 agents. CFFL incurs at most 2× of the
training time (i.e., 5-6 times longer than ours) from the additional validation in each iteration.

Hyperparameters. We find that α ∈ [0.8, 1)(i.e., relative weight on ri,t−1 in (4)), β ∈ [1, 2] (i.e.,
degree of altruism in (5)) and Γ ∈ [0.1, 1] (i.e., normalization coefficient in (1)) are effective in
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Figure 7: Training losses incurred by agent i = 1, . . . , 10 (abbreviated to Ai) collaborating via our
fair gradient reward mechanism with varying degrees of altruism β = 1.0, 1.2, 1.5, 2 for the CLA
data partition on MNIST.

Table 3: Time overhead (seconds) of our fair gradient reward mechanism vs. tested baselines on all
datasets. Each value in brackets denotes the ratio between the time overhead vs. training time.

MNIST CIFAR-10 MR SST
No. Agents 5 10 20 5 10 5 5
FedAvg 1.17 (7e-3) 1.05 (1e-2) 4.29 (1e-2) 1.66 (7e-3) 7.41 (1e-2) 1.3 (1e-4) 1.31 (6e-4)
q-FFL 6.14 (4e-2) 4.97 (5e-2) 91.20 (0.3) 97.28 (0.4) 58.94 (7e-2) 90.01 (8e-3) 82.85 (4e-2)
CFFL 32.15 (0.2) 21.79 (0.3) 500.03 (1.6) 570.12 (2.0) 302.44 (0.4) 479.12 (0.2) 487.71 (2e-1)
ECI 2377.33 (16) 11937.80 (141) 23749.06 (74) 3571.75 (15) 58835.83 (84) 422.85 (4e-2) 801.20 (0.4)
DW 0.89 (6e-3) 0.79 (9e-3) 1.60 (5e-3) 1.21 (5e-3) 5.29 (7e-3) 0.99 (1e-5) 0.98 (5e-4)
RR 0.89 (6e-3) 0.82 (9e-3) 1.60 (5e-3) 3.31 (1e-2) 5.41 (7e-3) 1.01 (5e-4) 0.99 (5e-4)
Ours (EU) 0.89 (6e-3) 0.81 (9e-3) 1.61 (5e-3) 1.22 (5e-3) 5.33 (7e-3) 1.01 (5e-4) 0.99 (5e-4)
Ours (Cosine) 6.34 (4e-2) 4.94 (5e-2) 94.30 (0.3) 98.39 (0.4) 54.94 (7e-2) 89.81 (8e-3) 82.87 (4e-2)

achieving competitive predictive performance and fairness. In our experiments, we set α = 0.95,
β = [1, 1.2, 1.5, 2], and Γ = 0.5 for MNIST, Γ = 0.15 for CIFAR-10, and Γ = 1 for SST and MR.

5 Conclusion and Future Work

We introduce a novel formulation called cosine gradient Shapley value (CGSV) to fairly evaluate
the quality/value of the uploaded/contributed model parameter updates/gradients by the agents in
federated learning (FL)/gradient-based collaborative machine learning (CML) and use it to design
their corresponding rewards in the form of downloaded gradients. Our approach ensures that the
agents who upload better gradients can download better gradients, which in turn leads to better local
models with lower training losses. We theoretically and empirically demonstrate the effectiveness of
our approach on both predictive performance and fairness. Moreover, our approach is much more
efficient than existing baselines and non-restrictive, i.e., it requires only slight calculations by the
server and does not require an auxiliary dataset.

Our approach provides high flexibility for the trade-off between equitable and strictly fair rewards via
a hyperparameter β controlling the degree of altruism. Interestingly, a higher altruism degree can
sometimes lead to better predictive performance, which naturally raises the following question: Can
we achieve both optimally or is there some inescapable trade-off between fairness and performance?
For future work, it would be interesting to consider the notion of fairness when there are some
adversaries. We would also consider generalizing our work and fairness guaranteee to other forms of
CML (e.g., model fusion [16, 17, 24]) and collaborative Bayesian optimization [52].
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(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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