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Abstract—Mobility-on-demand (MoD) systems have recently
emerged as a promising paradigm of one-way vehicle sharing for
sustainable personal urban mobility in densely populated cities.
In this paper, we enhance the capability of a MoD system by
deploying robotic shared vehicles that can autonomously cruise
the streets to be hailed by users. A key challenge to managing the
MoD system effectively is that of real-time, fine-grained mobility
demand sensing and prediction. This paper presents a novel
decentralized data fusion and active sensing algorithm for real-
time, fine-grained mobility demand sensing and prediction with
a fleet of autonomous robotic vehicles in a MoD system. Our
Gaussian process (GP)-based decentralized data fusion algorithm
can achieve a fine balance between predictive power and time
efficiency. We theoretically guarantee its predictive performance
to be equivalent to that of a sophisticated centralized sparse
approximation for the GP model: The computation of such a
sparse approximate GP model can thus be distributed among
the MoD vehicles, hence achieving efficient and scalable demand
prediction. Though our decentralized active sensing strategy is
devised to gather the most informative demand data for demand
prediction, it can achieve a dual effect of fleet rebalancing to
service the mobility demands. Empirical evaluation on real-world
mobility demand data shows that our proposed algorithm can
achieve a better balance between predictive accuracy and time
efficiency than state-of-the-art algorithms.

I. INTRODUCTION

Private automobiles are becoming unsustainable personal
mobility solutions in densely populated urban cities because
the addition of parking and road spaces cannot keep pace with
their escalating numbers due to limited urban land. For exam-
ple, Hong Kong and Singapore have, respectively, experienced
27.6% and 37% increase in private vehicles from 2003 to 2011
[3]. However, their road networks have only expanded less
than 10% in size. Without implementing sustainable measures,
traffic congestions and delays will grow more severe and
frequent, especially during peak hours.

Mobility-on-demand (MoD) systems [21] (e.g., Vélib sys-
tem of over 20000 shared bicycles in Paris, experimental car-
sharing systems described in [22]) have recently emerged as a
promising paradigm of one-way vehicle sharing for sustainable
personal urban mobility, specifically, to tackle the problems of
low vehicle utilization rate and parking space caused by private
automobiles. Conventionally, a MoD system provides stacks
and racks of light electric vehicles distributed throughout a
city: When a user wants to go somewhere, he simply walks to
the nearest rack, swipes a card to pick up a vehicle, drives
it to the rack nearest to his destination, and drops it off.
In this paper, we enhance the capability of a MoD system

by deploying robotic shared vehicles (e.g., General Motors
Chevrolet EN-V 2.0 prototype [2]) that can autonomously
drive and cruise the streets of a densely populated urban city
to be hailed by users (like taxis) instead of just waiting at
the racks to be picked up. Compared to the conventional
MoD system, the fleet of autonomous robotic vehicles provides
greater accessibility to users who can be picked up and
dropped off at any location in the road network. As a result,
it can service regions of high mobility demand but with poor
coverage of stacks and racks due to limited space for their
installation.

The key factors in the success of a MoD system are the costs
to the users and system latencies, which can be minimized by
managing the MoD system effectively. To achieve this, two
main technical challenges need to be addressed [20]: (a) Real-
time, fine-grained mobility demand sensing and prediction,
and (b) real-time active fleet management to balance vehi-
cle supply and demand and satisfy latency requirements at
sustainable operating costs. Existing works on load balancing
for MoD systems [22], dynamic traffic assignment problems
[23], dynamic one-to-one pickup and delivery problems [4],
and location recommendation and dispatch for cruising taxis
[6, 9, 13, 30] have tackled variants of the second challenge by
assuming the necessary input of mobility demand information
to be perfectly or accurately known using prior knowledge
or offline processing of historic data. Such an assumption
does not hold for densely populated urban cities because
their mobility demand patterns are often subject to short-
term random fluctuations and perturbations, in particular, due
to frequent special events (e.g., storewide sales, exhibitions),
unpredictable weather conditions, or emergencies (e.g., break-
downs in public transport services). So, in order for the active
fleet management strategies to perform well, they require accu-
rate, fine-grained information of the spatiotemporally varying
mobility demand patterns in real time, which is the desired
outcome of addressing the first challenge. To the best of
our knowledge, there is little progress in the algorithmic
development of the first challenge, which will be the focus
of our work in this paper.

Given that the autonomous robotic vehicles are used directly
as mobile probes to sample real-time demand data (e.g.,
pickup counts of different regions), how can the vacant ones
actively cruise a road network to gather and assimilate the most
informative demand data for predicting the mobility demand
pattern? To solve this problem, a centralized approach to data



fusion and active sensing [5, 12, 15, 16, 18, 19] is poorly
suited because it suffers from a single point of failure and
incurs huge communication, space, and time overheads with
large data and fleet. Hence, we propose a novel decentralized
data fusion and active sensing algorithm for real-time, fine-
grained mobility demand sensing and prediction with a fleet
of autonomous robotic vehicles in a MoD system. The specific
contributions of our work include:
• Modeling and predicting the spatiotemporally varying mo-

bility demand pattern using a rich class of Bayesian non-
parametric models called the log-Gaussian process (`GP)
(Section II);

• Developing a novel Gaussian process-based decentral-
ized data fusion (GP-DDF+) algorithm (Section III) that
achieves a fine balance between predictive power and
time efficiency, and theoretically guaranteeing its predictive
performance to be equivalent to that of a sophisticated
centralized sparse approximation for the Gaussian process
(GP) model: The computation of such a sparse approximate
GP model can thus be distributed among the MoD vehicles,
hence achieving efficient and scalable demand prediction;

• Exploiting a decentralized active sensing (DAS) strategy
(Section IV) to gather the most informative demand data
for predicting the mobility demand pattern: Interestingly, we
can analytically show that DAS exhibits a cruising behavior
of simultaneously exploring demand hotspots and sparsely
sampled regions that have higher likelihood of picking up
users, hence achieving a dual effect of fleet rebalancing to
service the mobility demands;

• Empirically evaluating the predictive accuracy, time effi-
ciency, scalability, and performance of servicing mobility
demands (i.e., average cruising length of vehicles, average
waiting time of users, total number of pickups) of our
proposed algorithm on a real-world mobility demand pat-
tern over the central business district of Singapore during
evening hours (Section VI).

II. MODELING A MOBILITY DEMAND PATTERN

The service area in an urban city can be represented as
a directed graph G , (V,E) where V denotes a set of all
regions generated by gridding the service area, and E ⊆ V ×V
denotes a set of edges such that there is an edge (s, s′) from
s ∈ V to s′ ∈ V iff at least one road segment in the road
network starts in s and ends in s′. Each region s ∈ V is
associated with a p-dimensional feature vector xs representing
its context information (e.g., location, time, precipitation), and
a measurement ys quantifying its mobility demand1. Since
it is often impractical in terms of sensing resource cost to
determine the actual mobility demand of a region, a common
practice is to use the pickup count of the region as a surrogate
measure. To elaborate, the user pickups made by vacant MoD

1The service area is represented as a grid of regions instead of a network of
road segments like in [7] because we observe less smoothly-varying, noisier
demand measurements (hence, lower spatial correlation) for the latter in our
real-world data (Section VI) since many road segments do not permit stopping
of vehicles.

vehicles cruising in a region contribute to its pickup count.
Since we do not assume a data center to be available to keep
track of the pickup count, a fully distributed gossip-based
protocol [11] is utilized to aggregate these pickup information
from the vehicles in the region that are connected via an
ad hoc wireless communication network. Consequently, any
vehicle entering the region can access its pickup count simply
by joining its ad hoc network.

As observed in [6, 13] and our real-world data (Fig. 1a), a
mobility demand pattern over a large service area in an urban
city is typically characterized by spatiotemporally correlated
demand measurements and contains a few small-scale hotspots
exhibiting extreme measurements and much higher spatiotem-
poral variability than the rest of the demand pattern. That is, if
the measurements are put together into a 1D sample frequency
distribution, a positive skew results. We like to consider using
a rich class of Bayesian nonparametric models called Gaussian
process (GP) [25] to model the demand pattern. But, the GP
covariance structure is sensitive to strong positive skewness
and easily destabilized by a few extreme measurements [28].
In practice, this can cause reconstructed patterns to display
large hotspots centered about a few extreme measurements
and predictive variances to be unrealistically small in hotspots
[10], which are undesirable. So, if the GP is used to model
a demand pattern directly, it may not predict well. To resolve
this, a standard statistical practice is to take the log of the
measurements (i.e., zs = log ys) to remove skewness and
extremity, and use the GP to model the demand pattern in
the log-scale instead.

A. Gaussian Process (GP)

Each region s ∈ V is associated with a realized (random)
log-measurement zs (Zs) if s is sampled/observed (unob-
served). Let {Zs}s∈V denote a GP, that is, every finite subset
of {Zs}s∈V has a multivariate Gaussian distribution. The GP
is fully specified by its prior mean µs , E[Zs] and covariance
σss′ , cov(Zs, Zs′) for all s, s′ ∈ V , the latter of which
is defined by the widely-used squared exponential covariance
function:

σss′ , σ2
s exp

(
−1

2

p∑
i=1

(
[xs]i − [xs′ ]i

`i

)2
)

+ σ2
nδss′

where [xs]i ([xs′ ]i) is the i-th component of the feature vector
xs (xs′), the hyperparameters σ2

n, σ
2
s , `1, . . . , `p are, respec-

tively, noise and signal variances and length-scales that can
be learned using maximum likelihood estimation, and δss′ is
a Kronecker delta that is 1 if s = s′ and 0 otherwise. Given
a set D ⊂ V of observed regions and a column vector zD
of corresponding log-measurements, the GP can be used to
predict the log-measurements of any set S ⊂ V of unobserved
regions with the following Gaussian posterior mean vector and
covariance matrix:

µS|D , µS + ΣSDΣ−1
DD(zD − µD) (1)

ΣSS|D , ΣSS − ΣSDΣ−1
DDΣDS (2)



where µS(µD) is a column vector with mean components µs
for all s ∈ S(s ∈ D), ΣSD(ΣDD) is a covariance matrix with
covariance components σss′ for all s ∈ S, s′ ∈ D(s, s′ ∈ D),
and ΣSD is the transpose of ΣDS .

B. Log-Gaussian Process (`GP)

Demand measurements may not be observed in some re-
gions because vacant MoD vehicles did not cruise into them.
Since our ultimate interest is to predict them in the original
scale, GP’s predicted log-measurements of these unobserved
regions must be transformed back unbiasedly. To achieve this,
we utilize a widely-used variant of GP in geostatistics called
the `GP that can model the demand pattern in the original
scale. Let {Ys}s∈V denote a `GP: If Zs , log Ys, then
{Zs}s∈V is a GP. So, Ys = exp{Zs} denotes the original
random demand measurement of unobserved region s and is
predicted using the log-Gaussian posterior mean (i.e., best
unbiased predictor)

µ̂s|D , exp(µs|D + Σss|D/2) (3)

where µs|D and Σss|D are simply the Gaussian posterior mean
(1) and variance (2) of GP, respectively. The uncertainty of
predicting the measurements of any set S ⊂ V of unobserved
regions can be quantified by the following log-Gaussian poste-
rior joint entropy, which will be exploited by our DAS strategy
(Section IV):

H[YS |YD] ,
1

2
log(2πe)

|S| ∣∣ΣSS|D∣∣+ µS|D · 1 (4)

where µS|D and ΣSS|D are the Gaussian posterior mean vector
(1) and covariance matrix (2) of GP, respectively.

III. DECENTRALIZED DEMAND DATA FUSION

The demand data are gathered in a distributed manner by
the vacant MoD vehicles cruising the service area and have
to be assimilated in order to predict the mobility demand
pattern. A straightforward approach to data fusion is to fully
communicate all the data to every vehicle, each of which then
performs the same exact `GP prediction (3) separately. This
approach, which we call full Gaussian process (FGP) [15, 16],
unfortunately cannot scale well and be performed in real time
due to its cubic time complexity in the size of the data.

Alternatively, the work of [7] has recently proposed a
Gaussian process-based decentralized data fusion (GP-DDF)
approach to efficient and scalable approximate GP and `GP
prediction. Their key idea is as follows: Each vehicle sum-
marizes all its local data, based on a common prior support
set U ⊂ V , into a local summary (Definition 1) to be
exchanged with every other vehicle. Then, it assimilates the
local summaries received from the other vehicles into a global
summary (Definition 2), which is then exploited for predicting
the demands of unobserved regions. Though GP-DDF scales
very well with large data, it can predict poorly due to (a)
loss of information caused by summarizing the measurements
and correlation structure of the original data; and (b) sparse
coverage of the hotspots (i.e., with higher spatiotemporal
variability) by the support set.

We propose a novel decentralized data fusion algorithm
called GP-DDF+ that combines the best of both worlds, that
is, the predictive power of FGP and efficiency of GP-DDF. GP-
DDF+ is based on the intuition that a vehicle can exploit its
local data to improve the demand predictions for unobserved
regions “close” to its data (in the correlation sense). At the
same time, GP-DDF+ can preserve the efficiency of GP-DDF
by exploiting its idea of summarizing information, specifically,
into the local and global summaries, as reproduced below:

Definition 1 (Local Summary): Given a common support
set U ⊂ V known to all K vehicles, a set Dk ⊂ V of observed
regions and a column vector zDk

of corresponding demand
measurements local to vehicle k, its local summary is defined
as a tuple (żkU , Σ̇

k
UU ) where

żkB , ΣBDk
Σ−1
DkDk|U (zDk

− µDk
) (5)

Σ̇kBB′ , ΣBDk
Σ−1
DkDk|UΣDkB′ (6)

such that ΣDkDk|U is defined in a similar manner as (2).

Definition 2 (Global Summary): Given a common support
set U ⊂ V known to all K vehicles and the local summary
(żkU , Σ̇

k
UU ) of every vehicle k = 1, . . . ,K, the global summary

is defined as a tuple (z̈U , Σ̈UU ) where

z̈U ,
K∑
k=1

żkU (7)

Σ̈UU , ΣUU +

K∑
k=1

Σ̇kUU . (8)

Using GP-DDF [7], each vehicle exploits the global summary
to compute a globally consistent predictive Gaussian distribu-
tion of the log-measurements of any set of unobserved regions.
The resulting predictive Gaussian mean and variance can then
be plugged into (3) to obtain the log-Gaussian posterior mean
for predicting the demand of any unobserved region in the
original scale. To improve the predictive power of GP-DDF,
we develop the following novel GP-DDF+ algorithm that is
further augmented by local information.

Definition 3 (GP-DDF+
k ): Given a common support set

U ⊂ V known to all K vehicles, the global summary
(z̈U , Σ̈UU ), the local summary (żkU , Σ̇

k
UU ), a set Dk ⊂ V of

observed regions and a column vector zDk
of corresponding

measurements local to vehicle k, its GP-DDF+
k algorithm

computes a predictive Gaussian distribution N (µkS ,Σ
k

SS) of
the demand measurements of any set S ⊂ V of unobserved
regions where µkS ,

(
µks
)
s∈S and Σ

k

SS ,
(
σkss′

)
s,s′∈S such

that

µks , µs +
(
γksU Σ̈−1

UU z̈U − ΣsUΣ−1
UU ż

k
U

)
+ żks (9)

σkss′ , σss′ −
(
γksUΣ−1

UUΣUs′ − ΣsUΣ−1
UU Σ̇kUs′

− γksU Σ̈−1
UUγ

k
Us′

)
− Σ̇kss′

(10)



and
γksU , ΣsU + ΣsUΣ−1

UU Σ̇kUU − Σ̇ksU . (11)

Remark 1. Both the predictive Gaussian mean µks (9) and co-
variance σkss′ (10) of GP-DDF+

k exploit summary information
(i.e., bracketed term) derived from global and local summaries
and local information (i.e., last term) derived from local data.
Remark 2. The predictive Gaussian mean µks (9) and variance
σkss (10) can be plugged into (3) to obtain the log-Gaussian
posterior mean for predicting the demand of any unobserved
region in the original scale.
Remark 3. Since different vehicles exploit different local data,
their GP-DDF+

k algorithms provide inconsistent predictions of
the mobility demand pattern.

It is often desirable to achieve a globally consistent demand
prediction among all vehicles. To do this, each unobserved
region is simply assigned to the vehicle that predicts its
demand best, which can be performed in a decentralized way:

Definition 4 (Assignment Function): An assignment func-
tion τ : V 7→ {1 . . .K} is defined as

τ(s) , arg min
k∈{1...K}

σkss (12)

for all s ∈ S where the predictive variance σkss is defined in
(10). From now on, let τs , τ(s) for notational simplicity.

Using the assignment function τ , each vehicle can now com-
pute a globally consistent predictive Gaussian distribution, as
detailed in Theorem 1A below:

Theorem 1 (GP-DDF+): Let a common support set U ⊂
V and a common assignment function τ be known to all K
vehicles.

A. The GP-DDF+ algorithm of each vehicle computes
a globally consistent predictive Gaussian distribution
N (µS ,ΣSS) of the demand measurements of any set
S ⊂ V of unobserved regions where µS , (µτss )s∈S
(9) and ΣSS , (σss′)s,s′∈S such that

σss′ ,

{
στsss′ if τs = τs′ ,

Σss′|U + γτssU Σ̈−1
UUγ

τs′
Us′ otherwise ,

(13)
and γτs′Us′ is the transpose of γτs′s′U .

B. Let N (µPIC
S|D,Σ

PIC
SS|D) be the predictive Gaussian

distribution computed by the centralized sparse par-
tially independent conditional (PIC) approximation
of GP model [26] where µPIC

S|D ,
(
µPIC
s|D

)
s∈S

and

ΣPIC
SS|D ,

(
σPIC
ss′|D

)
s,s′∈S

such that

µPIC
s|D , µs + Γ̃sD (ΓDD + Λ)

−1
(zD − µD) (14)

σPIC
ss′|D , σss′ − Γ̃sD (ΓDD + Λ)

−1
Γ̃Ds′ (15)

and Γ̃Ds′ is the transpose of Γ̃s′D such that

ΓBB′ , ΣBUΣ−1
UUΣUB′ (16)

Γ̃sD , (Γ̃ss̄)s̄∈D (17)

Γ̃ss̄ ,

{
σss̄ if τs = τs̄,
Γss̄ otherwise , (18)

and Λ is a block-diagonal matrix constructed from
the K diagonal blocks of ΣDD|U , each of which is
a matrix ΣDkDk|U for k = 1, . . . ,K where D =⋃K
k=1Dk, and let τs̄ , k for all s̄ ∈ Dk. Then,

µs = µPIC
s|D and σss′ = σPIC

ss′|D for all s, s′ ∈ S.

The proof of Theorem 1B is given in Appendix A of [1].
Remark 1. In Theorem 1A, if τs = τs′ = k, then vehicle k
can compute µτss (9) and σss′ (10) locally and send them to
the other vehicles that request them. Otherwise, τs 6= τs′ and
vehicle k has to request |U |-sized vectors γτssU and γτs′s′U from
the respective vehicles τs and τs′ to compute σss′ (13).
Remark 2. The equivalence result of Theorem 1B implies
that the computational load of the centralized PIC approxi-
mation of GP can be distributed among K vehicles, hence
improving the time efficiency of demand prediction. Sup-
posing |S| ≤ |U | and |S| ≤ |D|/K for simplicity, the
O
(
|D|((|D|/K)2 + |U |2)

)
time incurred by PIC can be re-

duced to O
(
(|D|/K)3 + |U |3 + |U |2K

)
time of running GP-

DDF+ on each of the K vehicles. Hence, GP-DDF+ scales
better with increasing size |D| of data.
Remark 3. The equivalence result also sheds some light
on an important property of GP-DDF+ based on the struc-
ture of PIC: It is assumed that ZD1

⋃
S1

, . . . , ZDK

⋃
SK

are conditionally independent given the support set U . As
compared to GP-DDF that assumes conditional independence
of ZD1

, . . . , ZDK
, ZS1

, . . . , ZSK
, GP-DDF+ can predict ZS

better since it imposes a weaker conditional independence as-
sumption. Experimental results on real-world mobility demand
data (Section VI) also show that GP-DDF+ achieves predictive
accuracy comparable to FGP and significantly better than GP-
DDF, thus justifying the practicality of such an assumption for
predicting a mobility demand pattern.

IV. DECENTRALIZED ACTIVE DEMAND SENSING

Suppose that there are K vacant MoD vehicles in the
fleet actively cruising the service area and each vehicle k ∈
{1 . . .K} has observed a set Dk ⊂ V of regions. In the active
demand sensing problem, all vehicles have to jointly select the
most informative walks w∗1 , . . . w

∗
K of length H each along

which demand data will be sampled:

(w∗1 , . . . , w
∗
K) , arg max

(w1,...,wK)

H
[
Y⋃K

k=1 Swk

∣∣∣Y⋃K
k=1Dk

]
(19)

where Swk
denotes the set of unobserved regions to be visited

by the walk wk. To ease notation, let w , (w1 . . . wK) and
Sw =

⋃K
k=1 Swk

(similarly, for w∗ and Sw∗ ). Then, each
vehicle k executes its walk w∗k while observing the demands
of regions Sw∗k , and updates its location and stored data.



To derive the most informative joint walk w∗, the posterior
entropy (19) of every possible joint walk w has to be evaluated.
Such a centralized strategy cannot be performed in real time
due to the following two issues: (a) It relies on all the demand
data that are gathered in a distributed manner by the vehicles,
thus incurring huge time and communication overheads with
large data, and (b) it involves evaluating a prohibitively large
number of joint walks (i.e., exponential in the fleet size).

The first issue can be alleviated by approximating the log-
Gaussian posterior joint entropy using the decentralized GP-
DDF+ algorithm (Theorem 1A), thus distributing its com-
putational load among all vehicles. Then, the active demand
sensing problem (19) is approximated by

w∗ = arg max
w

H [YSw ] (20)

H [YSw
] ,

1

2
log(2πe)

|Sw| ∣∣ΣSwSw

∣∣+ µSw
· 1 . (21)

To obtain H [YSw
] (21), ΣSwSw|D and µSw|D in H[YSw

|YD]
((4) & (19)) are replaced by ΣSwSw

and µSw
defined in

Theorem 1A, respectively.
To address the second issue, a partially decentralized active

sensing strategy proposed by [7] partitions the vehicles into
several small groups such that each group of vehicles selects its
joint walk independently. This partitioning heuristic performs
poorly when the largest group formed still contains many
vehicles. In our work, this is indeed the case because many
vehicles tend to cluster within hotspots, as explained later.
To scale well in the fleet size, we therefore adopt a fully
decentralized active sensing (DAS) strategy by assuming that
the joint walk w∗1 . . . w

∗
K is derived by selecting the locally

optimal walk of each vehicle k:

w∗k = arg max
wk

H
[
YSwk

]
(22)

where H
[
YSwk

]
is defined in the same way as (21). Then,

each vehicle can select its locally optimal walk independently
of the other vehicles, thus significantly reducing the search
space of joint walks. A consequence of such an assumption is
that, without coordinating their walks, the vehicles may select
suboptimal joint walks (e.g., two vehicles’ locally optimal
walks are highly correlated). In practice, this assumption
becomes less restrictive when the size |D| of data increases
to potentially reduce the degree of violation of conditional
independence of YSw1

, . . . , YSwK
.

More importantly, it can be observed from (21) and (22) that
the cruising behavior of DAS trades off between exploring
sparsely sampled regions with high predictive uncertainty
(i.e., by maximizing the log-determinant of Gaussian poste-
rior covariance matrix ΣSwk

Swk
term) and hotspots (i.e., by

maximizing the Gaussian posterior mean vector µSwk
term).

As a result, it redistributes vacant MoD vehicles to regions
with high likelihood of picking up users. Hence, besides
gathering the most informative data for predicting the mobility
demand pattern, DAS is able to achieve a dual effect of fleet
rebalancing to service mobility demands.

V. TIME AND COMMUNICATION ANALYSIS

In this section, we analyze the time and communication
overheads of our proposed GP-DDF+ coupled with DAS
algorithm (Algo. 1) and compare them with that of both FGP
(Section II) and GP-DDF [7] coupled with DAS algorithms
(Section IV).

Algorithm 1: GP-DDF++DAS(U,K,H, k,Dk, zDk
)

while true do
/* Data fusion (Section III) */
Construct local summary by (5) & (6)
Exchange local summary with every vehicle i 6= k
Construct global summary by (7) & (8)
Construct assignment function by (12)
Predict demand measurements of unobserved regions by (9) & (13)
/* Active Sensing (Section IV) */
Compute local maximum-entropy walk w∗k by (22)
Execute walk w∗k and observe its demand measurements Yw∗

k
Update local information Dk and yDk

A. Time Complexity

Firstly, each vehicle k has to evaluate ΣDkDk|U in
O
(
|U |3 + |U |(|D|/K)2

)
time and invert it in O

(
(|D|/K)3

)
time. After that, the data fusion component constructs
the local summary in O

(
|U |2|D|/K + |U |(|D|/K)2

)
time

by (5) and (6), and subsequently the global summary in
O
(
|U |2K

)
time by (7) and (8). To construct the assignment

function for any unobserved set S ⊂ V , vehicle k first
computes |S| number of γksU for all unobserved regions
s ∈ S in O

(
|S||U |2 + |S|(|D|/K)2

)
time by (11). Then, after

inverting Σ̈UU in O(|U |3), the predictive means and variances
for all s ∈ S are computed in O

(
|S||U |2 + |S|(|D|/K)2

)
time by (9) and (13), respectively. Let ∆ , δH denote
the number of possible walks of length H where δ is the
maximum out-degree of graph G. In the active sensing
component, to obtain the locally optimal walk, the log-
Gaussian posterior entropies (22) of all possible walks are
derived from (9) and (13), respectively, in O

(
∆H|U |2

)
and O

(
∆(H|U |)2

)
time. We assume |S| ≤ δ∆ where

S denotes the set
⋃
wk
Swk

of regions covered by any
vehicle k’s all possible walks of length H . Then, the time
complexity for our GP-DDF+ coupled with DAS algorithm is
O
(
(|D|/K)3+|U |3+|U |2K+∆(H3+(H|U |)2+(|D|/K)2)

)
.

In contrast, the time incurred by FGP and
GP-DDF coupled with DAS algorithms are,
respectively, O

(
|D|3 + ∆(H3 + (H|D|)2)

)
and

O
(
(|D|/K)3 + |U |3 + |U |2K + ∆(H3 + (H|U |)2)

)
. It

can be observed that our GP-DDF+ coupled with DAS
algorithm can scale better with large size |D| of data and
fleet size K than FGP coupled with DAS algorithm, and
its increased computational load, as compared to GP-DDF
coupled with DAS algorithm, is well distributed among K
vehicles.

B. Communication complexity

In each iteration, each vehicle of the system running our
GP-DDF+ coupled with DAS algorithm has to broadcast



a O(|U |2)-sized local summary for constructing the global
summary, exchange O(∆) scalar values for constructing the
assignment function, and request O(∆) number of O(|U |)-
sized γksU components for evaluating the entropies of all
possible local walks. In contrast, FGP coupled with DAS algo-
rithm needs to broadcast O(|D|/K)-sized message comprising
all its local data to handle communication failure, and GP-
DDF coupled with DAS algorithm only needs to broadcast a
O(|U |2)-sized local summary.

VI. EXPERIMENTS AND DISCUSSION

This section evaluates the performance of our proposed
algorithm using a real-world taxi trajectory dataset taken from
the central business district of Singapore between 9:30 p.m.
and 10 p.m. on August 2, 2010. The service area is gridded
into 50 × 100 regions such that 2506 regions are included
into the dataset as the remaining regions contain no road
segment for cruising vehicles to access. The maximum out-
degree δ of graph G over these regions is 8. The feature vector
of each region is specified by its corresponding location. In
any region, the demand (supply) measurement is obtained by
counting the number of pickups (taxis cruising by) from all
historic taxi trajectories generated by a major taxi company in
a 30-minute time slot. After processing the taxi trajectories,
the historic demand and supply distributions are obtained, as
shown in Fig. 1. Then, a number C of users are randomly
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Fig. 1. Historic demand and supply distributions.

distributed over the service area with their locations drawn
from the demand distribution (Fig. 1a). Similarly, a fleet of K
vacant MoD vehicles are initialized at locations drawn from
the supply distribution (Fig. 1b).

In our simulation, when a vehicle enters a region with
users, it picks up one of them randomly. Then, the MoD
system removes this vehicle from the fleet of vacant cruising
vehicles and introduce a new vacant vehicle drawn from the
supply distribution. Similarly, a new user appears at a random
location drawn from the demand distribution. The MoD system
operates for L time steps and each vehicle plans a walk of
length 4 at each time step, with all vehicles running a data
fusion algorithm coupled with our DAS strategy. We will
compare the performance of our GP-DDF+ algorithm with that
of FGP and GP-DDF algorithms when coupled with our DAS
strategy. The experiments are conducted on a Linux system
with Intelr Xeonr CPU E5520 at 2.27 GHz.

A. Performance Metrics

The tested algorithms are evaluated with two sets of per-
formance metrics. The performance of sensing and predicting
mobility demands is evaluated using (a) root mean square error

(RMSE)
√
|V |−1

∑
s∈V

(
ys − µ̂s|D

)2
where ys is the demand

measurement and D is the set of regions observed by the MoD
vehicles, and (b) incurred time of the algorithms.

The performance of servicing mobility demands is eval-
uated by comparing the Kullback-Leibler divergence (KLD)∑
s∈V Pc(s) log (Pc(s)/Pd(s)) between the fleet distribution

Pc of vacant MoD vehicles controlled by the tested algorithms
and historic demand distribution Pd (i.e., lower KLD implies
better balance between fleet and demand), average cruising
length of MoD vehicles, average waiting time of users, and
total number of pickups resulting from the tested algorithms.

B. Results and Analysis

For notational simplicity, we will use GP-DDF+, FGP, and
GP-DDF to represent the algorithms of their corresponding
data fusion components coupled with DAS strategy in this
subsection.

1) Performance: The MoD system comprises K = 20
vehicles running three tested algorithms for L = 960 time
steps in a service area with C = 200 users. All results are
obtained by averaging over 40 random instances.

The performance of MoD systems in sensing and predicting
mobility demands is illustrated in Figs. 2a-2b. Fig. 2a shows
that the demand data collected by MoD vehicles using GP-
DDF+ can achieve predictive accuracy comparable to that
of using FGP and significantly better than that of using GP-
DDF. This indicates that exploiting the local data of vehicles
for predicting demands of nearby unobserved regions can
improve the prediction of the mobility demand pattern. Fig. 2b
shows the average incurred time of each vehicle using three
algorithms. GP-DDF+ is significantly more time-efficient (i.e.,
one order of magnitude) than FGP, and only slightly less time-
efficient than GP-DDF. This can be explained by the time
analysis in Section V. The above results indicate that GP-
DDF+ is more practical for real-world deployment due to a
better balance between predictive accuracy and time efficiency.

The performance of MoD systems in servicing the mobility
demands is illustrated in Figs. 2c-2f. Fig. 2c shows that a MoD
system using GP-DDF+ can achieve better fleet rebalancing of
vehicles to service mobility demands than GP-DDF, but worse
rebalancing than FGP. This implies that a better prediction of
the underlying mobility demand pattern (Fig. 2a) can lead to
better fleet rebalancing. Note that KLD (i.e., imbalance be-
tween mobility demand and fleet) increases over time because
we assume that when a vehicle picks up a user, its local data is
removed from the fleet of cruising vehicles, and a new vehicle
is introduced at a random location that may be distant from
a demand hotspot, hence worsening the imbalance between
demand and fleet. It can also be observed that an algorithm
generating a better balance between fleet and demand will
also perform better in servicing the mobility demands, that
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Fig. 2. Performance of MoD systems in sensing, predicting, and servicing mobility demands.

is, shorter average cruising trajectories of vehicles (Fig. 2d),
shorter average waiting time of users (Fig. 2e), and larger
total number of pickups (Fig. 2f). These observations imply
that exploiting an active sensing strategy to collect the most
informative demand data for predicting the mobility pattern
achieves a dual effect of improving performance in servicing
the mobility demands since these vehicles have higher chance
of picking up users in demand hotspots or sparsely sampled
regions (Section IV).

2) Scalability: We vary the number K = 10, 20, 30 of
vehicles in the MoD system, and keep the total length of
walks of all the vehicles to be the same, that is, these vehicles
will walk for L = 960, 480, 320 steps, respectively. All three
algorithms are tested in a service area with C = 600 users. All
results are obtained by averaging over 40 random instances.

From Figs. 3a-3c, it can be observed that all three algorithms
can improve their prediction accuracy with an increasing
number of vehicles in the MoD system because more vehicles
indicate less walks when the total length of walks are the
same, thus suffering less from the myopic planning (H = 4)
and gathering more informative demand data. Figs. 3d-3f show
that, with more MoD vehicles, GP-DDF+ and GP-DDF incur
less time, while FGP incurs more time. This is because the
computational load in decentralized data fusion algorithms are
distributed among all vehicles, thus reducing the incurred time
with more vehicles.
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Fig. 3. Scalability of MoD systems in sensing and predicting mobility
demands.

Figs. 4a-4c show that all three algorithms can achieve better
balance between mobility demand and fleet with larger number
of vehicles. It can also be observed that all three algorithms
can improve the performance of servicing the mobility demand
with more vehicles, that is, shorter average cruising trajectories

of vehicles (Fig. 4d), shorter average waiting time of users
(Fig. 4e), and larger total number of pickups (Fig. 4f). This is
because MoD vehicles can collect more informative demand
data with larger number of vehicles sampling demand hotspots
or sparsely sampled regions, which are the regions with higher
chance of picking up users than the rest of the service area.
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Fig. 4. Scalability of MoD systems in servicing mobility demands.

The above results indicate that more vehicles in MoD sys-
tem result in better accuracy in predicting the mobility demand
pattern, and achieve a dual effect of better performance in
servicing mobility demands.

VII. CONCLUSION

This paper describes a novel GP-based decentralized data
fusion (GP-DDF+) and active sensing (DAS) algorithm for
real-time, fine-grained mobility demand sensing and predic-
tion with a fleet of autonomous robotic vehicles in a MoD
system. We have analytically and empirically demonstrated
that GP-DDF+ can achieve a better balance between predictive
accuracy and time efficiency than the state-of-the-art GP-DDF
[7] and FGP [15, 16]. The practical applicability of GP-DDF+

is not restricted to mobility demand prediction; it can be used
in other urban and natural environmental sensing applications
like monitoring of traffic, ocean and freshwater phenomena
[5, 8, 14, 17, 18, 19, 24, 27, 29]. We have also analytically and
empirically shown that even though DAS is devised to gather
the most informative demand data for predicting the mobility
demand pattern, it can achieve a dual effect of fleet rebalancing
to service the mobility demands. For our future work, we will
relax the assumption of all-to-all communication such that
each sensor may only be able to communicate locally with
its neighbors and develop a distributed data fusion approach
to efficient and scalable approximate GP and `GP prediction.
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