
Trade-off between Payoff and Model Rewards in
Shapley-Fair Collaborative Machine Learning

Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet†

Dept. of Computer Science, National University of Singapore, Republic of Singapore
Dept. of Electrical Engineering and Computer Science, MIT, USA†

qphongmp@gmail.com, lowkh@comp.nus.edu.sg, jaillet@mit.edu†

Abstract

This paper investigates the problem of fairly trading off between payoff and model
rewards in collaborative machine learning (ML) where parties aggregate their
datasets together to obtain improved ML models over that of each party. Supposing
parties can afford the optimal model trained on the aggregated dataset, we propose
an allocation scheme that distributes the payoff fairly. Notably, the same scheme
can be derived from two different approaches based on (a) desirable properties of
the parties’ payoffs or (b) that of the underlying payoff flows from one party to
another. While the former is conceptually simpler, the latter can be used to handle
the practical constraint on the budgets of parties. In particular, we propose desirable
properties for achieving a fair adjustment of the payoff flows that can trade off
between the model reward’s performance and the payoff reward. We empirically
demonstrate that our proposed scheme is a sensible solution in several scenarios of
collaborative ML with different budget constraints.

1 Introduction

While machine learning (ML) has proven its usefulness in a wide range of applications, a significant
amount of diverse training data is often required to achieve desirable performance. Although this
may not be an issue for very large corporations, it can hardly be met by other businesses. In practice,
the dataset coming from an individual data owner (e.g., a company), called a party, is often limited
in size (e.g., due to the size of the customer base) and diversity (e.g., due to the constraints in the
geographical location and/or the customer demographics). Hence, there is a strong urge for parties to
obtain high-quality ML models by performing collaborative ML: training models on their aggregated
dataset which is often of much larger quantity and higher diversity than those of individual parties.

However, the goal of obtaining improved models may not outweigh the concern of fairness if all parties
receive the same model while their contributions differ (due to the difference in the size and quality
of different parties’ datasets). For instance, a party with a larger contribution feels “under-rewarded”
if all parties receive models of equal performances without any other compensation/rewards for the
difference in their contributions. Hence, a “fair” reward allocation scheme is desirable to give all
parties enough incentives to join the collaboration. Let us classify existing works on fair reward
allocation schemes into 2 groups depending on whether there exists an external source of reward to
be distributed among parties. This source of reward can be thought of as an external buyer of the
model who is interested in the model but does not contribute data, so he/she is willing to pay a reward
to parties in the collaboration to obtain the model.

As an example, a company distributes monetary payoffs to its users for contributing user data to train
a model. Then, one can view users as parties who collaborate to train the model and the company
as an external buyer of the model. In this case, one can compensate for the difference in users’
contributions by fairly distributing the total monetary payoff from the company to users according
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to the value of each user’s data to the model. This value can be measured by a data valuation
method, e.g., the Shapley value [4] and its variants to incorporate the underlying data distribution [3],
replication-robustness [5], and the federated learning setting [16].

In contrast, we focus on the other group of works when the obtained model from the collaboration
of several parties is not sold to any external buyer (e.g., due to privacy or the fear of losing the
competitive advantage), i.e., there is not any external source of reward to be distributed among
parties. In the literature, fairness is maintained by (a) requiring parties to pay a participation fee to
be distributed back to all parties [12] or (b) ensuring that a party with less valuable data receives
a model with lower performance than those with more valuable data [14]. In brief, parties receive
different monetary payoffs (produced by the participation fee) in the former and different models
(called model rewards) in the latter. However, there are 2 main drawbacks: the trading-off between
monetary payoffs vs. model rewards and the uniqueness of the allocation scheme. First, the former
approach [12] prevents parties with an insufficient monetary budget from joining the collaboration
regardless of the usefulness of their datasets to other parties. The latter approach [14] prevents parties
with low-quality datasets from obtaining a good model regardless of their monetary expense capability.
Both cases are undesirable. Second, the uniqueness of the allocation schemes in the works of [12, 14]
is not discussed. Hence, it raises the question of whether there are other allocation schemes that
satisfy the same set of fairness properties in [12, 14]. If such schemes exist, there can be undesirable
disagreement among parties in choosing the allocation scheme to use. On the contrary, if an allocation
scheme is uniquely defined from a set of fairness properties (e.g., the celebrated Shapley value [13]),
parties which agree on these properties are certain to adopt the (unique) allocation scheme.

In this work, we resolve the above 2 problems by proposing fairness properties that define not only
a unique allocation scheme of the monetary payoff but also a unique way of trading off between
payoff and model rewards. It is noted that as both payoff and model rewards are allowed, our problem
subsumes the two problems in [12, 14]. Nevertheless, our solution is not a generalization of existing
solutions [12, 14] because even in the special cases of our problem that are equivalent to those
in [12, 14], our solution is different from that of [12, 14]. In particular, our solution satisfies the
linearity property while the works of [12, 14] do not. The outline of our paper is as follows.

In Sec. 3, we consider parties without budget constraints, which implies that all parties can afford
the highest-quality model from the collaboration. Thus, the scheme is reduced to only allocating
monetary payoffs to parties. In this case, we propose 4 desirable properties which uniquely determine
the fair payoff for each party (in Sec. 3.1). The resulting payoffs fairly compensate for the difference
between the contributions (measured by the Shapley value) of parties to the models they receive,
which we call Shapley fairness. While these payoffs suffice to characterize a payoff allocation scheme,
it does not give us insights into the underlying payoff flows transferred from one party to another.
The latter is crucial for us to unravel the unexplored question of trading off between payoff and
model rewards when parties have budget constraints. Therefore, in Sec. 3.2, we propose 4 desirable
properties for fair payoff flows by drawing inspiration from the Shapley value [13]. These properties
uniquely determine a new solution called the conditional Shapley value which specifies the payoff
flows from one party to another. Interestingly, we arrive at the same set of payoffs as those in Sec. 3.1.
Hence, the fairness of our proposed payoff allocation scheme can be consistently explained with both
the proposed properties of the payoffs (Sec. 3.1) and those of the underlying payoff flows transferred
from one party to another (Sec. 3.2).

In Sec. 4, we consider parties with budget constraints, i.e., their expense cannot exceed their budgets.
Consequently, there may exist parties that cannot afford the highest-quality model if their budgets are
below the required amount of payment. We propose to trade off between payoff and model rewards
such that parties can sacrifice the model reward, i.e., obtaining a worse model, to meet the budget. In
particular, we construct a set of desirable properties that uniquely define adjusted value functions
from which the resulting payoff rewards both meet the budgets and satisfy fairness properties.

In Sec. 5, we empirically demonstrate sensible characteristics of our proposed allocation scheme in
several ML problems. For example, even if parties do not have any budget, they are still motivated to
join the collaboration because they are able to obtain improved models as long as they have valuable
datasets. Furthermore, an increase in the budget of a party not only benefits itself but also benefits
other parties through improved models and/or higher monetary payoffs.
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(a) Payoff reward representation. (b) Payoff flow representation.

Figure 1: Diagrams of the representations of a payoff allocation scheme.

2 Background

Let us consider a set of n parties, denoted as N ≜ {1, 2, 3, . . . , n}, collaborating with each other by
aggregating their datasets to train ML models. Any subset of C ⊂ N is a coalition while N is the
grand coalition. To ease the notation clutter, we overload the notation i to denote both party i and
the singleton set {i}. The aggregated training dataset of a coalition C is denoted as DC ≜ ∪i∈CDi

where Di denotes the dataset of party i. The performance of a model trained on DC is denoted as s(C).
We assume the monotonicity property of s with respect to (w.r.t.) C: ∀C ⊂ C′ ⊂ N , s(C′) ≥ s(C);
s(∅) = 0, and s(N ) > 0. In the experiments (in Sec. 5), the model performance is measured by
the prediction accuracy of models on a validation set which is common across different parties. It
reflects the assumption that parties solve the same ML problem. Our approach also works with other
performance metrics such as the information gain in the work of [14].

The value function, denoted as v, is a mapping from a coalition C ∈ N to its value v(C) such
that v(∅) = 0. In this work, v(C) is considered as the monetary payoff. Adopting the assumption
from the work of [12], we define it using an exchange rate ν > 0: v(C) ≜ νs(C). From the properties
of s, it follows that v is monotonic, v(∅) = 0, and v(N ) > 0. More importantly, a model with the
performance s(C) can be exchanged fairly with a payoff v(C) ≜ νs(C) and vice versa.

Given a value function v, the Shapley value is the solution to distributing the payoff v(N ) to parties
in N that satisfies 4 desirable properties: efficiency, symmetry, linearity, and dummy party (see
App. A). Hence, it is the foundation of many data valuation methods [4, 3, 6, 7, 17]. The Shapley value

of a party i is defined as φi(v) ≜ 1
n

∑
C∈N\i

(
n− 1
|C|

)−1

∆v(i|C) where ∆v(i|C) ≜ v(C ∪ i)− v(C)

is the marginal contribution of party i to coalition C. It is noted that to use the Shapley value, there
should exist a payoff v(N ) to be distributed to all parties in N , i.e., there exists an external source
of reward (see the classification of existing works in Sec. 1). In contrast, we assume that such an
external source of reward does not exist in this work, which renders the direct use of the Shapley
value challenging. Thus, we propose a new perspective of distributing a payoff of value 0 to all
parties in N (by allowing parties to receive negative payoff rewards) such that these payoff rewards
compensate for the difference in the contributions among parties.

In this work, an allocation scheme specifies both payoff and model rewards that each party receives.
We do not distinguish between two models having the same performance. Thus, for a party i ∈ N ,
the scheme specifies the value (equivalently, the performance) of the model and the payoff value it
receives. To receive a negative payoff is to make a payment.

We first consider the case where there are not any budget constraints (i.e., unlimited budgets), so
all parties can afford the best model with the performance of s(N ) (i.e., the optimal model trained
on DN ) while they may receive different payoff rewards to account for the difference in their
contributions in Sec. 3. Then, in Sec. 4, we consider the case that parties have budget constraints such
that they may not afford the model of performance s(N ). In this case, not only do parties receive
payoffs constrained by the budgets, but they also receive different model rewards to maintain fairness.

3 Parties without Budget Constraints

In this section, parties have no budget constraints, so they can expend any amount of payoff to receive
the optimal model trained on DN (i.e., with the performance of s(N )). Hence, the problem is reduced
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to an allocation scheme of only the payoff reward. In particular, different parties receive different
(and possibly negative) payoff rewards to compensate for the difference in their contributions.

Payoff reward vector. Given a value function v, let pi(v) denote the payoff reward that party i

receives. Then, a payoff allocation scheme specifies a payoff reward vector p(v) ≜ (pi(v))
n
i=1.

While party i is rewarded if pi(v) > 0, it makes a payment of value −pi(v) if pi(v) < 0. In practice,
it can be implemented as a 2-step process: first, parties with negative payoffs make payments to an
intermediate pool; second, parties with positive payoffs take their payoffs from the pool (Fig. 1a).

Payoff flow. One may consider defining a payoff allocation scheme by the payoff transferred from
one party to another which we call payoff flows (Fig. 1b). However, there can be different ways of
transferring payoffs among parties which result in the same payoff reward vector. For example, a
payoff reward vector remains unchanged if we increase each payoff flow from party i to party τ(i)
by the same amount where τ(i) = i + 1 for all i < n and τ(n) = 1 (i.e., increasing the payoff
along a closed loop). Furthermore, regardless of how payoffs are transferred among parties, what
matters, in the end, is the payoff reward each party receives which is determined by the payoff reward
vector p(v). Therefore, in the next section, we propose 4 desirable properties that uniquely determine
a fair payoff reward vector (hence, a payoff allocation scheme).

3.1 Fair Payoff Reward Vector

We propose the following 4 desirable properties for the fairness of a payoff reward vector p(v). While
the symmetry and linearity properties are taken from that of the Shapley value, the efficiency and
dummy party properties are modified to fit our problem setting where there is not any external source
of reward to be distributed among parties.

Symmetry. If v(C ∪ i) = v(C ∪ j) for all C ⊂ N \ {i, j}, then pi(v) = pj(v). It implies parties with
equal marginal contributions to any coalitions have the same payoff.

Linearity. Let us consider the value function as a vector in a real vector space of dimension 2n (i.e.,
the number of subsets of N ) which is equipped with the usual addition and scalar multiplication.
Then, given 2 value functions v and w,

pi(v + w) = pi(v) + pi(w) , pi(αv) = αpi(v) , ∀i ∈ N ,∀α ∈ R .

Balance. Recall that there is not any external source that pumps additional payoffs into N (or takes
payoffs from N ). Therefore, the balance property states that

∑
i∈N pi(v) = 0.

Dummy party. Party i ∈ N is a dummy party if v(C ∪ i) = v(C) for all C ⊂ N \ i. It means that a
dummy party can be considered as an external buyer that does not contribute any data and is only
interested in buying the model. Therefore, we expect a dummy party to pay the whole value of the
model it receives from the collaboration, i.e., v(N ) (since parties have no budget constraints). In other
words, if party i is a dummy party, then it makes a payment of value v(N ), i.e., pi(v) = −v(N ).

It is noted that we do not sacrifice the uniqueness of the Shapley value by modifying its properties.
The following lemma shows that these newly-proposed properties still characterize a unique payoff
reward vector, which is proven in App. B.

Lemma 3.1. There exists a unique vector (pi(v))ni=1 of payoff rewards that satisfies the balance, the
symmetry, the linearity, and the dummy party properties:

∀i ∈ N , pi(v) = nφi(v)− v(N ) . (1)

Corollary 3.2. If we allocate payoff rewards to parties in N according to (1), then a party has a
negative payoff reward (i.e., making a payment) if and only if its Shapley value is less than the average
of the Shapley values of all parties, i.e., v(N )/n. This implies that a party receives a negative payoff
if its contribution is less than the average of the contributions of all parties.

We also study another property, namely replication-robustness [1, 5], in App. D where we show that
the proposed payoff allocation scheme is replication-robust for parties with negative payoffs.

Corollary 3.3. We observe that pi(v) is a linear function of φi(v):

∀{i, j} ⊂ N , pi(v)− pj(v) = n(φi(v)− φj(v)) . (2)
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While the Shapley values are often scaled to ensure all of the rewards are distributed (i.e., being
efficient) [12, 14], the scaling transformation violates not only the linearity property but also the above
balance property: if all parties have positive Shapley values, any payoff rewards proportional to the
Shapley values (by scaling) are either all positive or all negative. Unlike the scaling transformation,
the linear transformation in Corollary 3.3 allows a party with a positive Shapley value to have
a negative payoff reward. Furthermore, it realizes our intuition of fairness: the payoff rewards
compensate the difference in the contributions (measured by the Shapley value) between parties,
which we call Shapley fairness. In particular, a larger difference in the contributions of two parties
leads to a larger difference in their payoff rewards, and parties with higher contributions receive
higher payoff rewards.
Remark 3.4. While the Shapley value represents the contribution of a party to the optimal model
trained on DN , there should be n such models distributed to n parties. Thus, the contribution of a
party to n models should be nφi(v), which explains the factor n in (2). The fact that data is freely
replicable (e.g., to n parties) is a special property of data that differentiates itself from the usual
commodity studied in cooperative game theory [1, 14].
Remark 3.5. From (1), one interpretation of the allocation of pi(v) is as follows: first, every party
deposits v(N ) to a common pool as if they were dummy parties (i.e., they have not made any
contribution); second, parties contribute their datasets to form the aggregated dataset DN from which
the optimal model is trained; third, parties receive the optimal model and also parts of the pool of
value nv(N ) (deposited by all parties in the first step) according to their contributions to the optimal
model measured by the Shapley values, i.e., nφi(v).
Remark 3.6. We note that the above modification of the efficiency and dummy party properties
can be generalized while maintaining the uniqueness of the payoff reward vector. This can be of
indepedent interest to readers. In particular, there exists a unique payoff reward vector that satisfies
the symmetry property, the linearity property, the generalized efficiency property:

∑
i∈N pi(v) = β,

and the generalized dummy party property: pi′(v) = (−αv(N ) + β)/n for any dummy party i′ and
scalars α, β. It is specified by pi(v) = αφi(v) + (β − αv(N ))/n. For example, p(v) is the Shapley
value for α = 1 and β = v(N ), while p(v) is our proposed payoff reward vector in Lemma 3.1
for α = n and β = 0. When α = 0, every party receives the same payoff of value β/n.

Although a payoff allocation scheme is fully determined by the payoff reward vector p(v), it remains
an open question how one fairly adjusts the payoff reward under budget constraints. Thus, the next
section describes a particular way to specify payoff flows from one party to another such that it gives
rise to the same desirable payoff vector as the one in Lemma 3.1. The notion of payoff flow allows us
to handle budget constraints as explained later in Sec. 4.

3.2 Fair Payoff Flows

Let us decompose the payoff reward pi(v) ∈ R into the total cost flow pi,−(v) ≥ 0 (from party i to
others) that party i needs to pay to obtain the optimal model trained on DN and the total revenue flow
pi,+(v) ≥ 0 (from others to party i) that party i obtains by contributing its dataset to the models other
parties receive (the revenue does not deduct any cost):

pi(v) = pi,+(v)− pi,−(v) . (3)

Since pi,− is the total cost that party i incurs to acquire the additional performance of the model from
the datasets of other parties N \ i, the total cost flow can be decomposed into

pi,−(v) =
∑

j∈N\i pij

where the payoff flow pij denotes the cost that party i pays to party j for party j’s contribution.
Equivalently, it is the revenue that party j obtains from party i. Hence, the total revenue flow is
decomposed into

pi,+(v) =
∑

j∈N\i pji .

Note that the payoff flow pij(v) can be viewed as either a cost of party i or a revenue of party j.
Therefore, to construct all payoff flows between parties, we choose to only examine the costs of all
parties because it is easier to argue about the total cost of a party (see the fair cost property below)
than the total revenue of a party.

In particular, for a party i ∈ N , we are interested in the (cost) payoff flows (pij(v))j∈N\i. As there
are many different ways of transferring payoff flows from one party to another that result in the same
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payoff reward vector p(v), it is an ill-posed problem to reconstruct payoff flows solely from p(v) in
Lemma 3.1. Therefore, we propose the following desirable properties of fair payoff flows that are
able to not only uniquely determine (pij(v))j∈N\i (we assume pii(v) = 0 in our construction), but
also result in the same payoff reward vector as that in Lemma 3.1.

Fair cost. As explained above, pi,−(v) is the cost that party i incurs to acquire the additional
performance from the datasets of other parties N \ i. This additional performance is the difference
between the performance s(N ) of the obtained model trained on DN and the performance s(i) of
the model trained on the dataset of party i. Equivalently, the increase in the value of the model
is ν(s(N ) − s(i)) = v(N ) − v(i). Therefore, we suggest the fair cost property: the total cost
flow pi,−(v) of party i should be equal to the value of the additional performance obtained by party i:

pi,−(v) = v(N )− v(i), equivalently,
∑

j∈N\i pij(v) = v(N )− v(i) . (4)

Conditional symmetry. If two parties j, k in N\i have the same marginal contribution to coalition C∪
i for any C ⊂ N \ {i, j, k}, then the cost party i pays to party j is the same as that party i pays to
party k, i.e., pij(v) = pik(v). It also implies that the cost of party i does not depend on the marginal
contributions of other parties to coalitions that do not contain i.

Linearity. Let us consider the value function as a vector of 2n real numbers with the usual addition
and scalar multiplication operations, then for value functions v, w,

pij(v + w) = pij(v) + pij(w) , pij(αv) = αpij(v) , ∀i, j ⊂ N ,∀α ∈ R .

Conditional dummy party. A conditional dummy party j ∈ N \ i given a party i satisfies v(C ∪
{i, j}) = v(C ∪ i) for all C ⊂ N \ {i, j}. For a conditional dummy party j given party i, pij(v) = 0.
It means that party i does not pay any payoff to a party that does not contribute to any coalition
containing i.

The above 4 properties uniquely determine the payoff flows according to the following lemma which
is proved in App. E.
Lemma 3.7. There exists a unique solution (pij(v))j∈N\i that satisfies the above 4 properties. We
call this unique solution the conditional Shapley value given party i and denote it as (φj|i(v))j∈N\i.
It is defined as follows:

φj|i(v) =
1

n− 1

∑
C∈N\{i,j}

(
n− 2
|C|

)−1

∆v(j|C ∪ i) . (5)

Like the Shapley value, the conditional Shaple value given party i only depends on the marginal
contribution ∆v(j|C ∪ i) for C ⊂ N \ i in (5), so it is translation invariant as elaborated in the
following corollary.
Corollary 3.8. If v′(C ∪ i) = v(C ∪ i) +C, ∀C ⊂ N \ i where C ∈ R is a constant, then φj|i(v) =
φj|i(v

′) for all j ∈ N \ i.
Remark 3.9. Since the formulation of the conditional Shapley value is similar to that of the Shapley
value, we can apply existing approximation methods of the Shapley value [2, 4, 11] to the conditional
Shapley value.
Remark 3.10. The payoff flow φj|i(v) from party i to party j is interpreted as the amount of payoff
that party i needs to pay party j for its contribution to the model recevied by party i. It is also viewed
as the amount of contribution that party j contributes to party i through any coalitions that containing
party i. Besides, φj|i(v) is independent of the marginal contributions of party j to any coalitions that
do not contain party i. It can be clearly observed from the alternative formulation of the conditional
Shapley value:

φj|i(v) =
1

(n− 1)!

∑
π∈Πi

∆v(j|Pj
π)

where π denotes a permutation of N , Pj
π denotes parties preceding j in π, and Πi denotes the set of

permutations that start with i.

Decomposition of the Shapley value. The Shapley value of a party can be decomposed into the
conditional Shapley values and its value as shown in App. F:

nφi(v) = v(i) +
∑

j∈N\i φi|j(v) . (6)

6



We recall in Remark 3.4 that a party contributes to n models (each of which is distributed to one
party in N ). Hence, the total contribution of a party is nφi(v) which is the LHS of (6). On the other
hand, the RHS of (6) is the sum of the contributions of party i to other parties j ∈ N \ i measured
by the conditional Shapley values φi|j(v) and its own value v(i). The latter is interpreted as the
contribution of party i to the model it receives from the collaboration. It is v(i) because party i can
always obtain a model of v(i) from its dataset. In brief, the contribution of party i (to n models for n
parties) measured by the Shapley value can be decomposed into the contributions of party i to the
models that other parties receive measured by the conditional Shapley values and that to the model
party i receives.

We set pii = 0, so by setting pij(v) = φj|i(v) for i ̸= j, all payoff flows are fully specified. Then,
for all i ∈ N , the payoff reward pi(v) is

pi(v) = pi,+(v)− pi,−(v) = nφi(v)− v(N ) (7)

where the total cost flow is pi,−(v) ≜
∑

j∈N pij(v) = v(N )− v(i) (from the fair cost property) and
the total revenue flow is pi,+(v) ≜

∑
j∈N pji(v) = nφi(v)− v(i) (from (6)). The payoff rewards

specified by (7) are exactly the same as that in Lemma 3.1. Thus, they also satisfy the 4 desirable
properties in Sec. 3.1: symmetry, linearity, balance, and dummy party.
Remark 3.11 (Omnipotent party). Furthermore, if we define an omnipotent party as a party i that
satisfies v(C ∪ i) = v(i) for all C ⊂ N \ i. Then, party i does not pay to any other parties, i.e.,
pi,− = 0. It is because other parties j ∈ N \ i are conditional dummy parties given party i.

In brief, when parties have no budget constraints, we present a fair payoff allocation scheme that
arises from either a set of desirable properties of the payoff rewards (Sec. 3.1) or that of the underlying
payoff flows (Sec. 3.2). While the former is conceptually simpler, the latter can be utilized in the next
section to address the budget constraints of parties.

4 Parties with Budget Constraints

In the previous section, we assume all parties have no budget constraints, so they can afford the
optimal model with the performance s(N ) (trained on DN ). However, in practice, parties often have
budget constraints. Let bi ≥ 0 denote the budget of party i. When −pi(v) > bi, party i cannot
afford the optimal model trained on DN . To allow party i to join the collaboration without sacrificing
fairness, we would like to reduce the performance of the model it receives such that its corresponding
payoff reward satisfies the budget constraint. Intuitively, a “tight-budget” party has to buy a “cheaper”
model (i.e., a model of lower quality). This implies that different parties receive models of different
performances. We call it the heterogeneous model rewards. As we discuss in the following paragraph,
while the reward vector representation based on the Shapley value is not suitable, the payoff flows
based on our proposed conditional Shapley value are able to handle this heterogeneity.

We recall in the Sec. 3 where there are not any budget constraints, all parties receive the same model
of value v(N ). In contrast, from the above discussion, the heterogeneous model rewards imply that
different parties may receive models of different values, e.g., party i and party j receive models
of different values, denoted as vi(N ) and vj(N ), respectively. It means a party may contribute to
different parties differently. As the payoff reward vector in Sec. 3.1 relies on the Shapley value
that does not differentiate the contributions of a party to different parties, it is challenging to devise
a principled adjustment of the payoff reward vector to meet the budget constraint. On the other
hand, by investigating the payoff flows from one party to another through our proposed conditional
Shapley value (which is also viewed as the contribution in Remark 3.10), we can adjust the amount
of contribution from one party to different parties differently.

Let us consider party i which cannot afford the optimal model of value v(N ) due to its budget,
i.e., bi < −pi(v). For party i to meet its budget, we need to increase pi(v) (equivalently, decreas-
ing −pi(v)) such that the adjusted payoff reward is at least −bi. From the decomposition of payoff
rewards into payoff flows in Sec. 3.2, the payoff reward is pi(v) = pi,+(v)− pi,−(v) (7). It is not pos-
sible for party i to increase its total revenue flow pi,+(v) since it comes from other parties. Hence, the
only way for party i to increase pi(v) is by decreasing its total cost flow pi,−(v) to other parties N \ i.
We recall that this total cost flow is pi,−(v) ≜

∑
j∈N\i pij(v) =

∑
j∈N\i φj|i(v). Hence, another

interpretation is that party i reduces the contributions φj|i(v) of other parties j ∈ N \ i to itself (in
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order to decrease the cost party i needs to pay to other parties). The amount of reduction in φj|i(v) is
different for different parties i since they may have different budget constraints. Therefore, for each
party i ∈ N , we define an adjusted value function, denoted v′i, from which the adjusted payoff flows
pij(v

′
i) are uniquely defined as the conditional Shapley values φj|i(v

′
i) (Sec. 3.2).1 It is noted that

instead of adjusting the underlying value function, existing works [12, 14, 15]) directly modify the
Shapley value. However, this invalidates its fairness properties which is undesirable.

Let us denote the set of these adjusted value functions as #»v ′ ≜ (v′i)
n
i=1. Then, by defining pij(

#»v ′) ≜
pij(v

′
i), pi,−(

#»v ′) = pi,−(v
′
i) = v′i(N )− v′i(i), and pi,+(

#»v ′) =
∑

j pji(v
′
j), the 4 fairness properties

in Sec. 3.2 uniquely define the payoff flow as the conditional Shapley value pij(v
′
i) = φj|i(v

′
i).

Let #»v ≜ (vi)
n
i=1, vi(C) = vj(C) = v(C) for all i, j, and C ⊂ N (v is the un-modified value function),

then φj|i(
#»v ) = φj|i(v) is the payoff flow when all parties have no budget constraint (Sec. 3.1).

Given v and the budget b ≜ (bi)
n
i=1, we would like to find adjusted value functions #»v ′ ≜ (v′i)

n
i=1 such

that the payoff flows φj|i(
#»v ′) = φj|i(v

′
i) meet the budget constraints, i.e., −pi(v

′
i) ≤ bi, ∀i ∈ N .

To achieve this goal, we propose the following fairness properties of the adjustment.

Feasibility & Individual Rationality. Party i is interested in reducing its cost due to the increase
in the value v(N ) − v(i). Therefore, a rational party should receive a model with the (adjusted)
value v′i(N ) that is (feasibility) at most v(N ); and (individual rationality) at least v(i) (i.e., not
worse than the value v(i) of the model it can obtain by itself). The same argument should apply to
any coalition containing i:

∀i ∈ N , ∀C ⊂ N \ i , v(C ∪ i) ≥ v′i(C ∪ i) ≥ v(i) . (8)

Marginal contribution consistency. From an alternative perspective, party i reduces its cost by
reducing the contribution of other parties to the increase in the performance of the model it receives.
This can be measured by the conditional Shapley values of other parties given i which consist of
the marginal contributions of other parties to any coalition containing i. Therefore, the marginal
contribution consistency states that the marginal contributions of a party j ̸= i to any coalition
containing i should be consistently reduced by the same factor:

∀i ∈ N , ∃λi > 0 ,∀j ∈ N \ i , ∀C ⊂ N \ {i, j} ,∆v′
i
(j|C ∪ i) = λi∆v(j|C ∪ i) . (9)

It means that the adjustment should not unfairly bias the marginal contribution of a party to a coalition.

Budget efficiency. The budget efficiency encourages every party to obtain the best model that it can
afford by expending as much of its budget as possible. On one hand, if party i can afford the optimal
model of value v(N ) (i.e., −pi(v) ≤ bi), then it receives the optimal model under the adjusted
payoff flows, i.e., v′i(N ) = v(N ). On the other hand, if party i cannot afford the optimal model
of value v(N ) due to its budget (i.e., −pi(v) > bi), then the adjusted payoff is exactly −bi, i.e.,
pi(v

′
i) = −bi. It means that the budget is fully consumed.

The above properties and the budget constraints uniquely define a fair adjustment of the value function
as shown in the following lemma (proven in App. G).

Lemma 4.1. Let λ∗ ≜ (λ∗
i )

n
i=1 be the solution to the following linear programming problem:

maximize
∑

{i,j}⊂N λiφj|i(v)

subject to λi

∑
j∈N\i φj|i(v)−

∑
k∈N\i λkφi|k(v) ≤ bi, ∀i ∈ N

λi ∈ [0, 1], ∀i ∈ N .

(P)

The feasibility & individual rationality, the marginal contribution consistency, the budget efficiency,
and the budget constraints uniquely determine the following adjusted value functions:

∀i ∈ N , ∀C ⊂ N \ i, v′i(C ∪ i) = λ∗
i v(C ∪ i) + (1− λ∗

i )v(i) . (10)

Then, from the fairness properties in Sec. 3.2, the payoff flow pij(v
′
i) is uniquely defined as the

conditional Shapley value φj|i(v
′
i) which can be directly computed from φj|i(v):

∀j ∈ N \ i, pij(v′i) = φj|i(v
′
i) = φj|i(λ

∗
i v) = λ∗

iφj|i(v) . (11)
1As the conditional Shapley value given i only depends on the value function at coalitions containing i, we

are only concerned with defining v′i on the restricted domain {C ∪ i|C ⊂ N \ i}.
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We note that the LHS of the first set of constraints in (P) are the negative values of the payoffs, i.e.,
−pi(

#»v ′) = pi,−(
#»v ′)− pi,+(

#»v ′), ∀i ∈ N , so they are the budget constraints.

Given the adjusted payoff flows, the total revenue flow and the total cost flow are computed as

pi,+(
#»v ′) =

∑
j∈N\i λ

∗
jφi|j(v) and pi,−(

#»v ′) = λ∗
i

∑
j∈N\i φj|i(v), respectively.

The value of the model obtained by party i according to the above adjusted value function is v′i(N ) =
λ∗
i v(N ) + (1 − λ∗

i )v(i) = v(i) + λ∗
i pi,−(v) = v(i) + pi,−(v

′
i). Hence, the value of the model

obtained by party i is the sum of the value v(i) of model trained on party i’s dataset and the value of
the contribution pi,−(v

′
i) of other parties to party i. This also demonstrates the feasibility & individual

rationality property (since λi ∈ [0, 1]). To produce a model with a pre-specified performance
(e.g., the validation accuracy), we suggest using early stopping. Starting from the optimal model
trained on the dataset Di of party i (with the performance v(i)/ν = s(i)), we continue to train the
model with the aggregated dataset DN and stop the training when the performance of the model
reaches (v(i) + λ∗

i pi,−(v))/ν.
Remark 4.2. There always exists a party in N that receives the optimal model trained on DN (of
value v(N )). Unlike the work of [14] enforcing this property, namely weak efficiency, from the
construction of the allocation scheme, this property naturally arises from our above fairness properties
as shown in App. H. It implies that all of the aggregated dataset is utilized by at least a party.
Remark 4.3. Our proposed framework can be extended to handle the performance constraint. In
particular, while the budget constraint prevents a party’s expense from exceeding its budget, the
performance constraint implies that a party is not interested in obtainng a model with a performance
larger than a desirable model performance. The details are in App. I.

5 Experiments

This section empirically illustrates the proposed allocation scheme of both payoff and model rewards
in collaborative ML. To easily interpret the results, we choose the MNIST dataset [9] which con-
tains 70, 000 images of handwritten digits. The dataset is partitioned based on the digit labels. A
party, denoted as [s-e] (s ≤ e), owns a subset of the MNIST training dataset (of size 60, 000) that
are labeled with digits s, s + 1, . . . , e. There are 5 parties in N : [0] (i.e., [0-0]), [1-2], [0-3], [3-5],
and [6-9]. For simplicity, we set ν = 1. The model performance is measured by the prediction
accuracy on a separate dataset of size 10, 000.

Additional experiments on the CIFAR-10 [8] dataset and the IMDB movie reviews dataset [10]
dataset are in App. J. All experiments share the following 4 desirable observations. First, when there
are not any budget constraints, all parties receive models with the highest performance, and parties
with more valuable datasets receive higher payoff rewards. Second, even if all parties’ budgets are 0,
they still benefit from the collaboration (hence, motivated to join the collaboration) by obtaining
better models than their own. Third, increasing the budget of a party not only increases the model
performance of the party but can also benefit other parties through improved model performance
and/or higher payoffs. Fourth, there is always a party receiving the best model of value v(N ), i.e.,
the weak efficiency property.

Figs. 2a and 2b show the payoff and model rewards when there are not any budget constraints (i.e., b =
∞1), respectively. In Fig. 2a, party [6-9] receives the largest payoff reward because party [6-9] owns
the dataset with the largest number of digits which is not overlapped with any other parties’ datasets.
Party [0-3] receives a larger payoff reward than that of parties [0] and [1-2] because party [0-3]’s
dataset contains the datasets of both parties [0] and [1-2]. In Fig. 2b, all parties receive models with the
highest performance as there are not any budget constraints. While the work of [12] can address the
case of no budget constraints, it results in a payoff vector [−0.41,−0.26,−0.02, 0.12, 0.58] which is
different from ours. It is noted that their solution does not satisfy the linear property while ours does.

Figs. 2c and 2d show the payoff and model rewards when all parties are not allowed to spend any
payoff (i.e, b = 0), respectively. From the balance property, the payoff rewards are 0 for all parties
(in Fig. 2c). However, in Fig. 2d, they still benefit from the collaboration by obtaining better models
(of value v(i) + pi,−(λiv)) than their own models (of value v(i)). In particular, we observe that
party [6-9] receives the optimal model trained on the aggregated dataset DN (of value v(N )), as stated
by the weak efficiency property. Thus, when monetary payoffs are not allowed, our allocation scheme
is still able to incentivize parties to fairly collaborate using their data. Compared to the ρ-Shapley
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Figure 2: Plots of the payoffs, model rewards, and payoff flows in the MNIST experiments with
budget constraints: (a,b) b = ∞1, (c,d,g) b = 0, and (e,f,h) bi = 0.31i=1.

value [14] (which only works in this special case), the model reward allocation in Fig. 2d cannot be
obtained from the ρ-Shapley value (by varying its parameters). In fact, unlike our proposed allocation
scheme, when ρ ̸= 1, the ρ-Shapley value does not satisfy the linear property.

Figs. 2e and 2f show the payoff and model rewards when only party [0] has a positive budget of 0.3
(other parties have budgets of 0), i.e., bi = 0.31i=1. While it is intuitive that with a positive budget,
party [0] improves the performance of its obtained model in comparison to the previous case of no
budget, it is interesting that parties [1-2], [0-3], and [3-5] also have the performance of their models
improved (by comparing Figs. 2f and 2d). The reason is that revenues of parties [1-2], [0-3], and [3-5]
from party [0] increase (comparing the first row in Figs. 2g and 2h). These increased revenues are
used to further improve the models of [1-2], [0-3], and [3-5], e.g., by getting more contributions from
party [6-9] (comparing the last column in Figs. 2g and 2h). Furthermore, not only does party [6-9]
obtain the best model of value v(N ) as that in Fig. 2d, but it also obtains an additional payoff
reward for its contributions to other parties in Fig. 2e. As seen in Figs. 2g and 2h, the cost flows of
party [6-9] (the last rows) are the same between the two cases. Thus, according to our allocation
scheme, increasing the budget of a party benefits not only itself but also other parties.

6 Conclusion

This paper presents an allocation scheme for both payoff and model rewards in fair collaborative ML.
When there are not any budget constraints, all parties receive the same model trained on the aggregated
dataset. On the other hand, they receive different payoff rewards to account for the difference in the
contributions of different parties. We construct such a payoff allocation scheme that is fair according
to (i) desirable properties of the parties’ payoffs or (ii) that of the underlying payoff flows from one
party to another. The latter is useful to handle the practical constraint on the budgets of parties. In
particular, when there exist budget constraints, we propose a solution to trade off between payoff and
model rewards through fair adjustments of the payoff flows. The experiments empirically show that
our scheme is reasonable in several collaborative ML scenarios with different budget constraints.
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A Brief Review of The Shapley Value

Given a value function v, the Shapley value is a solution to distributing the payoff v(N ) to parties
in N [13]. Let us imagine that the grand coalition is formed by one party joining the coalition
at a time. Given an order of parties (i.e., a permutation π of N ), party i joins the coalition Pi

π
which denotes all parties preceding i in π. Then, the marginal contribution of party i to Pi

π

is ∆v(i|Pi
π) ≜ v(Pi

π ∪ i)− v(Pi
π). The Shapley value of party i, denoted as φi(v), is the average of

the marginal contributions over the set Π of all possible permutations:

φi(v) ≜
1

n!

∑
π∈Π

∆v(i|Pi
π) . (12)

Alternatively, it is also evaluated as

φi(v) =
1

n

∑
C∈N\i

(
n− 1
|C|

)−1

∆v(i|C)

where
(
n− 1
|C|

)
denotes the number of combinations (the selections) of |C| items from a set of n− 1

distinct items. The Shapley value is ‘fair’ since it is the unique solution that satisfies several desirable
properties as elaborated below.

Efficiency.
∑

i φi(v) = v(N ). It ensures that all of v(N ) are distributed to the parties.

Symmetry. If v(C ∪ i) = v(C ∪ j) for all C ⊂ N \ {i, j}, then φi(v) = φj(v). It implies parties
with equal marginal contributions to any coalitions have the same payoff.

Dummy party. A dummy party i ∈ N satisfies v(C ∪ i) = v(C) for all C ⊂ N \ i. For a dummy
party i, φi(v) = 0.

Linearity. Let us consider the value function as an element in a real vector space of dimension 2n

(i.e., the number of subsets of N ) which is equipped with the usual addition and scalar multiplication.
Then, given 2 value functions v, w, and a real number α ∈ R,

φi(v + w) = φi(v) + φi(w) , φi(αv) = αφi(v) .

B Proof of Lemma 3.1

Let us consider the value function v′ such that v′(C) = nv(C) for all C ⊂ N . Given n > 0, it is
noted that v′ is uniquely defined given v and vice versa.

Let us define the function ζi(v
′) ≜ pi(v) + v(N ).

First, from the linearity and symmetry properties of pi(v) and the definition of v′, it follows that ζi(v′)
satisfies the linearity and the symmetry properties.

Second, we observe that∑
i∈N

ζi(v
′) =

∑
i∈N

(pi(v) + v(N )) = nv(N ) = v′(N ) .

Hence, ζi(v′) satisfies the efficiency property w.r.t. the value function v′.

Third, if i is a dummy party w.r.t. v, then i is also a dummy party w.r.t. v′. Furthermore,

ζi(v
′) = pi(v) + v(N ) = −v(N ) + v(N ) = 0 .

Hence, ζi(v′) satisfies the dummy property w.r.t. v′.

Therefore, from the uniqueness of the Shapley value, ζi(v′) is uniquely defined as the Shapley value
w.r.t. v′, i.e.,

ζi(v
′) = φi(v

′) = nφi(v)

where we make use of the linearity property of the Shapley value in the second equality.

As a result, pi(v) is uniquely defined as

pi(v) = nφi(v)− v(N ) .
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C Proof of Remark 3.6

Let us consider the value function v′ such that v′(C) = αv(C) for all C ⊂ N . Given n > 0, it is
noted that v′ is uniquely defined given v and vice versa.

Let us define the function

ζi(v
′) ≜ pi(v) +

α

n
v(N )− β

n
. (13)

First, from the linearity and symmetry properties of pi(v) and the definition of v′, it follows that ζi(v′)
satisfies the linearity and the symmetry properties.

Second, we observe that∑
i∈N

ζi(v
′) =

∑
i∈N

(
pi(v) +

α

n
v(N )− β

n

)
= αv(N ) = v′(N ) .

Hence, ζi(v′) satisfies the efficiency property w.r.t. the value function v′.

Third, if i is a dummy party w.r.t. v, then i is also a dummy party w.r.t. v′. Furthermore,

ζi(v
′) = pi(v) +

α

n
v(N )− β

n
= 0 .

Hence, ζi(v′) satisfies the dummy property w.r.t. v′.

Therefore, from the uniqueness of the Shapley value, ζi(v′) is uniquely defined as the Shapley value
w.r.t. v′, i.e.,

ζi(v
′) = φi(v

′) = αφi(v)

where we make use of the linearity property of the Shapley value in the second equality.

As a result, pi(v) is uniquely defined as

pi(v) = αφi(v)−
α

n
v(N ) +

β

n
.

D Replication Robustness

A reward allocation scheme is replication-robust if a party cannot increase its rewards by replicating
its data and participating in the collaboration as multiple parties.

It is well-known that the Shapley value, despite its fairness, is not replication robustness in data
valuation [1]. This is because the two desirable properties for fairness: symmetry and efficiency
violate the replication robustness. Let us consider the example in the work of [1]: the grand
coalition of 2 parties N = {1, 2} where party 1 and 2 have the same marginal contributions to any
coalition C ⊂ N . Suppose the value of the grand coalition N is v(N ) = 1. Due to the efficiency and
symmetry properties of the Shapley value, φ1(v) = φ2(v) = 1/2. Then, suppose party 1 replicates
itself into another party 1+ (i.e., D1 = D1+), the new grand coalition is N+ = {1, 1+, 2}. Let v+

denote the new value function for coalitions in N+. Then, v+(N+) = v(N ) = 1. Due to the
efficiency and symmetry properties of the Shapley value, φ1(v

+) = φ1+(v
+) = φ2(v

+) = 1/3.
Hence, the total contributions of party 1 and its replication 1+ is φ1(v

+) + φ1+(v
+) = 2/3 > φ1(v).

Therefore, a data valuation according to the Shapley value is not replication-robust.

While the Shapley value can be customized to be replication-robust [5], the efficiency property does
not hold for the customized variant.

In this work, we are interested in maintaining both the efficiency and the symmetry properties of
an allocation scheme. Thus, replication-robustness is sacrificed. However, as we elaborate in the
following paragraphs, this property still holds for some parties (e.g., parties with negative payoff
rewards) under the payoff allocation scheme in Lemma 3.1.
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D.1 One Replication

A party is a replication of another party if their training datasets are the same. Let us consider the
case that in the grand coalition N+, there exists a party i+ ∈ N that is a replication of another
party i ∈ N \ i+ (i.e., Di = Di+). Let N = N+ \ i+ be the coalition that does not contain the
replication i+.

Let v and v+ denote the value functions of coalitions in N and N+, respectively. We assume that the
replication does not change the value of the coalition, i.e., for all C ⊂ N \ i,

v+(C ∪ {i, i+}) = v+(C ∪ i) = v+(C ∪ i+) = v(C ∪ i)
v+(C) = v(C) (14)

We are interested in the condition where party i is discouraged from replicating itself: the total payoff
reward of both i and i+ in N+ is smaller than the payoff reward of i in N , i.e.,

pi(v
+) + pi+(v

+) ≤ pi(v)

2pi(v
+) ≤ pi(v) (15)

2(n+ 1)φi(v
+)− 2v(N+) ≤ nφi(v)− v(N )

φi(v
+) ≤ nφi(v) + v(N )

2(n+ 1)
(16)

where (15) is due to the symmetry property of the payoff reward; and (16) is due to v(N+) = v(N )
(14).

The Shapley value φi(v
+) of party i in N+ is computed as follows.

φi(v
+)

=
1

n+ 1

∑
C⊂N+\i

(
n
|C|

)−1

∆v(i|C)

=
1

n+ 1

∑
C⊂N+\i

(
n
|C|

)−1

1i+ /∈C∆v(i|C) (17)

=
1

n+ 1

∑
C⊂N+\{i,i+}

(
n
|C|

)−1

∆v(i|C)

=
1

n

∑
C⊂N\i

n− |C|
n+ 1

(
n− 1
|C|

)−1

∆v(i|C) (18)

where (17) is due to (14).

From (16), (18), and the definition of the Shapley value, the condition to discourage party i from
replicating itself is

nφi(v)−
∑

C∈N\i

2|C|
n

(
n− 1
|C|

)−1

∆v(i|C) ≤ v(N ) . (19)

Since ∆v(i|C) ≥ 0 (the monotonicity property), nφi(v) ≤ v(N ) implies the above condition. From
the Corollary 3.2, it means that a party with a negative payoff reward cannot improve its payoff
reward by replicating itself.

D.2 Multiple Replications

In this section, we would like to show that: if a party cannot improve its payoff reward by replicating
itself once, then it cannot improve its payoff reward regardless of the number of its replications.
Hence, the condition (19) also applies to the case of multiple replications.
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First, we can show that the payoff reward of party i reduces if it replicates itself once, i.e., pi(v+) ≤
pi(v). From (18),

φi(v
+) =

1

n

∑
C⊂N\i

n− |C|
n+ 1

(
n− 1
|C|

)−1

∆v(i|C)

≤ 1

n

∑
C⊂N\i

n

n+ 1

(
n− 1
|C|

)−1

∆v(i|C)

=
n

n+ 1
φi(v) .

Hence,

(n+ 1)φi(v
+) ≤ nφi(v)

(n+ 1)φi(v
+)− v(N+) ≤ nφi(v)− v(N )

pi(v
+) ≤ pi(v) . (20)

Let us consider party i that cannot improve its payoff reward by replicating once. We can view the
case that there are K replications of party i as party i replicates itself K times sequentially. Suppose
after k replications, the grand coalition N contains k replications of party i (excluding party i).
Let N+ be the grand coalition after party i replicates itself once more time, i.e., N+ = N ∪ i+

where i+ is a new replication of party i. In other words, there are k + 1 replications of party i in N+

(excluding party i). It is noted that from N to N+, party i replicates itself once, so the results in
Sec. D.1 apply. Let v and v+ be the same notations in Sec. D.1. The total payoff rewards of all k + 1
replications of party i and party i in N+ is:

(k + 1)pi(v
+)︸ ︷︷ ︸

payoff of k replications in N and i

+ pi+(v
+)︸ ︷︷ ︸

payoff of the new replication i+

≤ (k + 1)pi(v) + pi+(v
+) from (20)

= kpi(v) + (pi(v) + pi+(v
+))

≤ kpi(v) + pi(v) (21)
= (k + 1)pi(v)

where (21) is because we assume that party i cannot improve its payoff reward by replicating itself
once. Hence, from N to N+ the total payoff rewards of all replications of party i and party i do
not improve. Applying this argument for K replications of party i sequentially, we obtain the result
that: if a party cannot improve its payoff reward by replicating itself once, then it cannot improve its
payoff reward regardless of the number of its replications.

E Proof of Lemma 3.7

Let us define a value function v−i on N−i ≜ N \ i such that for all C ⊂ N−i,

v−i(C) = v(C ∪ i)− v(i) .

Then,

v−i(∅) = 0

∆v−i(j|C) = ∆v(j|C ∪ i) . (22)

We observe that the 4 properties we propose for payoff flows (pij)j∈N\i in Sec. 3.2 (i.e., fair cost,
conditional symmetry, linearity, and conditional dummy party) corresponds to the 4 properties:
efficiency, symmetry, linearity, and dummy party defined with v−i in app. A as follows.

Firstly, the fair cost implies that∑
j∈N\i

pij(v) = v(N )− v(i) = v−i(N \ i)
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which is the efficiency property defined on N−i with v−i.

Secondly, from (22), the conditional symmetry property is equivalent to the following symmetry
property defined with v−i: if two parties j, k ∈ N−i have the same marginal contribution to any
coalition C ∪ i for C ⊂ N−i \ {j, k}, i.e.,

∆v−i(j|C) = ∆v−i(k|C) ,

then

pij = pik .

Thirdly, the linearity property in Sec. 3.2 is equivalent to that in App. A.

Fourthly, the conditional dummy party property is equivalent to the following dummy party property
defined with v−i: a conditional dummy party j ∈ N−i given party i satisfies v−i(C ∪ j) = v−i(C) for
all C ⊂ N−i \ j is a dummy party w.r.t. v−i on N−i.

Therefore, the unique solution that satisfies the above 4 properties is the Shapley value defined on N−i

with v−i: for all j ∈ N−i,

φj(v−i) =
1

n− 1

∑
C∈N−i\j

(
n− 2
|C|

)−1

∆v−i
(j|C)

=
1

n− 1

∑
C∈N−i\j

(
n− 2
|C|

)−1

∆v(j|C ∪ i) (23)

where (23) is due to (22). This defines the conditional Shapley value φj|i(v) given party i, i.e.,
φj|i(v) = φj(v−i). Alternatively, it can be evaluated as:

φj|i(v) =
1

(n− 1)!

∑
π∈Πi

∆v(j|Pj
π) (24)

where Πi denotes the set of permutations that start with i (i.e., i is at the first position of π ∈ Πi).

F Decomposition of The Shapley Value

Recall in (12), the Shapley value can be evaluated as follows

φi(v) ≜
1

n!

∑
π∈Π

∆v(i|Pi
π)

where Π is the set of all permutations of N .

Let Π be partitioned based on the first party of π ∈ Π: Π = ∪i∈NΠi where Πi denote the set of
permutations that start with i.

φi(v) =
1

n!

∑
j∈N

∑
π∈Πj

∆v(i|Pi
π)

=
1

n

∑
j∈N

1

(n− 1)!

∑
π∈Πj

∆v(i|Pi
π)

Furthermore,

|Πj | = (n− 1)! ,∀j ∈ N
∆v(i|Pi

πi
) = ∆v(i|∅) = v(i)
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Therefore,

φi(v) =
1

n

∑
j∈N

1

(n− 1)!

∑
π∈Πj

∆v(i|Pi
π)

=
1

n

v(i) +
∑

j∈N\i

1

(n− 1)!

∑
π∈Πj

∆v(i|Pi
π)


=

1

n

v(i) +
∑

j∈N\i

φi|j(v)


where the last equality is due to (24). Hence, we obtain (6).

G Proof of Lemma 4.1

In this section, we prove that the feasibility & individual rationality, the marginal contribution
consistency, and the budget efficiency uniquely determine an adjusted payoff flows as the conditional
Shapley value of an adjusted value function. Hence, the 4 fairness properties in Sec. 3.2 still hold.

The outline of the proof of Lemma 4.1 is as follows.

We first show that the feasibility & individual rationality and the marginal contribution consistency
properties uniquely determine adjusted payoff flows (up to the choice of scaling parameters) in
Lemma G.1 in App. G.1. Given these adjusted payoff flows, proving Lemma 4.1 boils down to
proving that the scaling parameters are uniquely defined by the budget constraints and the budget
efficiency as the optimal solution to (P) which requires proving the existence and the uniqueness of
the scaling parameters.

For the existence proof, we show that (P) always has a finite optimal solution, and when the scaling
parameters in Lemma G.1 are chosen as this optimal solution, the adjusted payoff flows satisfy the
budget constraints and the budget efficiency in App. G.2.

For the uniqueness proof, we show that the budget constraints and the budget efficiency uniquely
define the scaling parameters in App. G.3.

Additionally, we prove that the payoff flows also satisfy the weak efficiency property in App. H.

G.1 Adjusted Payoff Flows from Feasibility & Individual Rationality and Marginal
Contribution Consistency

Lemma G.1. The feasibility & individual rationality and the marginal contribution consistency
properties uniquely determine the following adjusted value function (up to the choice of scaling
parameters λi ∈ [0, 1]):

v′i(C ∪ i) = λiv(C ∪ i) + (1− λi)v(i) (25)

where λi ∈ [0, 1] for all C ∈ N \ i and i ∈ N .

Proof. Let v′ denote the value function that satisfies both the feasibility & individual rationality and
the marginal contribution consistency properties. From the feasibility & individual rationality,

v(C ∪ i) ≥ v′i(C ∪ i) ≥ v(i) .

Choose C = ∅, then

v′i(i) = v(i) . (26)

From the marginal contribution consistency, ∃λi > 0, ∀j ∈ N \ i, ∀C ⊂ N \ {i, j},

∆v′
i
(j|C ∪ i) = λi∆v(j|C ∪ i)

v′i(C ∪ {i, j})− v′i(C ∪ i) = λi (v(C ∪ {i, j})− v(C ∪ i)) (27)
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Consider a coalition C ⊂ N \ i, let π be a permutation of parties in C and π(j) denote the party at
the j-th position in π. Then,

v′i(C ∪ i)− v′i(i)

=

|C|∑
j=1

v′i(Pπ(j)
π ∪ {π(j), i})− v′i(Pπ(j)

π ∪ i)

=

|C|∑
j=1

λi

(
v(Pπ(j)

π ∪ {π(j), i})− v(Pπ(j)
π ∪ i)

)

= λi

|C|∑
j=1

v(Pπ(j)
π ∪ {π(j), i})− v(Pπ(j)

π ∪ i)

= λi (v(C ∪ i)− v(i))

where Pπ(j)
π denote the set of all parties preceding π(j) in the permutation π (i.e., the set of parties

with the positions less than j in π). Furthermore, since v(i) = v′i(i) (26),

v′i(C ∪ i)− v(i) = λi (v(C ∪ i)− v(i))

v′i(C ∪ i) = λiv(C ∪ i) + (1− λi)v(i) . (28)

For (28) to satisfy the feasibility & individual rationality, λi ∈ [0, 1].

On the other hand, one can also verify that (28) for λi ∈ [0, 1] satisfies both the feasibility &
individual rationality and the marginal contribution consistency properties. Therefore, it is the unique
solution (up to the choice of λi).

Lemma G.2. Given the adjusted value functions v′i, the adjusted payoff flows from party i is uniquely
defined through the conditional Shapley value:

∀j ∈ N \ i, pij(v′i) = φj|i(v
′
i) = φj|i(λiv) = λiφj|i(v) . (29)

Proof. Let us define ṽ as follows

ṽ(C ∪ i) = v′(C ∪ i)− (1− λi)v
′(i), ∀C ⊂ N \ i (30)

Due to the translation invariance of the conditional Shapley value in Corollary 3.8,

φj|i(v
′) = φj|i(ṽ) . (31)

Furthermore,

ṽ(C ∪ i) = v′(C ∪ i)− (1− λi)v
′(i) (32)

= λiv(C ∪ i) (33)

Hence, due to the linearity property of the Shapley value,

φj|i(ṽ) = φj|i(λiv) = λiφj|i(v) . (34)

Next, given that pij(v′i) = λiφj|i(v) for all {i, j} ⊂ N , we will prove that the value of λi ∈ [0, 1] is
uniquely determined from the budget constraints and the budget efficiency as the optimal solution λ∗

to (P).

G.2 The Existence of λ

We observe that (P) always has a feasible solution of λ = 0 and its objective function is bounded:∑
{i,j}⊂N

λiφj|i(v) ≤
∑

{i,j}⊂N

φj|i(v)
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since λi ∈ [0, 1] for all i ∈ N . Therefore, (P) always has a finite optimal solution, denoted
as λ∗ = (λ∗

i )
n
i=1. Then, we will prove that the payoff flows specified by pij(v

′
i) = λ∗

iφj|i(v) satisfy
the budget constraints and the budget efficiency property as follows.

Budget constraints. As discussed in Sec. 4, the total revenue flow and the total cost flow by
distributing the payoff according to the payoff flows pij(v′i) = λ∗

iφj|i(v) are

pi,+(λ
∗ #»v ) =

∑
j∈N\i λ

∗
jφi|j(v) and pi,−(λ

∗ #»v ) = pi,−(λ
∗
i v) = λ∗

i

∑
j∈N\i φj|i(v) ,

respectively. Thus, the LHS of the first set of constraints in (P) are −pi(λ
#»v ) = pi,−(λ

#»v ) −
pi,+(λ

#»v ), ∀i ∈ N , so they are the budget constraints. Therefore, any feasible solution (including
the optimal λ∗) to (P) produces payoff flows that satisfy the budget constraints.

Budget efficiency. We show that the payoff flows pij(v′i) = λ∗
iφj|i(v) for all {i, j} ⊂ N satisfy the

budget efficiency by proving the following two statements.

• Statement 1: If party i can afford the optimal model of value v(N ) (i.e., −pi(v) ≤ bi), it
receives the optimal model of value v(N ) under the adjusted payoff flows, i.e., λ∗

i = 1.
• Statement 2: If party i cannot afford the optimal model of value v(N ) due to its bud-

get −pi(v) > bi, then −pi(
#»v ′) = bi.

Statement 1: To prove by contradiction, assuming that party i can afford the optimal model of
value v(N ) (i.e., −pi(v) ≤ bi) and λ∗

i < 1. Let us define λ′ ≜ (λ′
j)

n
j=1 as follows{

λ′
i = 1

λ′
j = λ∗

j for j ∈ N \ i

It is noted that

pi,−(λ
′
iv)− pi,+(λ

′v) = pi,−(v)−
∑

j∈N\i

λ∗
jφi|j(v) ≥ pi,−(v)−

∑
j∈N\i

φi|j(v)

≥ pi,−(v)− pi,+(v)

= pi(v)

≥ −bi .

Hence, λ′ satisfies the budget constraint of party i. Furthermore, it also satisfies the budget constraints
of other parties in N\i since increasing λi from λ∗

i < 1 to 1 only increases the revenue of other parties
in N \ i. Therefore, λ′ is a feasible solution to (P). It also has a higher objective function (since λi

increases) than the optimal solution λ∗, which is a contradiction. Therefore, λ∗
i = 1 which implies

that the value of the model that party i receives under the adjusted value function #»v ′ ≜ (λ∗
i v)

n
i=1

is v(i) + pi,−(v) = v(N ).

Statement 2: To prove by contradiction, assuming that there exists a party i such that

−pi(λ
∗v) < bi < −pi(v) . (35)

Furthermore,

−pi(λ
∗v) = λ∗

i pi,−(v)−
∑

j∈N\i

λ∗
jφi|j(v)

≥ λ∗
i pi,−(v)−

∑
j∈N\i

φi|j(v)

≥ (λ∗
i − 1)pi,−(v) + pi,−(v)−

∑
j∈N\i

φi|j(v)

≥ (λ∗
i − 1)pi,−(v)− pi(v) . (36)

We also observe that if pi,−(v) = 0, then −pi(v) = −
∑

j∈N\i φi|j(v) ≤ 0 ≤ bi which is a
contradiction to (35). Thus,

pi,−(v) > 0 . (37)
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Combining with −pi(λ
∗v) < −pi(v) (35), and (36), we have

λ∗
i < 1 . (38)

From (35), (37), and (38), there exists ϵ > 0 such that{
−pi(λ

∗v) + ϵ < bi < −pi(v)

λ∗
i + ϵ/pi,−(v) < 1

(39)

Let λ′ be defined as follows {
λ′
j = λ∗

j + ϵ/pj,−(v) for j = i

λ′
j = λ∗

j for j ̸= i .
(40)

Then λ′
i ∈ [0, 1] for all i ∈ N from (39).

Let us consider the payment of party i (i.e., the negative value of the payoff reward)

−pi(λ
′v) = λ′

ipi,−(v)−
∑

j∈N\i

λ′
jφi|j(v)

= λ∗
i pi,−(v) + ϵ−

∑
j∈N\i

λ∗
jφi|j(v)

= −pi(λ
∗v) + ϵ

< bi

where the last inequality is due to (39). Hence, λ′ satisfies the budget constraint of the party i.

Let us consider the payment of party j ∈ N \ i,

−pj(λ
′v) = λ′

jpj,−(v)−
∑

k∈N\j

λ′
kφj|k(v)

= λ′
jpj,−(v)−

∑
k∈N\{i,j}

λ′
kφj|k(v)− λ′

iφj|i(v)

= λ∗
jpj,−(v)−

∑
k∈N\{i,j}

λ∗
kφj|k(v)

−
(
λ∗
i +

ϵ

pi,−(v)

)
φj|i(v)

= λ∗
jpj,−(v)−

∑
k∈N\j

λ∗
kφj|k(v)−

ϵ

pi,−(v)
φj|i(v)

= −pj(λ
∗v)− ϵ

pi,−(v)
φj|i(v)

≤ bj −
ϵ

pi,−(v)
φj|i(v) (41)

≤ bj (42)

where (41) is because λ∗ is the optimal solution to (P) and (42) is because φj|i(v) ≥ 0 and pi,−(v) ≥
0 (from the monotonicity assumption). Hence, λ′ satisfies the budget constraints of parties in N \ i.
As a result, λ′ is a feasible solution to (P). Moreover, let us consider the objective of the LP in Sec. 4,∑

{k,j}⊂N

λ′
kφj|k(v) =

∑
{k,j}⊂N

λ∗
kφj|k(v) + ϵ >

∑
{k,j}⊂N

λ∗
kφj|k(v) (43)

which is a contradiction because λ∗ is the optimal solution to the LP.

Therefore, there does not exist a party i that satisfies (35). It means that if bi < −pi(v),
then −pi(λ

∗v) = bi, i.e., there are not any budget surplus.
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G.3 The Uniqueness of λ

We will show that given the payoff flows specified by λiφj|i(v) (from the feasibility & individual
rationality properties and the definition of the conditional Shapley value), there exists a unique value
of λ = (λi)

n
i=1 that satisfies the budget constraints and the budget efficiency properties. Hence, this

unique value must be the optimal solution λ∗ to (P).

First, we prove the following lemma.

Lemma G.3. Let λ′ ≜ (λ′
i)

n
i=1 be the scaling parameter such that the payoff flows specified

by λ′
iφj|i(v) satisfy the budget constraints and λ′

i ∈ [0, 1] for all {i, j} ⊂ N , then λ′
i ≤ λ∗

i

where λ∗ ≜ (λ∗
i )

n
i=1 is the optimal solution to (P).

Proof. Let us prove by contradiction. If ∃k ∈ N , λ′
k > λ∗

k, we choose

i∗ ≜ argmax
j∈N

(λ′
j − λ∗

j ) . (44)

It follows that

λ′
i∗ > λ∗

i∗ . (45)

Since λ′
i∗

∈ [0, 1] (from the constraints of (P)), λ∗
i∗

∈ [0, 1). It can be seen that if λ∗
i∗

< 1, then the
budget constraint of party i∗ is active (otherwise, we can increase λ∗

i∗
by an ϵ > 0 to obtain a higher

value of the objective function while the budget constraints of all parties are still satisfied), i.e.,

pi∗(λ
∗ #»v ) = pi∗,+(λ

∗ #»v )− λ∗
i∗pi∗,−(v) =

∑
j∈N\i∗

λ∗
jφi∗|j(v)− λ∗

i∗

∑
j∈N\i∗

φj|i∗(v) = −bi∗ .

(46)

As λ′ is a feasible solution to (P), the budget constraints are satisfied:

pi∗,+(λ
′ #»v )− λ′

i∗pi∗,−(v) ≥ −bi∗ = pi∗,+(λ
∗ #»v )− λ∗

i∗pi∗,−(v)

where the equality is due to (46). Since λ′
i∗

> λ∗
i∗

(from (45)), λ′
i∗
pi∗,−(v) > λ∗

i∗
pi∗,−(v). Thus,

pi∗,+(λ
′ #»v )− pi∗,+(λ

∗ #»v ) ≥ λ′
i∗pi∗,−(v)− λ∗

i∗pi∗,−(v) > 0∑
j∈N\i∗

(λ′
j − λ∗

j )pji∗(v) ≥ (λ′
i∗ − λ∗

i∗)pi∗,−(v) > 0 (47)

Let

N+ ≜ {i ∈ N|λ′
i > λ∗

i }

which is not empty due to the assumption (45). Furthermore, since pij(v) ≥ 0 for all {i, j} ⊂ N , (47)
implies that ∑

j∈N+

(λ′
j − λ∗

j )pji∗(v) > (λ′
i∗ − λ∗

i∗)pi∗,−(v) .

Let

i′ ≜ argmax
j∈N+

λ′
j − λ∗

j .

Then,

(λ′
i′ − λ∗

i′)
∑
j∈N

pji∗(v) ≥ (λ′
i′ − λ∗

i′)
∑
j∈N+

pji∗(v)

≥
∑
j∈N+

(λ′
j − λ∗

j )pji∗(v)

> (λ′
i∗ − λ∗

i∗)pi∗,−(v) .
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Equivalently,

(λ′
i′ − λ∗

i′)pi∗,+(v) > (λ′
i∗ − λ∗

i∗)pi∗,−(v)

Furthermore, pi∗,+(v) ≤ pi∗,−(v) (otherwise, the reward of party i is positive and the budget
constraint of party i is not active which contradicts to (46)), so

λ′
i′ − λ∗

i′ > λ′
i∗ − λ∗

i∗ (48)

(49)

which contradicts the definition of i∗.

Now, let us prove the uniqueness of λ such that the payoff flows specified by pij(λiv) = λiφj|i(v)
satisfies the budget constraints and the budget efficiency.

Proof. From the proof of the existence, the optimal solution λ∗ to (P) is a value of λ which leads to
payoff flows that satisfy the budget constraints and the budget efficiency.

To prove by contradiction, we assume that there is another λ′ that is different from λ∗ such that
the payoff flows specified by pij(λ

′
iv) = λ′

iφj|i(v) satisfies the budget constraints and the weak
efficiency property. Let us define

N− ≜ {i ∈ N|λ′
i < λ∗

i } (50)

i◦ ≜ argmax
i∈N−

λ′
i − λ∗

i . (51)

Then, from Lemma G.3 and λ′ ̸= λ∗, we have

N− ̸= ∅
∀i ∈ N \ N−, λ′

i = λ∗
i .

(52)

Furthermore, λ∗
i◦

∈ [0, 1], so λ′
i◦

< 1. It implies that party i◦ does not receive the optimal model of
value v(N ), which implies the followings (since the payoff flows specified by λ∗ and λ′ satisfy the
budget efficiency property).

−pi◦(v) > bi◦ , which implies pi◦,−(v) > pi◦,+(v) (53)

−pi◦(λ
′v) = −pi◦(λ

∗v) = bi◦ . (54)

The latter (54) can be re-written as follows.

pi◦,+(λ
′v)− pi◦,−(λ

′v) = pi◦,+(λ
∗v)− pi◦,−(λ

∗v)

pi◦,+(λ
′v)− pi◦,+(λ

∗v) = pi◦,−(λ
′v)− pi◦,−(λ

∗v)∑
j∈N\i◦

λ′
jpji◦(v)−

∑
j∈N\i◦

λ∗
jpji◦(v) = λ′

i◦pi◦,−(v)− λ∗
i◦pi◦,−(v)∑

j∈N\i◦

(λ′
j − λ∗

j )pji◦(v) = (λ′
i◦ − λ∗

i◦)pi◦,−(v) . (55)

However, from (51), (52), and (53),∑
j∈N\i◦

(λ′
j − λ∗

j )pji◦(v) < (λ′
i◦ − λ∗

i◦)
∑

j∈N\i◦

pji◦(v)

= (λ′
i◦ − λ∗

i◦)pi◦,+(v)

< (λ′
i◦ − λ∗

i◦)pi◦,−(v)

which contradicts (55). Thus, λ′ must be the same as λ∗.

It is noted that λ∗
iφj|i(v) = φj|i(λ

∗v) due to the linearity property of the conditional Shapley value.
Thus, the payoff flows λ∗φj|i(v) for all {i, j} ⊂ N are the conditional Shapley values of the adjusted
value function #»v ′ = λ∗ #»v = (λ∗

i v)
n
i=1 where λ∗ is the optimal solution to (P). Therefore, this

concludes the proof of Lemma 4.1.
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H Proof of Weak Efficiency

In this section, we prove that the adjusted payoff flows also satisfy the weak efficiency property
defined in Sec. 4: There always exists a party that receives the optimal trained on the aggregated
dataset DN (i.e., the model of value v(N )) in the following section.

As discussed in Sec. 3.2, for all i ∈ N , the performance of the model obtained by party i is

v(i) + pi,−(λ
∗
i v) = v(i) + λ∗

i

∑
j∈N\i

φj|i(v) . (56)

To prove the weak efficiency of the above allocation scheme, we need to show there exists a
party i ∈ N such that λ∗

i = 1, i.e., party i receives a model of the value

v(i) + λ∗
i

∑
j∈N\i

φj|i(v) = v(i) +
∑

j∈N\i

φj|i(v)

= v(i) + (v(N − v(i)) (due to the fair cost property)
= v(N ) .

In other words, party i receives the optimal model trained on all of the aggregated dataset DN . Hence,
we prove the weak efficiency of the payoff flows specified by pij(

#»v ′) = λ∗
iφj|i(v) by proving the

following lemma.

Lemma H.1. There always exists i ∈ N such that λ∗
i = 1 where λ∗ ≜ (λ∗

i )
n
i=1 is the optimal

solution to (P).

Proof. Case 1: ∃i ∈ N , bi > 0. In such a case, λ∗
i > 0 (otherwise, we can increase λ∗

i by a small
positive value and obtain a solution to (P) that is better than λ∗, which is a contradiction). Hence,

max
j∈N

λ∗
j ≥ λ∗

i > 0 . (57)

Case 1.1: ∀j ∈ N , pj(λ
∗ #»v ) = 0. Let m ≜ maxj∈N λ∗

j , then m > 0 from (57). Furthermore,
since λ∗ is the optimal solution to (P) (it satisfies the constraint λj ∈ [0, 1]), so m ∈ (0, 1].

Suppose that m ∈ (0, 1). We can define λ′ = 1
mλ∗, then we can show that λ′ is a solution to (P) that

is better than the optimal λ∗, which is a contradiction.

Recall the setting of case 1.1: ∀j ∈ N , pj(λ
∗ #»v ) = 0. Hence, −pj(λ

′ #»v ) = − 1
mpj(λ

∗ #»v ) = 0 ≤ bj

(from the linearity property of the conditional Shapley value) and 1
mλ∗

j =
λ∗
j

maxk∈N λ∗
k
∈ [0, 1] (the

definition of m), which means that λ′ is a feasible solution to (P). Furthermore, since m ∈ (0, 1),∑
{j,k}⊂N

1

m
λ∗
jφk|j(v) >

∑
{j,k}⊂N

λ∗
jφk|j(v) .

Therefore, λ′ is a solution to (P) that is better than the optimal λ∗, which is a contradiction. Hence,
m /∈ (0, 1). It means that m = 1, i.e., by letting i = argmaxk∈N λ∗

k, then λ∗
i = 1.

Case 1.2: ∃j ∈ N , pj(λ
∗ #»v ) ̸= 0.

From the balance property in Sec. 3.1, ∑
i∈N

pi(λ
∗ #»v ) = 0 .

Therefore, if there exists j ∈ N such that pj(λ∗ #»v ) ̸= 0, then there exists i ∈ N such that pi(λ∗ #»v ) >
0 for the above balance property to hold. We will show that λ∗

i = 1. To prove by contradiction,
suppose λ∗

i < 1, since

pi(λ
∗ #»v ) > 0

equivalently, ∑
j∈N\i

λjφi|j(v)− λi

∑
j∈N\i

φj|i(v) > 0 .
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Since λ∗
i < 1, there exists ϵ > 0 such that{

λ′
i = λ∗

i + ϵ ≤ 1∑
j∈N\i λjφi|j(v)− λ′

i

∑
j∈N\i φj|i(v) > 0 .

(58)

Let λ′ = (λ′
j)

n
j=1 be defined as follows{

λ′
i = λ∗

i + ϵ

λ′
j = λ∗

j for j ∈ N \ i .

From (58), it follows that λ′
j ∈ [0, 1] for all j ∈ N . Furthermore, pi(λ∗ #»v ) > 0 (the setting of the

case 1.2) so −pi(λ
′ #»v ) < 0 ≤ bi. Hence, for λ′ to be a feasible solution to (P), we need to show that

−pj(λ
′ #»v ) ≤ bj ∀j ∈ N \ i .

In fact, for all j ∈ N \ i,

pj(λ
′ #»v ) =

∑
k∈N\j

λ′
kφj|k(v)− λ′

j

∑
k∈N\j

φk|j(v)

= λ′
iφj|i(v) +

∑
k∈N\{i,j}

λ′
kφj|k(v)− λ′

j

∑
k∈N\j

φk|j(v)

= ϵφj|i(v) +
∑

k∈N\j

λ∗
kφj|k(v)− λ∗

j

∑
k∈N\j

φk|j(v)

= ϵφj|i(v) + pj(λ
∗ #»v )

≥ pj(λ
∗ #»v )

≥ −bj .

Hence, −pj(λ
′ #»v ) ≤ bj . Therefore, λ′ is a feasible solution to the LP in Sec. 4. Furthermore,

∑
{j,k}⊂N

λ′
jφk|j(v) =

 ∑
j∈N\i

ϵφj|i(v)

+

 ∑
{j,k}⊂N

λ∗
jφk|j(v)

 >
∑

{j,k}⊂N

λ∗
jφk|j(v) (59)

which is a contradiction since λ∗ is the optimal solution to (P). Hence λ∗
i = 1.

Case 2: b = 0. It is noted that (P) is always feasible (solution λ = 0) and bounded (bounded
by

∑
{i,j}⊂N φj|i(v)) for all b ≥ 0. Thus, the objective function of the LP is continuous in b. As the

above shows that ∀b ≥ 0 such that there exists i ∈ N , bi > 0, there exists j ∈ N such that λ∗
j = 1.

The continuity implies that at b = 0, there exists j ∈ N such that λ∗
j = 1.

I Extension to Performance Constraints

Suppose for all i ∈ N , party i has a budget bi and a desirable model performance ri. Then, apart from
the budget constraint that prevents party i from expending an amount larger than bi, we introduce
the performance constraint which states that party i is not interested in obtaining a model with a
performance larger than ri.

Given v, the budget b ≜ (bi)
n
i=1, and the desirable performance r ≜ (ri)

n
i=1, we would like to find

the adjusted value function #»v ′ ≜ (v′i)
n
i=1 such that the payoff flows pij(v′i) = φj|i(v

′
i) meet not only

the budget constraints, i.e., −pi(
#»v ′) ≤ bi, but also the performance constraints, i.e.,

v′i(N ) ≤ max(v(i), ri) . (60)

By enforcing the feasibility & individual rationality, the marginal contribution consistency, and the
following performance-budget efficiency, the adjusted value functions are uniquely defined.

Performance-budget efficiency. Assuming ri = ∞ if party i does not have a performance constraint,
the performance-budget efficiency encourages every party to obtain the budget-constrained desirable
model that it can afford (i.e., the model with the value closest to but not exceeding the desirable model
value min(v(N ), ri) due to the budget constraint) by expending as much of its budget as possible,
i.e., for all i ∈ N ,
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• If party i can afford the desirable model value min(v(N ), ri), then it receives the model of
value min(v(N ), ri) under the adjusted payoff flows.

• If party i cannot afford the desirable model value min(v(N ), ri) due to its budget constraint,
then the adjusted payoff is exactly −bi, i.e., −pi(

#»v ′) = bi, i.e., the budget is fully consumed.

Lemma I.1. Let λ∗ ≜ (λ∗
i )

n
i=1 be the solution to the following linear programming problem:

maximize
∑

{i,j}⊂N λiφj|i(v)

subject to λi

∑
j∈N\i φj|i(v)−

∑
k∈N\i λkφi|k(v) ≤ bi, ∀i ∈ N

v(i) + λipi,−(v) ≤ max(v(i), ri), ∀i ∈ N
λi ∈ [0, 1], ∀i ∈ N .

(Q)

The feasibility & individual rationality, the marginal contribution consistency, the performance-
budget efficiency, and the constraints uniquely determine the following adjusted value functions

∀i ∈ N , ∀C ⊂ N \ i, v′i(C ∪ i) = λ∗
i v(C ∪ i) + (1− λ∗

i )v(i) .

Then, from the fairness properties in Sec. 3.2, the payoff flow pij(v
′
i) is uniquely defined as the

conditional Shapley value φj|i(v
′
i) which can be directly computed from φj|i(v):

∀j ∈ N \ i, pij(v′i) = φj|i(v
′
i) = φj|i(λ

∗
i v) = λ∗

iφj|i(v) .

It is noted that the first set of constraints in (Q) are the budget constraints while the second set of
constraints are the performance constraints. The proof of Lemma I.1 can be obtained in a similar
fashion that of Lemma 4.1 in App. G by observing that the LP (Q) is equivalent to

maximize
∑

{i,j}⊂N λiφj|i(v)

subject to λi

∑
j∈N\i φj|i(v)−

∑
k∈N\i λkφi|k(v) ≤ bi, ∀i ∈ N

λi ∈
[
0,min

(
1, max(v(i),ri)−v(i)

pi,−(v)

)]
, ∀i ∈ N .

(61)

Furthermore, we can follow the proof of the weak efficiency in App. Hto show the following variant
of the weak efficiency property.

A variant of weak efficiency. There always exists a party in N that receives the model with the
desirable model value min(v(N ), ri), i.e., the optimal model trained on DN (of value v(N )) or the
desirable model of value ri. It is noted that the desirable model value of a party only depends on the
performance constraint and does not depend on the budget constraint. In other words, this property
implies that there always exists a party that is not constrained by its budget. For example, in the
extreme case when all parties have zero budgets, i.e., b = 0, there still exists a party that receives the
model reward as if it has an unlimited budget.

J Additional Experiments

In all experiments, we set ν = 1 for simplicity. The experiments are performed on a machine with
Intel i7-9750H and 16GB of RAM.

J.1 MNIST

The MNIST dataset [9] contains 70, 000 28× 28 gray-scale images of handwritten digits, i.e., the
label of an image is one of the 10 digits. A party, denoted as [s-e] (s ≤ e), owns a subset of the
MNIST training dataset (of size 60, 000) that are labeled with digits s, s + 1, . . . , e. There are 5
parties in N : [0] (i.e., [0-0]), [1-2], [0-3], [3-5], and [6-9]. The model performance is measured by the
prediction accuracy on a separate dataset of size 10, 000.

The ML model is a neural network with 2 hidden layers each of which consists of 64 neurons with
the ReLU activation functions. The output layer is a softmax layer that consists of 10 neurons. The
parameters of the network are trained with the Adam optimizer. The learning rate is set to 0.001. The
batch size is set to 64. The number of epochs is 5.
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J.2 CIFAR-10

The CIFAR-10 dataset [8] contains 60, 000 32× 32 color images. These images are labeled as one of
the 10 classes: 0 (airplane), 1 (automobile), 2 (bird), 3 (cat), 4 (deer), 5 (dog), 6 (frog), 7 (horse), 8
(ship), and 9 (truck), each of which consists of 6000 images. The training dataset of 50, 000 images
is distributed to 4 parties. Parties 1, 2, 3, and 4 own data of labels [1, 8, 9], [0, 2, 3], [4, 5], and [6, 7],
respectively. The model performance is measured by the prediction accuracy on a separate dataset of
size 10, 000.

The ML model is a neural network with 3 convolutional layers with the number of filters are 32, 64,
and 64. The kernel size of these layers is set to (3, 3). There are 2 max-pooling layers with the pool
size (2, 2) after the first 2 convolutional layers. The output of the third convolutional layer is flattened
and passed to a layer with 64 neurons and linear activation functions. The output layer is a softmax
layer that consists of 10 neurons. The parameters of the network are trained with the Adam optimizer.
The learning rate is set to 0.001. The batch size is set to 512. The number of epochs is 20.
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Figure 3: Plots of the payoff, model rewards, and payoff flows in the CIFAR-10 experiments with
budget constraints: (a-c) b = ∞1, (d-f) b = 0, and (g-i) b4 = ∞ and bi = 0 for i ̸= 4.

Figs. 3a and 3b show the payoff and model rewards when there are not any budget constraints
(i.e., b = ∞1), respectively. In Fig. 3a, parties 3 ([4, 5]) and 4 ([6, 7]) with smaller datasets (in
comparison to the other parties) receive negative payoff rewards. Among parties 1 and 2, we
observe that the dataset of party 1 is more valuable as it receives a higher payoff reward. In Fig. 3b,
all parties receive models with the same performance of v(N ) since there are not any budget
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constraints. While the work of [12] can address the case of no budget constraints, it results in a payoff
vector [0.15, 0.01,−0.12,−0.04] which does not satisfy the linear value property in Sec. 3.1 and the
linear property.

We also note that the work of [12] distributes the total cost of a party to all parties including itself. In
contrast, we only distribute the total cost of a party to other parties because they are the parties that
cause the increase in the model performance of the party.

Figs. 3d and 3e show the payoff and model rewards when all parties are not allowed to spend any
payoff (i.e, b = 0), respectively. Due to no budget, the payoff rewards are 0 for all parties (see
Fig. 3d). However, in Fig. 3e, we observe that they still benefit from the collaboration by obtaining
better models (of value v(i) + pi,−) than their own models (of value v(i)). In particular, party 1
receives the optimal model trained on the aggregated dataset DN (of value v(N )), which is consistent
with the weak efficiency property. Thus, when monetary payoffs are not allowed, our allocation
scheme is still able to motivate parties to fairly collaborate using their data. While the ρ-Shapley
value [14] can address the problem of allocating the model reward in this scenario (it forbids the use
of monetary payoffs), the model reward allocation in Fig. 3d cannot be obtained from the ρ-Shapley
value (by varying its parameters). When ρ < 1, the ρ-Shapley value does not satisfy the linear
property, while our proposed allocation scheme does.

Figs. 3g and 3h show the payoff and model rewards when party 4 ([6, 7]) has an unlimited budget and
other parties have budgets of 0, i.e., b4 = ∞ and bi = 0 for i ̸= 4. While it is intuitive that with an
unlimited budget, party 4 can obtain the model trained on DN (of value v(N )), it is less obvious that
parties 2 and 3 also have the performance of their models improved in comparison to the previous
case (by comparing Fig. 3f and Fig. 3d). The reason is that revenues of parties 2 and 3 from party 4
increase (comparing the last rows in Figs. 3f and 3i). These increased revenues are used to further
improve the models of 2 and 3, e.g., by getting more contributions from party 1 (comparing the first
columns in Figs. 3f and 3i). Party 1 can obtain an additional payoff reward for its contributions to
other parties in Fig. 3g. Thus, according to our allocation scheme, increasing the budget of a party
benefits not only itself but also other parties.

Another observation in Fig. 3g is that party 4 makes a larger payment in comparison to Fig. 3a where
all parties do not have any budget constraints (by comparing the red star bars of party 4 in the 2
figures). This is because in Fig. 3a, party 4 can obtain more revenue from parties 2 and 3, while in
Fig. 3e, party 4 cannot since both parties 2 and 3 have budget constraints of b2 = b3 = 0. We can
also observe it by comparing the last columns in Figs. 3c and 3i: the revenue flows from parties 2
and 3 to party 4 reduces when the budget constraints are imposed on parties 2 and 3.

J.3 IMDB Movie Reviews Dataset

The IMDB movie reviews dataset [10] contains 50, 000 movie text reviews. Each review is labeled as
either positive or negative. We randomly distribute 20, 000 reviews to 5 parties equally. The model
performance is measured by the prediction accuracy on a separate dataset of size 25, 000.

Movie reviews are encoded (via standardization, tokenization, and vectorization with the text vec-
torization layer in Tensorflow) as positive integer vectors of fixed length 250. Then, these positive
integers are transformed into dense vectors of size 16 using the embedding layer in Tensorflow. Next,
we average over the sequence dimension using a global average pooling layer. The output vectors of
size 16 are piped through a hidden layer with 16 neurons and linear activation functions. Last, the
output layer is a layer with 1 neuron and the sigmoid activation function. We also apply drop-out
layers with the drop-out rate of 0.2 after the embedding layer and the global average pooling layer.
The parameters of the network are trained with the Adam optimizer. The learning rate is set to 0.001.
The batch size is set to 32. The number of epochs is 10.

Figs. 4a and 4b show the payoff and model rewards when there are not any budget constraints (i.e.,
b = ∞1), respectively. While we randomly distribute the data to all parties, we observe that party 1
has the most valuable dataset as it receives the highest payoff reward in Fig. 4a and v(1) is largest
among v(i) for i ∈ N in Fig. 4b. In Fig. 4b, all parties receive models with the highest performance
as there are not any budget constraints. While the work of [12] can address the case of no budget
constraints, it results in a payoff vector [0.042,−0.002,−0.020,−0.017,−0.002] which does not
satisfy the linear value property in Sec. 3.1 and the linearity property. We also note that the work
of [12] distributes the total cost of a party to all parties including itself. In contrast, we only distribute
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Figure 4: Plots of the payoff, model rewards, and payoff flows in the sentiment analysis of the IMDB
movie reviews dataset with budget constraints: (a-c) b = ∞1, (d-f) b = 0, and (g-i) b3 = ∞
and bi = 0 for i ̸= 3.

the total cost of a party to other parties because they are the parties that cause the increase in the
model performance of the party.

Figs. 4d and 4e show the payoff and model rewards when all parties are not allowed to spend any
payoff (i.e, b = 0), respectively. Due to no budget, the payoff rewards are 0 for all parties (see
Fig. 4d). However, in Fig. 4e, they still benefit from the collaboration by obtaining better models
(of value v(i) + pi,−) than their own models (of value v(i)). In particular, we observe that party 1
receives the optimal model trained on the aggregated dataset DN (of value v(N )), which is consistent
with the weak efficiency property. Thus, when monetary payoffs are not allowed, our allocation
scheme is still able to motivate parties to fairly collaborate using their data. While the ρ-Shapley
value [14] can address the problem of allocating the model reward in this scenario (it does not allow
monetary payoffs), the model reward allocation in Fig. 4e cannot be obtained from the ρ-Shapley
value (by varying its parameters). When ρ < 1, the ρ-Shapley value does not satisfy the linearity
property, while our proposed allocation scheme does.

Figs. 4g and 4h show the payoff and model rewards when party 3 has an unlimited budget and other
parties have budgets of 0, i.e., b3 = ∞ and bi = 0 for i ̸= 3. While it is intuitive that with an
unlimited budget, party 3 can obtain the optimal model trained on DN (of value v(N ), it is less
obvious that parties 2, 4, and 5 also have the performance of their models improved in comparison
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to the previous case (by comparing Fig. 4h and Fig. 4e). The reason is that revenues of parties 2, 4,
and 5 from party 3 increase (comparing the last rows in Fig. 4f and 4i). These increased revenues are
used to further improve the models of 2, 4, and 5, e.g., by getting more contributions from party 1
(comparing the first columns in Figs. 4f and 4i). Party 1 can obtain an additional payoff reward for its
contributions to other parties in Fig. 4g. Thus, according to our allocation scheme, increasing the
budget of a party benefits not only itself but also other parties.

Similar to the previous CIFAR-10 experiment, another observation in Fig. 4g is that party 3 makes
a larger payment in comparison to Fig. 4a where all parties do not have any budget constraints (by
comparing the red star bars of party 3 in the 2 figures). This is because in Fig. 4a, party 3 can obtain
more revenue from parties 2, 4, and 5, while in Fig. 4e, party 4 cannot since parties 2, 4, and 5 have
budget constraints of b2 = b4 = b5 = 0. We can also observe it by comparing the 3-rd columns
in Figs. 4f and 4i: the revenue flows from parties 2, 4, and 5 to party 3 reduces when the budget
constraints are imposed on parties 2, 4, and 5.
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