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Abstract

Information-based Bayesian optimization (BO)
algorithms have achieved state-of-the-art perfor-
mance in optimizing a black-box objective func-
tion. However, they usually require several ap-
proximations or simplifying assumptions (without
clearly understanding their effects on the BO per-
formance) and/or their generalization to batch BO
is computationally unwieldy, especially with an
increasing batch size. To alleviate these issues, this
paper presents a novel trusted-maximizers entropy
search (TES) acquisition function: It measures how
much an input query contributes to the information
gain on the maximizer over a finite set of trusted
maximizers, i.e., inputs optimizing functions that
are sampled from the Gaussian process posterior
belief of the objective function. Evaluating TES re-
quires either only a stochastic approximation with
sampling or a deterministic approximation with
expectation propagation, both of which are inves-
tigated and empirically evaluated using synthetic
benchmark objective functions and real-world opti-
mization problems, e.g., hyperparameter tuning of
a convolutional neural network and synthesizing
‘physically realizable’ faces to fool a black-box
face recognition system. Though TES can natu-
rally be generalized to a batch variant with either
approximation, the latter is amenable to be scaled
to a much larger batch size in our experiments.

1 INTRODUCTION

Bayesian optimization (BO) is an effective strategy for it-
eratively obtaining noisy outputs at input queries of an ob-
jective function to efficiently learn about the input locations
of its maximum value, i.e., its maximizers, regardless of the

*Equal contribution

function’s closed-form expression, derivatives, or convexity
[Brochu et al., 2010b, Shahriari et al., 2015]. It is partic-
ularly useful when the budget of function evaluations is
limited due to time/monetary costs such as in the design
[Brochu et al., 2010a] and machine learning model train-
ing [Snoek et al., 2012, Dai et al., 2019]. There has been
a rapid growth in the number of works generalizing BO to
nonmyopic BO [Ling et al., 2016], high-dimensional BO
[Hoang et al., 2018], private outsourced BO [Kharkovskii
et al., 2020], multi-fidelity BO [Zhang et al., 2017, 2019],
recursive reasoning BO [Dai et al., 2020], and ranking BO
[Nguyen et al., 2021b].

On the other hand, restricting a BO solution to only one
input query at each iteration cannot take advantage of par-
allel function evaluations which are becoming increasingly
attainable due to, for example, the rapid growth of com-
puting resources’ affordability and availability these days.
In such a scenario and the time constraint, the urge to ob-
tain the noisy outputs at a batch of input queries, i.e., batch
Bayesian optimization, becomes prominent. However, this
task is challenging due to the extra modifications needed to
account for correlation in a batch such, as seen in several
existing works [Ginsbourger et al., 2010, Desautels et al.,
2014, Shah and Ghahramani, 2015, González et al., 2016,
Daxberger and Low, 2017]. It encourages the development
of BO algorithms that can be naturally generalized to the
batch scenario without making additional adjustments.

To approach this problem, this paper focuses on information-
based BO acquisition functions. In particular, it is the infor-
mation gain about the maximizer (or the maximum value)
of the objective function through observing noisy function
outputs at input queries. This definition is much the same
in spite of the number of input queries at each BO iteration,
e.g., a single query or a batch of queries. The essence of
these acquisition functions is different from upper confi-
dence bound (UCB) that UCB minimizes the regret (over
function outputs at evaluated inputs), while information-
based acquisitions aim to infer the maximizer’s location
regardless of the function outputs at the evaluated inputs
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[Hennig and Schuler, 2012]. They also have a distinctive
feature from other heuristic acquisition functions such as
probability of improvement [Kushner, 1964] and expected
improvement (EI) [Mockus et al., 1978]. It is about captur-
ing the knowledge/belief of the maximizer (or the maxi-
mum value) over the whole input space (a global measure),
which cannot be done with local heuristics, as argued in
the work of Hennig and Schuler [2012]. Empirically, these
information-based acquisition functions such as predictive
entropy search (PES) have shown notable success in optimiz-
ing black-box functions [Hernández-Lobato et al., 2014].

In this paper, we take a different approach in constructing
the trusted-maximizers entropy search (TES) acquisition
function that (1) intuitively conveys the notion of maxi-
mizer without directly evaluating the information gain of
the global maximizer; and (2) is amenable to batch BO. The
first property is made feasible by the observation: while
being the global maximizer requires its function output to
be not less than those evaluated at all other inputs in the
function’s domain, it is much easier to eliminate an input as
the global maximizer which requires the existence of only
an input whose function output is larger. Hence, if we can
construct a set of “promising” inputs to be the maximizer, re-
fining this set by rejecting its inputs can effectively refine the
belief of the maximizer. The second property comes from
the fact that our approximation does not depend on the input
queries, hence considering a batch of input queries does
not increase the approximation’s complexity. Both stochas-
tic and deterministic approximations are examined in the
paper, and their empirical performances are illustrated us-
ing synthetic benchmark objective functions and real-world
optimization problems, e.g., hyperparameter tuning of a
convolutional neural network and synthesizing ‘physically
realizable’ faces to fool a black-box face recognition system.

2 RELATED WORKS

Most of the existing information-based works are centered
around an intuitive measure of the information gain of the
maximizer of the objective function, e.g., entropy search
(ES) [Hennig and Schuler, 2012] and PES [Hernández-
Lobato et al., 2014]. While ES selects an input query by
directly maximizing the information gain on the maximizer
via reducing the maximizer’s entropy, it requires a series
of approximations. On the other hand, PES exploits the
symmetric property of mutual information to sidestep the
approximations in ES, and yet, it requires computing a pre-
dictive belief that involves an intractable constraint. In our
view, these approaches’ inherent difficulty is rooted in the
modeling of the objective function’s global maximizer as
an input whose function output is not less than those eval-
uated at other inputs in the domain. Imposing exactly this
condition is hardly feasible as it involves the whole input
space. Therefore, we would like to develop TES that does

not require such a condition.

There are exceptions that focus on the information gain of
the maximum value of the objective function such as output-
space predictive entropy search [Hoffman and Ghahramani,
2015], max-value entropy search (MES) [Wang and Jegelka,
2017], fast information-theoretic Bayesian optimization [Ru
et al., 2018], and binary entropy search for maximum value
prediction [Nguyen et al., 2021a] which result in a simpler
approximation, e.g., MES enjoys a closed-form expression.
However, as admitted by MES’s authors, it is not intuitive
that the information of the maximum value is a good search
strategy for the maximizer.

Regarding the batch BO problem, there have been several
works in the existing literature such as q-EI with a constant
liar strategy (QEI-CL) [Ginsbourger et al., 2010], Gaus-
sian process batch upper confidence bound (BUCB) [De-
sautels et al., 2014], QEI [Marmin et al., 2015], batch BO
via local penalization (BBO-LP) [González et al., 2016],
and parallel predictive entropy search (PPES) [Shah and
Ghahramani, 2015]. However, QEI-CL, BUCB, and LP-EI
optimize greedily each input one by one in the batch based
on a heuristic value at input queries (QEI-CL), or purely
based on the predictive variance to encourage exploration
(BUCB), or based on a local penalty based on an estima-
tion of the objective function’s Lipschitz constant (LP-EI).
On the other hand, QEI and PPES are able to optimize the
batch jointly, which is also a property of the proposed TES
acquisition function in this paper. It is noted that only PPES
is an acquisition function that is based on the information
gain. While it is extended from the computationally efficient
PES [Hernández-Lobato et al., 2014], the optimization of
PPES requires a computationally expensive inner loop of
expectation propagation (EP). To the best of our knowledge,
there have not been any batch BO solution extended from
MES. It is probably because a direct extension of MES to a
batch variant requires computing the entropy of a truncated
multivariate Gaussian random variable.

3 PROBLEM SETUP

We propose a BO algorithm for black-box optimization
problems, where the analytical form or the derivative in-
formation of the objective function are unknown. Given a
black-box function f : X → R, we search for the global
maximizer x∗ , maxx∈X f(x) in an iterative manner. At
each iteration, the BO algorithm is required to select in-
put queries based on the posterior belief of f given all
observations yD , (yx′)x′∈D at preceding input queries
D ⊂ X where yx′ , f(x′) + ε and ε ∼ N (0, σ2

n). These
input queries are selected to improve the belief of x∗ as
much as possible. Specifically, BO models the posterior be-
lief of f by a GP with the function’s prior mean E[f(x)]
and covariance kxx′ , cov[f(x), f(x′)] for all x,x′ ∈ X .
The covariance is constructed with the squared exponential



(SE) kernel kxx′ , σ2
s exp(−0.5(x − x′)>Λ−2(x − x′))

where its hyperparameters include the length-scales Λ ,
diag[`1, . . . , `d] and the signal variance σ2

s . The prior mean
is usually set to zero to simplify the equations. Given yD,
the predictive distributions of f(x) and yx are Gaussian
distributions: p(f(x)|yD) ∼ N (µx, σ

2
x) and p(yx|yD) ∼

N (µx, σ
2
x + σ2

n), respectively, where

µx , KxD(KDD + σ2
nI)−1yD

σ2
x , kxx −KxD(KDD + σ2

nI)−1KDx ,
(1)

KxD , (kxx′)x′∈D,KDD , (kx′x′′)x′,x′′∈D, I is the iden-
tity matrix, and KDx , K>xD.

4 TRUSTED-MAXIMIZERS ENTROPY
SEARCH

Information-based acquisition functions like ES [Hen-
nig and Schuler, 2012] and PES [Hernández-Lobato
et al., 2014] have been designed to enable their BO al-
gorithms to improve the (posterior) belief p(x∗|yD) ,
p(f(x∗) = maxx∈X f(x)|yD) of the global maximizer
x∗ of the objective function f . In particular, ES can be
directly used to measure the information gain on x∗ by se-
lecting the next input query x for evaluating f given the
noisy observations yD from the previous BO iterations:

α(yD,x) , H(x∗|yD)− Ep(yx|yD)[H(x∗|yD∪{x})] .
(2)

However, evaluating (2) requires a series of approximations.
Furthermore, one of them incurs cubic time in the size of
the discretized input domain and thus it becomes expensive
with a large input domain (or risks (2) being approximated
poorly). To sidestep these issues, PES exploits the sym-
metric property of mutual information to re-express (2) as

α(yD,x) = H(yx|yD)−Ep(x∗|yD)[H(yx|yD,x∗)] . (3)

Intuitively, the selection of an input query x to maximize (3)
has to trade-off between exploration (hence inducing a large
Gaussian predictive entropy H(yx|yD)) vs. exploitation of
the current posterior belief p(x∗|yD) of x∗ to choose a
nearby input x of f to be evaluated (hence inducing a small
expected predictive entropy Ep(x∗|yD)[H(yx|yD,x∗)]) to
yield a highly informative observation that in turn improves
the posterior belief of x∗. Computing the predictive be-
lief p(yx|yD,x∗) necessary for the second entropy term
in (3) requires incorporating the constraint of f(x∗) ≥
f(x) ∀x ∈ X which unfortunately is not tractable without
imposing simplifying assumptions. It is not clear to what
extent they would compromise the quality of the resulting
approximation of the predictive belief p(yx|yD,x∗). The
work of Wang and Jegelka [2017] has proposed using the
information gain on the global maximum f(x∗) but admit-
ted that it is not intuitive why it would necessarily be a good

surrogate of that on the global maximizer x∗. Therefore,
this paper still focuses on finding x∗, albeit with a new per-
spective that is different from ES and PES, which we will
discuss next.

LetX ? ⊂ X denote a finite set of trusted maximizers, i.e., in-
puts that are more likely to be the global maximizer x∗ in the
current BO iteration, that is, p(x∗ ∈ X ?|yD) is large. Let
x? be a r.v. representing the maximizer of f over X ?, that is,
p(x?|yD) , p(f(x?) = maxx∈X? f(x)|yD). To ease the
exposition of our key idea here, we consider a unique maxi-
mizer of f overX ? but do not assume this when we describe
our technical approach later. By finding the maximizer x?

of f over X ?, it effectively eliminates the remaining input
queries in X ? \ {x?} from being the global maximizer x∗

because f(x∗) ≥ f(x?) > f(x) for all x ∈ X ? \ {x?}.
So, if p(x∗ ∈ X ?|yD) is large, then eliminating some in-
put queries in X ? would gain us useful information on the
global maximizer x∗. Furthermore, besides reducing the
probability of each input query x ∈ X ? \ {x?} being x∗,
their neighboring input queries also experience a reduced
probability of being x∗. We illustrate this with a simple ex-
ample of input dimension d = 1 in Fig. 1: Let x+ ∈ [0, 1.4]
and x− ∈ [1.6, 3]. It can be observed that by conditioning
on only f(1) > f(2), the probability of f(x+) > f(x−) in
Fig. 1b (hence implying f(x∗) > f(x−)) increases from
that of 0.5 in Fig. 1a. In other words, the probability of
x− ∈ [1.6, 3] being x∗ reduces. The magnitude of reduction
depends on the correlation between f(2) and the outputs
of f evaluated at the input queries in [1.6, 3], which in turn
depends on the length-scale of the SE kernel (see Fig. 1c).

So, if we can construct the set X ? of trusted maximizers
such that p(x∗ ∈ X ?|yD) is large, then finding the maxi-
mizer x? of f over X ? would gain us useful information on
the global maximizer x∗ since it reduces the probability of
each input query x ∈ X ? \ {x?} and its neighbors being x∗,
as explained above. We therefore form X ? using samples
of x∗ drawn from the posterior belief p(x∗|yD): To do this,
we adopt the method of Hernández-Lobato et al. [2014]
to first approximately sample |X ?| functions from the GP
predictive belief given yD (1) and then compute the global
maximizers of these sampled functions to form X ?.

Given the set X ? of trusted maximizers computed in the
current BO iteration, our trusted-maximizers entropy search
(TES) acquisition function is designed to enable its BO
algorithm to find the maximizer x? of f over X ? by im-
proving the posterior belief p(x?|yD). Specifically, TES
measures the information gain on x? by selecting the next
input query x ∈ X for evaluating f given the noisy obser-
vations (D,yD) from the previous BO iterations:

α?(yD,x) , H(x?|yD)− Ep(yx|yD)[H(x?|yD∪{x})] .
(4)

Since the second entropy term in (4) requires the poste-
rior belief p(x?|yD∪{x}) to be computed for prohibitively



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

x+

3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6

x−

0.5

0.6

0.7

0.8

0.9

1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

x+

3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6

x−

0.5

0.6

0.7

0.8

0.9

1.0

(a) (b)

0 1 2 3
x

0.000

0.005

0.010

0.015

p(
x∗

)

0 1 2 3
x

−4

−2

0

2

4

f(
x)

(c) (d)

Figure 1: Probability of f(x+) > f(x−) (a) before and
(b) after conditioning on f(1) > f(2) where x+ ∈ [0, 1.4],
x− ∈ [1.6, 3], and the belief of f is modeled by a GP using a
SE kernel with σ2

s = 5, σ2
n = 10−9, and length-scale ` = 1.

(c) Probability of x∗ before (blue) and after conditioning on
f(1) > f(2) using the same GP prior with ` = 1 (green)
and ` = 0.2 (orange). (d) 5 functions sampled from the
same GP prior with ` = 1 and satisfying f(1) > f(2).

many different noisy outputs yx, we exploit the symmetric
property of mutual information to re-express (4) as

α?(yD,x)=H(yx|yD)−
∑

x?∈X?

p(x?|yD)H(yx|yD,x?)

H(yx|yD,x?) ,−
∫
p(yx|yD,x?) log p(yx|yD,x?) dyx

(5)
where p(x?|yD) can be evaluated efficiently (Appendix A).

Remark 1. TES (5) differs from PES (3) in measuring
the information gain on the maximizer x? of f over a finite
X ? rather than the entire infinite input domain X , which we
have motivated earlier in this section. A practical implication
is that PES needs to assume simplified constraints to achieve
tractability while TES does not. For example, PES draws
approximate posterior samples of x∗ but does not directly
exploit the constraint that the global maximum is not less
than the outputs of f evaluated at these samples. Instead, it
assumes a simplified soft constraint (with Gaussian noise ε)
that the output of f evaluated at each sample is not less than
the largest noisy output observed in previous BO iterations.
By observing that p(yx|fX? ,yD,x

?) = p(yx|fX? ,yD), the
predictive belief p(yx|yD,x?) in theH(yx|yD,x?) term (5)
can be derived by marginalizing out fX? , (f(x′))>x′∈X? :

p(yx|yD,x?) =

∫
p(yx|fX? ,yD) p(fX? |yD,x?) dfX? .

(6)

Since p(fX? |yD,x?) cannot be evaluated in closed form,
we approximate it with either (a) sampling whose approx-
imation quality improves with the number of samples or
(b) a Gaussian distribution to make p(yx|yD,x?) Gaussian.
These two approximation methods are discussed next.

Remark 2. Since p(fX? |yD,x?) does not depend on the
input query x, its approximation remains unchanged when
our TES acquisition function (5) is optimized with respect
to the input query x ∈ X in each BO iteration, that is,
maxx∈X α

?(yD,x). So, p(fX? |yD,x?) is approximated
only once in each BO iteration, which simplifies the opti-
mization procedure and facilitates an efficient generalization
to batch BO (Section 4.3). In contrast, the approximations
needed to derive PPES and ES depend on x and hence have
to be repeated for every x ∈ X to optimize PPES and ES.

We will discuss the evaluation of TES by both stochastic
approximation with sampling, denoted as TESsp, and deter-
ministic approximation with expectation propagation (EP),
denoted as TESep, as below.

4.1 STOCHASTIC APPROXIMATION WITH
SAMPLING

Let Fx? denote a set of samples that are randomly drawn
from p(fX? |yD,x?). This can be obtained via rejection sam-
pling by drawing samples from the GP predictive belief
p(fX? |yD) (1) and rejecting those samples of fX? where
maxx′∈X? f(x′) > f(x?). However, if p(x?|yD) is small,
then such a sampling becomes inefficient due to a large num-
ber of rejected samples. Importance sampling can be used
to avoid this issue. Let f\? , (f(x′))>x′∈X?\{x?}. Then,

p(fX? |yD,x?) ∝ p(fX? ,x?|yD)

= p(x?|f\?,yD) p(f\?|yD) p(f(x?)|f\?,yD,x?) .

We first draw samples of fX? from p(f\?|yD)
p(f(x?)|f\?,yD,x?) and then weight these samples
by p(x?|f\?,yD) = 1 − Φp(f(x?)|f\?,yD)(f

+) where
f+ , maxx′∈X?\{x?} f(x′) and Φp(f(x?)|f\?,yD)(f

+) is
the cumulative distribution function (c.d.f.) of the GP
predictive belief p(f(x?)|f\?,yD) evaluated at f+. The
details of importance sampling are given in Appendix B.

Alternatively, if the number of samples to be drawn from
p(fX? |yD,x?) is allowed to vary for different x?, then we
can simply draw samples from the GP predictive belief
p(fX? |yD) and group them based on their maximizers. This
may result in no sample for some x?, especially if p(x?|yD)
is small. In this case, we simply update X ? to omit such x?.
It follows from Remark 2 that the construction of Fx? does
not depend on the input query x and is hence performed
only once in each BO iteration.

Given Fx? , p(yx|yD,x?) in (6) can be approximated by

qsp(yx|yD,x?) , |Fx? |−1 ∑fX?∈Fx?
p(yx|fX? ,yD)
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Figure 2: p(f(x0), f(x1)|f(x0) > f(x1)) produced by (a)
rejection sampling, (b) importance sampling, and (c) EP
where p(f(x0), f(x1)) is a standard bivariate Gaussian.

where the GP predictive belief p(yx|fX? ,yD) is derived in
Appendix C. Then, TESsp can be evaluated as follows

α?
sp(yD,x) , |Fx? |−1

∑
x?∈X?

p(x?|yD)
∑

fX?∈Fx?

Ep(yx|fX? ,yD)(log qsp(yx|yD,x?)− log qsp(yx|yD))

where qsp(yx|yD) ,
∑

x?∈X? p(x?|yD)qsp(yx|yD,x?). It
is amenable to stochastic optimization with respect to x via
stochastic gradients which are derived using mini-batches
of yx randomly sampled from the GP predictive belief
p(yx|fX? ,yD) for all fX? ∈ Fx?

1.

Given X ?, the time complexity to evaluate α?
sp(yD,x) is

O(|D|2|X ?|+ |Fx? ||X ?|2 + |X ?|3 + (|X ?|+ |D|)3) where
O(|D|2|X ?|) is the time complexity of the GP prediction
at X ? given yD, O(|Fx? ||X ?|2 + |X ?|3) is the time com-
plexity of sampling Fx? , and O((|X ?|+ |D|)3) is the time
complexity of evaluating p(yx|fX? ,yD).

4.2 DETERMINISTIC APPROXIMATION WITH
EXPECTATION PROPAGATION (EP)

Alternatively, we can approximate p(fX? |yD,x?) with a
Gaussian distribution so that p(yx|yD,x?) (6) can be evalu-
ated in closed form. Compared with the above sampling
method, its approximation cannot be refined due to its
restriction to a Gaussian (see Fig. 2c). Nevertheless, it
is time- and memory-efficient. Its approximation is per-
formed by matching the moments: The mean and covari-
ance of the Gaussian distribution are the same as that of
p(fX? |yD,x?) being approximated. To do this, one can com-
pute the empirical mean and covariance of the samples in
Fx? . An alternative without the sampling of p(fX? |yD,x?)
is EP [Minka, 2001] which approximates p(fX? |yD,x?)
with a Gaussian qep(fX? |yD,x?) , N (µep,Σep), as de-
tailed in Appendix D. It follows from Remark 2 that
qep(fX? |yD,x?) does not depend on the input query x and
is hence computed only once in each BO iteration. Conse-
quently, p(yx|yD,x?) (6) can be approximated in closed

1Reparameterization trick is used [Kingma and Welling, 2013]
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show the GP posterior mean as a solid blue line, uncertainty
(GP posterior variance) as dashed green lines, and data
points as blue points. The dotted red lines show the input
positions of X ?. The red crosses indicate the maximizers of
acquisition functions.

form with a Gaussian:

qep(yx|yD,x?) , N (a>µep + b, σ2
x|X? + a>Σepa + σ2

n)
(7)

where the posterior variance σ2
x|X? of the GP predictive

belief p(f(x)|fX? ,yD), a, and b are given in Appendix E.
Then, TESep can be evaluated as follows

α?
ep(yD,x) ,

∑
x?∈X?

p(x?|yD)

Eqep(yx|yD,x?) (log qep(yx|yD,x?)− log qep(yx|yD))

where qep(yx|yD) ,
∑

x?∈X? p(x?|yD)qep(yx|yD,x?).
Hence, it is amenable to stochastic optimization like the
optimization of α?

sp(yD,x).

Given X ?, the time complexity of evaluating α?
ep(yD,x)

is mainly due to the EP procedure which incurs
O(nep|X ?||D|3) where nep is the number of EP iterations.

Fig. 3b shows different acquisition functions in a synthetic
example. Recall that TES measures the information gain
on x? ∈ X ? by selecting the next input query x ∈ X
for evaluating f . So, for any x that is far from X ?, f(x)
has little correlation with fX? and its TES value should
be close to 0. This observation holds for TESsp and TESep
in Fig. 3b. Furthermore, TESsp and TESep select an input
in X ? when fX? are not strongly correlated, as shown in
Fig. 3b; red crosses are input queries x that optimize the
acquisition functions. When there is a strong correlation
within fX? , TESsp and TESep can exploit the correlation to
select an informative input query x around X ?, as shown in
Fig. 3a. As a result, to optimize TES, we should initialize the
optimization with inputs in X ?. Another observation is that
TESep exploits more than TESsp, as shown in Appendix F.
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column) by varying the length-scale. The top, middle, and
bottom plots are GP posteriors, TESsp, and TESep, respec-
tively. The notations are similar to Fig. 3. Yellow caret-ups
and red caret-downs denote the input query x for TESep and
TESsp, respectively. The bottom 4 plots are not perfectly
symmetrical about x0 = x1 due to sampling.

4.3 GENERALIZATION TO BATCH BO

In batch BO where a batch of inputs, denoted as B, is se-
lected at each BO iteration, TES is defined as the amount
of information gain about x? through observing the noisy
observations yB of the batch B:

α?(yD,B) = H(yB|yD)−Ep(x∗|yD)[H(yB|yD,x?)] .(8)

It can be approximated either stochastically with samples
or deterministically with EP. The Gaussian predictive en-
tropy H(yB|yD) naturally encourages the diversity of a
batch, e.g., sampling of highly correlated observations in
a batch (i.e., redundant information) is discouraged. This
is different from several existing works such as BBO-LP
[González et al., 2016] which requires a local penalization
term based on the objective function’s Lipschitz constant
in addition to the acquisition function. Increasing the batch

size from one (in the previous section) to multiple input
queries changes neither the set of samples Fx? approximat-
ing p(fX? |yD,x?) in the stochastic approximation nor the
approximate posterior qep(fX? |yD,x?) for p(fX? |yD,x?)
in the deterministic approximation. Both approximations
are applied in the same manner as those in the previous
section (i.e., only once prior to the acquisition optimization
in each BO iteration). The only difference in batch BO for
|B| > 1 is that yB is a multivariate r.v., so qsp(yB|yD,x?)
and qep(yB|yD,x?) are a mixture of multivariate Gaussian
distributions and a multivariate Gaussian distribution, re-
spectively. Still, samples of yB from these distributions can
be drawn efficiently for the stochastic optimization of the
acquisition function.

Batch TES with more than one input in the batch still ex-
hibits similar behavior to that with only an input in the
batch. That is, when fX? are not strongly correlated, a sen-
sible strategy is to sample observations at inputs in X ? to
identify x? (the right column of Fig. 4). In contrast, when
there is a strong correlation in fX? , TES can exploit the cor-
relation to sample informative observations at inputs around
X ? (the left column of Fig. 4). Based on this observation,
we also initialize the acquisition optimization with a batch
of inputs in X ?.

Note that α?(yD,B) is the information gain about x?

through observing yB. Thus, it is comparable between
batches of different sizes. As illustrated in Appendix G,
the size of X ? should be at least the batch size to make
the most out of the observations yB. Besides, we can select
the batch size adaptively at each BO iteration based on a
trade-off between the increase in the information gain and
the cost of an observation.

5 EXPERIMENTS

Several existing acquisition functions and TES are evaluated
empirically on synthetic functions and real-world optimiza-
tion problems. We first show the competitive performance of
TES on simple synthetic functions in Sections 5.1 and 5.2.
Subsequently in Section 5.3, we demonstrate that it can
keep up the good performance in high-dimensional complex
real-world problems.

The predictive performance of BO algorithms is measured
by the immediate regret (IR), which is defined as f∗ − f(x̄)
where x̄ is the maximizer of the posterior mean given yD,
and f∗ is the true global maximum of the objective function.
To account for the randomness in the optimization and the
sampling of noisy observations, experiments are repeated
over several random runs. The natural logarithm of the aver-
age of IR over these random runs is reported. The box plots
of IR are shown in Appendix H. All experiments are initial-
ized with a training set of 2 data samples unless otherwise
specified. These synthetic and the real-world functions are



each modeled as a sample of a GP whose kernel hyperpa-
rameters are learned using maximum likelihood estimation
[Rasmussen and Williams, 2006]. Adam [Kingma and Ba,
2015] is used to optimize TES with 300 iterations. At each
stochastic iteration of Adam, 1000 samples of yx (or yB)
are drawn. The experiments are performed on an Intel Xeon
E5-2683 v4 CPU and an NVIDIA GTX 1080 GPU.

5.1 BATCH BO WITH |B| = 1

We first consider BO algorithms that select 1 input query
in each BO iteration. We compare TESep and TESsp with
existing algorithms: EI [Mockus et al., 1978], UCB [Srinivas
et al., 2010], MES [Wang and Jegelka, 2017], and PES
[Hernández-Lobato et al., 2014]. There are 5 inputs in X ?.

In the first experiment, we draw a function sample from
a GP defined in [0, 10]2 with hyperparameters σ2

s = 2,
l1 = l2 = 1, which is named the GP sampled function. The
noise variance to generate observations is σ2

n = 10−4. The
average results over 10 random runs are shown in Fig. 5a.:
TESsp and TESep outperform other acquisition functions
by converging to a better global maximum. Surprisingly,
TESep converges faster than TESsp. It could be because it
exploits more than TESsp as mentioned above (illustrated
in Appendix F). The performance of PES closely matches
those of TES acquisition functions, while it takes longer for
UCB and EI to converge. MES does not perform as well as
other acquisition functions that concentrate on the informa-
tion gain of the maximizers (TES and PES). Experimental
results on Branin and Hartmann-3D [Lizotte, 2008] are in
Appendix H.

The log10P is a function that models the phosphorus field
of Broom’s Barn farm [Webster and Oliver, 2007] spatially
distributed over a 1200m by 680m region discretized into
a 31× 18 grid of sampling locations. The logarithm to the
base 10 values of the amount of phosphorus are recorded.
Fig. 5b shows the average results over 5 random runs for
the log10P with the input rescaled to [0, 1]2. To generate
a continuous function from the dataset, we fit a GP on the
dataset. This results in a GP posterior with the dataset as
training data. The hyperparameters are σ2

s = 7.669× 10−2,
l1 = 9.106× 10−2, l2 = 3.971× 10−2, and σ2

n = 2.511×
10−2. The posterior mean of this GP is taken as the objective
function to optimize. Note that the noise variance in this
experiment is larger than that of the previous experiments.
Hence, it is advantageous for information-based acquisition
functions such as TES and PES as they tend to explore more
than the others. Fig. 5b shows that TESsp converges to a
better maximum than others.

5.2 BATCH BO WITH |B| > 1

In this section, we consider BO of batch size larger than 1.
We compare our algorithms with QEI-CL [Ginsbourger

0 20 40 60 80
Iteration

−10

−8

−6

−4

−2

0

lo
g

A
ve

ra
ge

IR

UCB

MES

PES

EI

TESep

TESsp

0 50 100 150
Iteration

−7

−6

−5

−4

−3

−2

−1

0

lo
g

A
ve

ra
ge

IR

UCB

MES

PES

EI

TESep

TESsp

(a) The GP sampled function. (b) log10P.

Figure 5: BO with |B| = 1.

et al., 2010], BUCB [Desautels et al., 2014], QEI [Marmin
et al., 2015], and LP-EI, which is the BBO-LP [González
et al., 2016] by plugging in EI.

Figs. 6a-c shows BO results with |B| = 3 over 3 random
experiments for the GP sampled function, Hartmann-4D,
and log10P. The size of X ? is set to 5. Overall, both TESsp
and TESep achieve good performance by converging to good
maxima. The difference in the performance can be explained
by the fact that TES can exploit the maximizer samples from
the GP posterior to quickly explore the function domain.

To illustrate the scalability of TESep, we experiment with
large batch sizes: |B| = 10, 20 and 30 for the GP sam-
pled function, and |B| = 10, 20 and 40 for the log10P in
Figs. 6d-i. The size of X ? is set to be the same as that of
B. It is to make the most of the information in the batch
as explained in Appendix G. In the GP sampled function
experiments (Figs. 6d-f), though other acquisition functions
converge faster than TESep, they seem to be stuck in sub-
optimal maxima except for LP-EI in Fig. 6d. At the initial
iterations with little observations, X ? are likely to scatter
over the whole input space, so TESep explores more than
other acquisition functions. At the latter iterations with a
sufficient number of observations, TES can exploit to dis-
cover a good maximum. In the log10P experiments with
noisier observations (Figs. 6g-i), we observe that only QEI
shows similar performance to our TESep, though our TESep
outperforms for batch sizes of 20 and 40. It could be be-
cause both QEI and TESep jointly optimize the batch, which
is an advantage compared with other greedy batch acquisi-
tion functions in these experiments. Another observation for
TESep in Figs. 6d-i is that increasing the batch size improves
the efficiency of BO with respect to the number of iterations.

5.3 OPTIMIZING COMPLEX REAL-WORLD
PROBLEMS

In this section, we aim to illustrate that TES works well in
real life. We apply our more scalable TESep algorithm to two
real-world scenarios that can be regarded as black-box opti-
mization problems. Other batch BO acquisition functions
mentioned previously are evaluated as comparisons.
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Figure 6: Batch BO: |B| = 3 on (a) the GP sampled function,
(b) Hartmann-4D, and (c) the log10P; B of size (d) 10, (e)
20, and (f) 30 on the GP sampled function; and B of size (g)
10, (h) 20, and (i) 40 on the log10P.

The first real-world experiment is motivated by the compu-
tationally expensive procedure of neural architecture search
in convolutional neural networks (CNNs). We train a 2-
layer CNN on the CIFAR-10 dataset and aim to efficiently
search for the best combination of 7 hyperparameters: batch
size, number of convolutional filters, number of dense units,
dropout rate, L2 regularizer, learning rate, and learning
rate decay. The bounds are [16, 512], [6, 256], [128, 2048],
[0, 0.75], [10−7, 10−3], [10−7, 10−1], [10−7, 10−3] respec-
tively and the first three hyperparameters are integers. The
IR is calculated by 1 minus the test accuracy.

Fig. 7a shows BO results with |B| = 20 over 5 random
experiments for CIFAR-10. The initial training set consists
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Figure 7: BO results on real-world problems.

of 10 data samples. We observe greater fluctuations in the
regret for all methods because the outputs of complex prob-
lems generally contain larger noises than those of synthetic
functions. Overall, TESep still converges the fastest to the
lowest regret. All other methods except QEI-CL are stuck in
suboptimal maxima obtained at the beginning few iterations.
This empirical experiment shows that TESep can explore
multi-dimensional search spaces well in real life and find
the best maximum among all the methods tested.

In the second real-world scenario, we synthesize ‘physically
realizable’ faces to fool a black-box face recognition system
(FRS) [Saha and Sim, 2020]. We formalize the problem as
an optimization task, illustrating the potential privacy and
security risks of such systems under malicious attacks. More
precisely, by altering some parameters representing specific
facial features, the attacker’s face is synthesized such that it
minimizes the distance d to a victim’s face perceived by an
FRS. The victim could be any person registered in the FRS,
while the attacker is not. The lower the distance, the more
likely the attacker could successfully fool and bypass the
security of the system. Therefore, the performance metric is
the distance d.

In our experiments, we use the Python face_recognition li-
brary [Geitgey, 2017] as the target black-box FRS and alter
8 parameters linked to facial features such as facial hair
(e.g., beard, mustache), marks (e.g., forehead scar, cheek
scar, mole), eyeglasses (e.g., squared, round) and expres-
sions (e.g., smile). Note that bounds are imposed on the
facial feature parameters to ensure more realistic appear-
ances of the synthesized faces, i.e., ‘physically realizable’
faces. The multimodal discriminant analysis (MMDA) face
synthesizer model described by Sim and Zhang [2015] is
used. The library outputs a 128-dimension face encoding for
each input face image and considers two faces as a pair of
‘match’ if the Euclidean distance between the two encodings
is lower than a threshold θ = 0.5. Given a gallery of 41 face
images selected from the CMU Multi-PIE dataset [Gross
et al., 2010] which consists of 36 males and 5 females, our
objective is to modify an attacker’s face in Fig. 8a so that its
distance to a registered face in the gallery is minimized. We
hope the distance to go below θ for a successful break-in
attack.

Fig. 7b shows BO results with |B| = 20 over 5 random
experiments for the face attack function. The initial training
size is again 10. Similar to what we observed in the CIFAR-
10 experiment, TESep achieves the lowest regret while other
methods only obtain suboptimal maxima. TESep explores
over the whole input space for about 10 iterations (or 200
samples) before turning to exploitation to discover a good
maximum. Similar behavior is seen in Fig. 6c. Additionally,
the box plots of IR are included in Appendix H.

We show the visualization of a typical result after iterations
of optimization using BO with our TESep acquisition func-



(a) (b) (c)

Figure 8: Visualization of a typical result. (a) is the original
image of the attacker. (b) shows the synthesized image of
the attacker. (c) is the ‘matched’ image in the gallery.

tion in Fig. 8. In this particular case, the attacker’s face is
modified to Fig. 8b such that the distance to a registered face
encoding in the gallery is optimized to 0.4534, implying that
the privacy and security of the FRS have been compromised
since the d is smaller than the threshold θ = 0.5. Notably,
the modified face is ‘physically realizable’, i.e., the attacker
could grow a beard, change the glasses, put on some scars
makeup and smile to fool the FRS. The victim’s face is
shown in Fig. 8c. Therefore, our proposed algorithm is ef-
fective in such real-world optimization problems.

6 CONCLUSION

This paper presents trusted-maximizers entropy search
(TES) for performing Bayesian optimization and its batch
variant. Both stochastic approximation with sampling and
deterministic approximation with a Gaussian distribution are
investigated, which results in TESsp and TESep, respectively.
While TESsp produces a better approximation of the poste-
rior belief, TESep is less expensive to evaluate. Therefore,
TESep can be scaled to BO with large batch sizes. TESsp
and TESep achieve favorable performance compared with
existing acquisition functions in experiments with synthetic
benchmark objective functions and complex real-world op-
timization problems.
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