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Abstract 

Autonomous range acquisition for 3D modeling 

requires reliable range registration, for both the precise 

localization of the sensor and combining the data from 
multiple scans for view-planning computation. We 

introduce and present a novel approach to improve the 

reliability and robustness of the ICP (Iterative Closest 

Point) 3D shape registration algorithm by smoothing the 

shape’s surface into multiple resolutions. These smoothed 

surfaces are used in place of the original surface in a 

coarse-to-fine manner during registration, which allows 

the algorithm to avoid being trapped at local minima 
close to the global optimal solution. We used the 

technique of multiresolution analysis to create the 

smoothed surfaces efficiently. Besides being more robust, 

convergence is generally much faster, especially when 

combined with the point-to-plane error metric of Chen 

and Medioni. 

Since the point-to-plane error metric has no closed-

form solution, solving it can be slow. We introduce a 
variant of the ICP algorithm that has convergence rate 

close to it but still uses the closed-form solution 

techniques (SVD or unit quaternion methods) of the 

original ICP algorithm.  

 

1. Introduction 

3D shape alignment is an important part of many 
applications. It is used for object recognition in which 
newly acquired shapes in the environment are fitted to 
model shapes in the database. For reverse engineering and 
building real-world models for virtual reality, it is used to 
align multiple partial range scans to form models that are 
more complete. For autonomous range acquisition, 3D 
registration is used to accurately localize the range 

scanner, and to align data from multiple scans for view-
planning computation. 

Since its introduction by Besl and McKay [2], the ICP 
(Iterative Closest Point) algorithm has become the most 
widely used method for aligning three-dimensional shapes 
(a similar algorithm was also introduced by Chen and 
Medioni [3]). Rusinkiewicz and Levoy [19] provide a 
recent survey of the many ICP variants based on the 
original ICP concept. 

The ICP method is very suitable for precise 
localization of a scanner’s pose during autonomous range 
acquisition. The initial pose estimates are usually given 
by other less-accurate tracking and sensing devices. 
However, even with good initial alignment, the ICP may 
still erroneously converge to a local minimum that is 
close to the globally optimal solution. Though such cases 
do not occur commonly, their existence has made such 
systems less autonomous. 

In this paper, we address the problem of the ICP 
algorithm being trapped at local minima that are close to 
the optimal solution. Our solution takes the approach of 
smoothing the input surfaces into multiple resolutions, 
and using them, in a coarse-to-fine order, in the ICP 
registration. To smooth the surface efficiently, we use the 
decomposition technique of multiresolution analysis. 

Besides being more reliable, the smoothed surfaces 
also speed up the convergence of the ICP algorithm, 
especially when it is used with the point-to-plane error 
metric of Chen and Medioni [3]. However, because the 
point-to-plane error metric has no closed-form solution, 
solving it can be slow. In this paper, we also introduce a 
variant of the ICP algorithm that has convergence rate 
close to that of the point-to-plane error metric, but still 
uses the closed-form solution techniques (the SVD 
method of Arun et al [1] and the unit quaternion method 
of Horn [11]). 
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1.1 Paper Organization 

In the next section, we review some related work. We 
then go on to Section 3 to look at some problems 
affecting reliable registration and investigate how 
smoothing surfaces can help avoid being trapped at non-
optimal local minima near to the global one. In Section 4, 
we present our new ICP algorithm that has the efficiency 
of those that use the point-to-point metric, but can usually 
converge much faster, especially for very smooth 
surfaces. Finally, we conclude the paper in Section 5. 

2. Related Work 

Several researchers have demonstrated the existence of 
local minima very close to the global minimum [5][9]. 
Getting trapped at one of these local minima can lead to 
sub-optimal registration accuracy. Besl and McKay [2] 
suggested an approach to sample the 6-dimensional space 
of the rigid motion parameters, and run the ICP 
registration from each sample pose. This method does not 
really address the problem of local minima close to the 
global one because the subset of initial poses that will 
converge to the global minimum can be very small, and 
therefore the pose sampling may miss them completely. 

Simon [22] and Grimson et al [9] reduced the chances 
of being trapped at nearby local minima by randomly 
perturbing the current best transformation, and continuing 
running the ICP registration with the perturbed 
transformation as the starting pose. The steps are repeated 
until there is no additional improvement in the resulting 
solution. Kirkpatrick et al [13] used a variation of the 
method in which the entire process above is repeated 
several times, each time reducing the amount of 
perturbation.  

In a different but related problem, Neugebauer [14] 
used an iterative optimization method, which also uses 
ideas from the ICP algorithm, to register multiple range 
images simultaneously. He has identified that the 
optimization problem is highly nonlinear, and there are 
often several small local minima beside the global one. To 
reduce the risk of converging into one of these local 
minima, the objective function is smoothed by averaging 
the normal vectors of the model in their neighborhood. 
Because the smoothing affects the accuracy of the 
solution, it should be reduced successively from one 
iteration to the next. 

In the ICP algorithm described by Besl and McKay 
[2], each point in one data set is paired with the closest 

point in the other data set to form correspondence pairs. 
Then a point-to-point error metric is used in which the 
sum of the squared distance between points in each 
correspondence pair is minimized. The process is iterated 
until the error becomes smaller than a threshold or it stops 
changing. On the other hand, Chen and Medioni [3] used 
a point-to-plane metric in which the object of 
minimization is the sum of the squared distance between a 
point and the tangent plane at its correspondence point. 
Unlike the point-to-point metric, which has a closed-form 
solution, the point-to-plane metric is usually solved using 
standard nonlinear least squares methods, such as the 
Levenberg-Marquardt method [16]. Although each 
iteration of the point-to-plane ICP algorithm is generally 
slower than the point-to-point version, researchers have 
observed significantly better convergence rates in the 
former [19][17][14]. A more theoretical explanation of 
the convergence of the point-to-plane metric is described 
by Pottmann et al [15]. 

 
(a) 

 
(b) 

Figure 1. (a) An example shape that is “difficult” to 
align. (b) Alignment solution trapped at a local 
minimum close to the global one. 
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3. Reliable Registration 

Reliable registration is very important in autonomous 
range acquisition, because there may not be any human 
supervision and intervention to correct misregistrations, 
which can adversely affect subsequent view planning and 
navigation. One of the threats to reliable registration is to 
get trapped at local minima that are close to the correct 
solution (from here onwards we will refer to such local 
minima as nearby local minima). Automatic detection of 
such situations usually can be quite easily done by 
measuring the error between the surfaces, but correcting it 
might not be so easy. Our approach can allow the ICP 
algorithm to avoid this type of local minima. 

Nearby local minima usually occur in shapes that have 
many higher-frequency surface features that exert 
stronger constraints [22] on the pose than those by the 
lower-frequency features. When the error distance 
between the two surfaces are more than the size of these 
high-frequency features, the registration solution will not 
converge to the global minimum. 

Figure 1(a) shows an extreme example of such cases. 
The shape has a lot of regularly spaced “spikes”, and a 
couple of lower-frequency “bumps”. Figure 1(b) shows 
the result of registering two surfaces of the same shape. 
The “spikes” have much stronger constraints on the pose 
than the “bumps” have, so the solution can easily trapped 
at a nearby local minimum. 

However, by smoothing both surfaces such that the 
higher-frequency “spikes” are removed, and the lower-
frequency “bumps” preserved (see Figure 2), the 
constraints on the pose now come only from the lower-
frequency features and the high-frequency features no 
longer interfere with the convergence to the correct 
solution. 

We used three different ICP algorithms to register the 
original “spiky” surfaces and the smoothed ones. These 
algorithms differ only in the use of different error metrics. 
The first ICP algorithm uses the point-to-point error 
metric described by Besl and McKay [2], the second uses 
the point-to-plane error metric of Chen and Medioni [3], 
and the third uses our new “pseudo point-to-plane” 
method that is described in Section 4.  

Figure 3 compares the convergence of the different 
ICP algorithms on the original “spiky” surfaces and on 
the smoothed surfaces. Figure 3(a) shows that the solution 
cannot converge correctly for all ICP algorithms when the 
original surfaces are used, whereas when the smoothed 
surfaces are used, all algorithms converge correctly, albeit 
one of them (point-to-point) converges rather slowly. 

We have also observed that, generally, smoothing can 
also improve the convergence rates of the point-to-plane 
and the pseudo point-to-plane ICP algorithms. Section 4 
presents more details on this. 

 
Figure 2. A smoothed version of the shape shown in 
Figure 1(a). 
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(b) 

Figure 3. (a) The solutions of the different ICP 
methods are sub-optimal for the original “spiky” 
surface in Figure 1(a). (b) With the smoothed 
surface, the solutions converge to the optimal one. 
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For all experiments and results described in this paper, 
the three ICP algorithms are implemented as follows. The 
surface that is fixed in its position is called the target 

surface, and the surface that is to be rigidly transformed 
to align with the target surface is called the source 

surface. For each ICP iteration, we select all points on the 
source surface, and use a k-d tree [8] of the target surface 
points to find the point on the target surface that is closest 
to each point on the source surface. Then, those 
correspondence pairs that have the target points on the 
boundary of the target surface are rejected [25]. For the 
point-to-point and pseudo point-to-plane error metrics, we 
use the SVD method of Arun et al [1] to compute the rigid 
motion, and for the point-to-plane error metric, we use the 
Levenberg-Marquardt method. 

3.1 Multiresolution Smoothing 

It is a very common practice to smooth range images 
to reduce noise so that subsequent operations on them can 
be more robust. However, the amount of smoothing is 
often just small enough to reduce noise in the data, and it 
is often done using 2D image filtering (which we will see 
is not invariant to 3D rigid motion). 

For our approach of range image registration, after 
smoothing the two surfaces to remove the higher-
frequency surface features, it is desirable that the 
smoothed surfaces be as similar to each other as possible, 
especially in their overlapping regions. The ideal 
smoothing operator should possess the following criteria: 

 
1. Invariant to rigid motion. Since the two range 

images are initially described in different 3D 
coordinate frames, the smoothing should not produce 
different results on the same surface. More 
specifically, if S is a surface, T is a rigid motion, and 
F is the smoothing operator, then 

T(F(S)) = F(T(S)). 
 
2. Invariant to surface parameterization and 

sampling. The same surface regions on the physical 
object can be sampled by the scanner from different 
positions and orientations. This results in the 
common surface regions having different sampling 
densities and parameterizations in the two range 
images. Given that both sampling densities are 
sufficient to preserve all surface details, the 
smoothing should produce similar surfaces from the 
two range images regardless of the different sampling 
densities and parameterization. However, this is 
usually hard to achieve, and as the amount of 
smoothing increases, the deviation between the 
shapes of the two surfaces becomes larger. One way 
to deal with this problem is to use multiple smoothed 
versions of the surfaces, each with different amount 

of smoothing. Using this multiresolution approach, 
the coarsest smoothed versions of the two surfaces 
are used for registration first, until the error distance 
between them become less than half the smallest 
feature size in the next finer smoothed versions. 
Then, the finer versions are used in turn. This repeats 
until the original range images are used. 

 
3. Preserves desired constraints on rigid motion. The 

motivation to smooth the surface is to remove high-
frequency features that could interfere with the 
current registration. Equally important, lower-
frequency features should be preserved as much as 
possible to maximize the constraints on the rigid 
motion imposed by these features. This requires 
smoothing operator similar to ideal low-pass filtering. 
It has been shown that B-splines are good 
approximations of such an ideal low-pass filter, and 
have compact-support scaling functions that allow 
efficient multiresolution decomposition [4].  

 
4. Efficient run time and representation. Since the 

range images can be very dense, the smoothing must 
be done efficiently, and the smoothed surfaces 
represented compactly. In our implementation, we 
use a two-dimensional cubic B-spline wavelet 
transform [23][7][18][4] to smooth the surfaces, and 
represent the smoothed surfaces efficiently using 
tensor-product cubic B-splines. 

 
We must be careful that smoothing should not be 

applied further if it will remove the necessary constraints 
on the rigid motion. We can use Simon’s constraint 
analysis method [22] to test this. 

When switching from coarser smoothed surfaces to 
finer ones at the appropriate error distance, additional 
constraints on the rigid motion are re-introduced into the 
registration. This can help to quicken the convergence. 

One obvious drawback of smoothing is that the 
smoothed surfaces become smaller. This happens because 
the filtering should not include unknown data that are 
outside the surface boundaries, including boundaries of 
holes caused by self-occlusions. The reduction in surface 
area may reduce rigid motion constraints. 

3.2 Implementation 

Here we describe our preliminary implementation of 
the smoothing operation. First, we simply treat each range 
point as a 3D control point on a tensor product bicubic 
uniform B-spline surface. Then, the surface is smoothed 
into multiple resolutions by two-dimensional cubic 
uniform B-spline wavelet transform [23][7][18][4] using 
the nonstandard decomposition [23]. At each step of the 
decomposition, we do not actually compute the wavelet 
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coefficients, and the smoothed surface produced at each 
level of decomposition is saved. Multiple smoothed 
surfaces can be produced in time linear to the number of 
input range points. Each resulting smoothed surface is 
efficiently represented by control points of a bicubic 
uniform B-spline surface. Figure 4(b) shows the result of 
smoothing a rough surface shown in Figure 4(a). 

Our preliminary implementation of the smoothing 
operation satisfies only criteria 1, 3, and 4 listed in 
Section 3.1. We are currently looking at wavelet 
transform methods on irregular point sets [6] and other 
more sophisticated surface smoothing methods 
[10][20][24] to extend our smoothing operation to also 
satisfy criterion 2. Therefore, for the moment, we will 
have to assume that the two range images are quite 
similarly sampled (in that the sampling densities at their 
common surface regions are similar).  

Usually, we smooth each surface into four to six 
consecutive resolutions. The coarsest resolution usually 

corresponds to the quality of the initial pose estimate. If 
we know the upper bound of the error distance between 
the two surfaces given by the initial pose estimate, we can 
smooth the surface until the support of the cubic B-spline 
basis function is greater than twice of this upper bound. 
For registration in autonomous range acquisition, the 
amount of smoothing can be similarly determined by the 
quality of the initial pose estimates provided by other 
tracking devices. 

During registration, we start with the coarsest-
resolution surface, and when the error distance (we use 
the maximum distance between correspondence pairs) is 
less than a quarter the size of the support of the cubic B-
spline basis function used to produce the current 
smoothed surface, we switch to the next finer resolution 
surface. 

For the computation of the closest points on the 
smoothed target surface, we first tessellate, in a 
preprocessing step, all the smoothed target surfaces into 
dense triangle mesh. Then, we build k-d trees of the 
triangles’ vertices, and use them to find the closest points. 
Another approach that is more space-efficient is to 
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(b) 

Figure 5. (a) Convergence of the ICP algorithms on 
the original terrain surface. (b) Convergence for its 
smoothed version. 

 

 
(a) 

 
(b) 

Figure 4. (a) A rough terrain surface (b) The surface 
smoothed using cubic B-spline multiresolution 
decomposition. 
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subdivide the smoothed target surfaces just a few times, 
and use a root-finding method (e.g. Newton-Raphson 
method) to find the closest point on the target surfaces 
[2]. 

4. Fast Convergence 

We can see in the previous examples that smoothing 
the surfaces speeds up the convergence of the point-to-
plane ICP algorithm. This is because the error metric 
assumes the neighborhood around each target point is 
planar, and this assumption becomes more correct when 
the surface is smooth. On the other hand, the point-to-
point ICP algorithm may perform worse than when the 
surface is not smooth. This usually happens when some of 
the components of the rigid motion are much more 
strongly constrained than the others are. For example, in 
the smoothed surface shown in Figure 2, the large flat 
regions of the surface exert very strong constraints on 
three components of the rigid motion, but have much 
weaker constraints on the other three components, which 
control the movements of the surface parallel to itself. For 
a more theoretical exposition of constraints on rigid 
motion, see [22]. 

Here is another way to look at the slow convergence of 
the point-to-point metric. When too many of the source 
points are paired with some target points that are in very 
close proximity, they together tend to exert strong 
“ attractive forces”  to retard further movement of the 
source surface. Figure 6(a) shows an example, in which 
the closeness of the horizontal sections of the two 
surfaces slows the source surface S from moving to the 
right. 

Since the point-to-plane metric allows the source 
points to “ slide”  on the tangent planes of the target points, 
it does not have problem with the above. Although it can 
generally converge much more quickly to the solution, 
each iteration of the point-to-plane ICP can be slow 
compared to that of the point-to-point. Much of the time 
is spent on doing the nonlinear least-squares optimization. 
In our implementation, the point-to-plane ICP can often 
be about 10 times slower than the point-to-point version. 

Here, we describe a new ICP variant that uses the fast 
point-to-point metric computation to obtain the effect of 
the point-to-plane metric. We refer to this variant as the 
pseudo point-to-plane method. Our approach counters the 
incorrect “ attractive forces”  by using an average motion 
vector to correct the target point in each pair-
correspondence, and forcing the source surface to move in 
the correct direction. 

The average motion vector is computed as follows. 
First, as usual, each source point is paired with the nearest 
target surface point. After the pair rejection step (a 
correspondence pair is rejected if its points, for example, 
are on the boundary, are too far apart, or have 

incompatible normals), the vector from each source point 
to its nearest target point is computed, as shown in Figure 
6(a). Then, the average motion vector is computed as the 
average of the longest n% of these vectors.  

Next, the average motion vector is used to correct the 
target points. Figure 6(b) illustrates how it is done. For 
each correspondence pair, the average motion vector is 
projected on the tangent plane at the current target point 
of the pair. The projected vector is then added to the 
position of the current target point to obtain the new target 
point. The original source points and the new target points 
can then be aligned using the closed-form solution from 
one of the methods such as the SVD method [1] or the 
unit quaternion method [11]. 

The reason that only n% of the longest pair vectors are 
used to compute the average motion vector is that in the 
case when there are many incorrect pairs whose points are 
very close to each other, we do not want them to “ dilute”  
the average motion vector. In our implementation, we use 
only 10% of the longest vectors. 

Figure 3, 5 and 7 show some examples to compare the 
convergence rates of the pseudo point-to-plane and the 
other two error metrics. We can see that for relatively flat 
surfaces, the pseudo point-to-plane is almost as good as 
the point-to-plane. We can also observe that for smoothed 
surfaces, the convergence rates of the pseudo point-to-
plane, and the actual point-to-plane become even better. 
For the shape shown in Figure 7(a), because it is almost 
flat, smoothing has little effect on the convergence rates 
of the three methods. 

T S 

(a) 

(b) 

Figure 6. The pseudo point-to-plane ICP algorithm. 
(a) The computation of the average motion vector. 
(b) The correction of the target point using the 
average motion vector. 
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In many cases, we have observed that when the 
solution is very near to the optimum, the pseudo point-to-
plane method tends to oscillate about the optimal solution. 
In comparison, when the solution is that near, the actual 
point-to-plane method quickly converges to the optimum. 
Therefore, it seems a good idea to combine the two 
methods by using the pseudo point-to-plane first until an 
error threshold is reached, and then switching to the actual 
point-to-plane for one or two iterations. One advantage 
we can exploit here is that when the solution is very near 
the optimum, the actual point-to-plane metric problem can 
be linearized by approximating sin θ with θ and cos θ 
with 1, and thus can be done as fast as the point-to-point 
method. 

5. Conclusions 

We have presented the idea of using multiresolution 
surface smoothing to avoid being trapped at local minima 
near the global solution during registration. We also 

described our preliminary implementation of the idea. 
Although it still needs a lot of improvement, we think it 
has demonstrated the feasibility of our idea. We have also 
presented a new variant of the ICP algorithm that has 
often been observed to perform better than many of the 
commonly used point-to-point methods. 
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Figure 7. (a) An almost flat surface. (b) Convergence 
of the ICP algorithms on the almost flat surface. 
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