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ABSTRACT

In this technical report, we derive some conditions that allow the ICP (Iterative Closest Point)
surface registration algorithm to attain some absolute accuracy when aligning two surfaces.

1 INTRODUCTION

3D shape alignment is an important part of many applications. It is used for object recognition in
which newly acquired shapes in the environment are fitted to model shapes in the database. For
reverse engineering and building real-world models for virtual reality, it is used to align multiple
partial range scans to form models that are more complete. For autonomous range acquisition,
3D surface registration is used to accurately localize the range scanner, and to align data from
multiple scans so that they can be merged to alow planning of the next views.

Since itsintroduction by Besl and McKay [Bes1992], the ICP (Iterative Closest Point) algorithm
has become the most widely used method for aligning three-dimensional shapes, especially 3D
surfaces obtained by range scanners. A similar algorithm was also introduced by Chen and
Medioni [Chen1992]. Rusinkiewicz and Levoy [Rusinkiewicz2001] provide a recent survey of
the many ICP variants based on the original 1CP concept.

During autonomous range acquisition, each newly acquired range image must be registered to
the current model of the scene before it can be merged with the latter. Therefore, when planning
for a new view to make the next scan, before the scan is actually made, the view planner must
ensure that the new range image acquired from the planned view can be successfully registered
with the current model, and to within certain error tolerance. The success of the registration
depends on a few factors, for example, the registration algorithm used, the initial relative pose
between the two surfaces, the “frequencies’ on the surfaces, the amount of overlap between the
two surfaces, the amount of measurement errors, and the shape constraint on the 3D rigid-body
transformation between the two surfaces. In this technical report, the registration method we
consider is the ICP algorithm [Bes1992], and among the many other factors, we consider only
the amount of measurement errors and the shape constraint on the 3D rigid-body transformation.
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Figure 1.1: The autonomous acquisition cycle with automated view planning.

In his doctoral thesis [Simon1996], Simon proposed a means to measure the relative amount of
shape constraint on a surface, which is proportional to how well the surface can be registered
using the ICP algorithm. More specifically, his method is able to compute, for a set of surface



points, a value that represents the amount of constraint on the 3D rigid-body transformation
when the surface is being registered with itself. This value is only good for comparing with the
values of other point sets, so as to determine which point set has the best constraint on the
transformation. The value does not tell the absolute accuracy that can be achieved with each
point set during the registration. In this technical report, we extend Simon'’s results to derive
conditions and constraints required to achieve some given absol ute accuracies.

In order to understand the derivations in this technical report, the reader has to be familiar with
the material in 3.3.1 and Section 3.3.3 of [Simon1996]. We adopt Simon'’ s notation.

Unlike Simon’s derivation, in the following derivations, we consider translation and rotation
separately. This makes sense because trandation and rotation are parameterized by different
entity types (trandation is parameterized by distances and rotation by angles). By doing so, aswe
will see, the result of the rotation error analysis becomes independent of the scale of the object.

2 CONDITIONSFOR TRANSLATIONAL ACCURACY

Following the derivation in [Simon1996], the translational component of V'(x,) can be written
as

Vo(x) = DT, (x,)) =, (A1)

where 7 = [tx,ty,tz]r, ot = [azx,ary,azz]T and n, istheunit surface normal at point x . Then

D(T,(x,)) =V, (x,) dz (A2)
Squaring this equation results in

D*(T,(x,)) =dr 'V, (x,)V, (x,) dr =dt" M (x,) dz (A3)

where M _(x,) =V, (xs)V,T (x,) isasymmetric, positive semi-definite 3x3 matrix. Summing the
guantity in Eq. A3 over aset P of discrete surface points resultsin

Ep(T,(x,))= Y D*(T,(x,)) =dr’ ( 2M, (xs)] dr = de" V¥, dr (A4)
x,eP x,eP

The symmetric 3x3 matrix ¥, is the sum of the M, (x,) matrices evaluated at each point in P.

Y, is a scatter matrix that contains information about the distribution of the original V, (x,)

vectors over al pointsin the set P. By decomposing ¥, using principal component analysis, we

get

i 0 0
LP‘r :QTATQ‘;'I- :Q‘r 0 /12 0 Q;r (AS)
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where /J,, 4, and /; arethe eigenvaluesof ¥_, with 4, > 1, > /5, and the columns of O, arethe

corresponding unit eigenvectors. Since the sum of the eigenvalues is equal to the trace of the
original matrix [Strang1986],

M+ Ay + A = trace(¥, )

= trace(xéPM . (xs)] = traCE{xSZEPVT (xs)V,T (x,) ] (A6)
- Z“|Vr(xs)|2 = z n, ‘= leM

x,eP x,eP x,eP

where M is the number of pointsin P.

For the alignment of the surface to be successful, it must bethat 4, > 0 for i =1, 2,and 3. Ideally,
we wish to select the set of points for P such that 4, = 4, = 43 =M /3, which means that the

surface alignment is constrained equally in all three orthogonal tranglation directions. The
minimum requirement for alignment is M =3, and the three surface normals must span the 3D
space. In practice, because of errors in the range measurements, it is necessary to have
M > M, >3, such that the trandational alignment can be performed to a certain desired

accuracy, assuming the surface is already correctly oriented.

The trandation that resulted from the alignment can be decomposed into three orthogonal
directions. In the following, we investigate the relationship between M, and translational

alignment accuracy by looking at the alignment errors in the three orthogonal directions. Without
loss of generality, we choose the x, y, and z directions.

Let [x;,y,.z]" bethe 3D coordinates of the ith true surface point, where i =1, 2, ..., M . Suppose
there are two sets of measurements of the surface points, producing the point set 4 with

coordinates  [x, +u,,y, +v,.z +w,]| and the point se&t B with coordinates

.
[x, + 1, v, + v,z +wy | Where {uy,, ug}, {vy, vg}, and {w,,, wy} are measurement
errorsin thex, y, and z directions, respectively.

Suppose point set B isto be trandated so that it is aigned with point set A. For the alignment, the
correspondences between points in point sets 4 and B are known. The alignment uses the |east-
squares (least-sum-of-squares) error metric, where we want to find the trandation vector

T= [z‘x,z‘y,z‘zIr to translate point set B to minimize

I R X; +uUp; t,
SSE:Z VitV = Vit ve ||
i=1
Z, + Wy, Z; + Wy, t, (A7)

M

o 2 & 2
ZZ(uAi —Up; _tx) +Z(VA1' — Vi _ty)z +Z(WA1' — Wp; _tz)
' i-1

i=1



In the following, we determine the conditions such that the alignment error is within a specified
threshold.

Differentiating SSE with respect to ¢, ¢,, and ., we have

M
aSSE) =23 (uy —up —1,)
i1

ot,
O(SSE ud
(6 ) =23 ("Ai ~Vpi ~ ty) (A8)
ty i=1
O(SSE M
(8 ) = _22 (WAi —Wg; — tz)
tz =1
SSE is minimum when 8(2;9E) = 8(;SE) = 8(2;9E) =0, and they are true when
X y z

M
_ZZ(uAi —Up; _tx): 0
=1

M
= Mt, = Z(uAi _”Bi)

i=1
SR P L R (A9)
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and similarly

1M 1M
tz—Ev.——Ev.zv -V
y Ml'zlAl Milel A4 B
(A10)

1 ¥ 1 ¥ — —

I, = H;‘,W/ﬁ - Hizzl‘,wm =Wy = Wp
We now first consider only the translation in thex direction. Let « ,;, and u 5, be the values of the
random variables U ,, and Uy, , respectively, and Z and E be the values of the random
variables U, and U_B, respectively. Suppose each U ,; has normal distribution with mean .,
and standard deviation o, , and each U, has normal distribution with mean ,,, ~and standard

deviation o, ,i.e.
Uy ~ N(:UUA’GUA) and Uy ~ N(:UUB:O-UB ) (All1)

then the sampling distributions [Walpole1993] of U, and U, are

_ UUA _ O-UB

Since ¢, =u, —u, , we have




0'2 0'2
U U
44 _—8

M M

Tx ~ N ILIUA - ILIUB 5 (Als)

where ¢, is the value of the random variable T..

In practice, we can assume yy; =y, =0. With the above assumptions, we can be (1-—

o) 100% confident that the translational alignment error in the x direction will not exceed £ > 0
when the following condition is true [Wal pol€1993]:

2
&M > (za/z,/alsz + 053 j (A14)

where
Plozyp <Z<z,,)=1-a (A15)

and Z is arandom variable that has the standard normal distribution.

If U, andU, are not normal distributions, then the condition in Eq. (A14) is still a good
approximations as long as M is greater than 30 [Walpole1993].

Normaly, oy, , oy, . oy, , Oy, , Oy, , a)d oy, are not constant and they vary depending on

factors such as the choice of the coordinate system with respect to the surface’s orientation, the
incident angle of the laser to the surface point, the surface reflectance properties, and the distance
between the sensor and the surface point. To ssimplify the analysis, and the fact that we can be
more conservative in this case, we can assume all the above standard deviations are less than or

equal to the worst possible RMS error in range measurement, eg,,. Then from Eq. (A14), we
obtain the more conservative condition

£2M > 2(z, pe s P (A16)
However, the condition in Eq. (A16) isonly truein aspecial case. When apoint p; = [xl., Vi, Z; ]T

is translated by a small distance ¢, in the x direction, its contribution to the energy function (the
constraint), £,(7,(p;)) inEq. (Ad),is

2 2
tx ni,x tx
2 _ T T _ _ 2 2
DT (p))=de V. (p)V. (p)de=|nm-| O|| =||n,|-|0]|| =tcni, (A7)
0 n; 0

where n; is the unit surface normal at p,. We can easily see that DZ(T, (p;)) is maximum only

if n, =[+2100]", and in this case we get

M M
Ep(T(p))= D.D*(T.(p)) =12 nl, =12 (£1F =ZM (A18)

x,eP i=1 i=1



The R.H.S. of Eqg. (A18) is basicaly the same as the L.H.S. of Eq. (A16). This makes sense
because Eqg. (A16) is derived on the assumption that each point in point set B is matched
correctly with the corresponding point in point set 4. The vector between each pair of
corresponding points is parallel to the direction of the trandation. When the trandation is

[¢..00]", thisis equivalent to having a surface normal n, =[+10,0]" at every point of one of the
point sets. Therefore, we can say that the condition in Eq. (A16) is true only in the specia case
when each point p; is at its maximum constraint on the translation in the x direction, i.e. when

n, =[£100]" . However, in the general case when each n, is a true surface normal on the
surface, and it can be any unit vector, we have

M
Ep(T,(p)) = > . D*(T,(p)) =12 n?, (A19)

x,eP i=1

Now, for the genera case, we can be (1 — a) 100% confident that the translational alignment
error in the x direction will not exceed ¢ > 0 when the following condition istrue:

M
g z ”Sx 2 2(2 a/26RMS )2 (A20)
i1

Similarly, we can obtain the following conditions for trandlation in the y and z directions,
respectively:

2L 2 2L
P Zni,y > 2(Za/26RMS) and ¢ Zni‘z > Z(Za/zeRMS)2 (A21)
; i1

i=1

By combining the three inequalitiesin Eq. (A20) and (A21), and EqQ. (A6), we get

M
2 2 2 2 2
i=1

2
Z,/9€
/2 RMS] (A22)

= M 26z, pensf = MMy, - 6(
&

2
Zg/2€RMS j

&

= 24_+12+232Mmm:6(

With the results in Eq. (A20), (A21) and (A22), in the general case when n; can be any unit
vector,

we can be (1-)®100% confident that the transational aignment error in any

direction will not exceed V& +&° +5s° =+/3¢ when J, > M ;. /3, 1, > M, /3 and
2

3= M /3, where M, = G(Za/ZeRMS/g) :



3 CONDITIONSFOR ROTATIONAL ACCURACY

The rotational component of ¥'(x,) can be written as
0
VH (xs) ZED(TH(xs)) =X ans (Bl)

where 0 = [a)x,a)y,a)z]-r, 00 = [aa)x,aa)y,aa)z]T and n, is the unit surface normal at point x, .
Then

D(T,(x,) =V, (x,)do (B2)
Squaring this equation results in

D*(Ty(x,)) = d0"Vy(x,)Vy (x,) d0 =dO" M ,(x,) dO (B3)

where M ,(x,) =V,(x, )VtgT (x,) isasymmetric, positive semi-definite 3x3 matrix. Summing the
guantity in Eq. B3 over aset P of discrete surface points resultsin

Ep(Ty(x,)) = z Dz(Te (x,)) = daT{ Z M,(x,) Jdﬁ = dHT\PadH (B4)
x,eP x,eP

The symmetric 3x3 matrix ¥, is the sum of the M,(x,) matrices evaluated at each point in P.

Y, is a scatter matrix that contains information about the distribution of the original V,(x,)

vectors over al pointsin the set P. By decomposing ¥, using principal component analysis, we

get

77 0 O
W, =0,A00, =0,/ 0 7, 010, (B5)
0 0 7

where y,, 7, and y, are the eigenvalues of ¥, , with y; >y, > y5, and the columns of Q, are

the corresponding unit eigenvectors. Since the sum of the eigenvaluesis equal to the trace of the
original matrix [Strang1986],

S=n+72+73
= trace(¥, )= trace[ > M, (xS)J = trace[ S Vp(x, )V, (xS)J
x,eP x,eP (B6)
= 2ol ) P = Xlroxm |* = Xofx| Fsin g,
x,eP x,eP x,eP

where ¢, isthe angle between the vector x; and n, .

For the alignment of the surface to be successful, it must bethat »;, > 0 for i =1, 2,and 3. Ideally,
we wish to select the set of points for P such that y; =y, = y3 =5 /3, which means that the
surface alignment is constrained equally in the rotations about al three orthogona axes. The

7



minimum requirement for alignment is M =3, where M is the number of pointsin P, and the
three vectorsinthe set { x, xn, : x, e P must span the 3D space. In practice, because of errors
in the range measurements, it is necessary to have M > M, >3, such that the rotational

alignment can be performed to a certain desired accuracy, assuming the surface is aready
correctly trandlated. In the following, we investigate the conditions necessary to attain a specified
accuracy in rotational alignment.

Let [x;, yi,zi]T be the 3D coordinates of the ith true surface point, where i =1, 2,..., M . Suppose
there are two sets of measurements of the surface points, producing the point set 4 with
coordinates [x; +u,,y,+v,,z,+w,]| and the point set B with coordinates
[x; + 15y, 37+ Vg z; + wy | where {uy,, up}, { vy, va}, and {wy,, wy} are messurement
errorsin thex, y, and z directions, respectively.

Suppose point set B isto be rotated about the origin so that it is aligned with point set 4. For the
alignment, the correspondences between points in point sets 4 and B are known. The alignment
uses the least-squares (least-sum-of-squares) error metric, where we want to find the rotation

vector 6 = [a)x, @, a)z]r to rotate point set B to minimize

e X; +Up
SSE = Z Vit Vy _R(a’z)' R(a’y)' R(a’x)' Vit Vg
=1 ERa zZ, + wpg;
_ ] ) (B7)
RIEEL X, +up
:z Vit Vy _R(a)x’wy’a)z)' Vi +Vpi
=1 |z T wy | Z, + wg;

where R(o,), R(w,) and R(w,) are the rotation matrices for rotations of @, , w, and o,

radians about the x-axis, y-axis and z-axis, respectively. Since the rotations will be small, we can
approximate the matrix R(a)x,a;y, a)z) by using the approximations sin @ ~ 8 and cos 8 ~1 when

6 =~ 0. With this approximation, we get

r 2

MIEE 1 oo0,-0, o0 +o0,||x+u
SSExD || yi+vy |- 0. oo+l o0 -0, ||y +vy
Hlz+wy | |-o, o, 1 Z, + W,
] o ) (B8)
|| X Ty 1 -0, o, X; +ug;
~ z VitV | 7| @ 1 —o || y+vs
= 1z twy | |—o, o 1 Z; + wyg;

To smplify the analysis, we first consider only the rotation about the x-axis. This gives us



2
X Ty 1 0 0 X+ up;

SSE, ~ Y || yi+vy [-|0 1 - ||y +vy

X

Fzo+w, | |0 o, 1 ||z +wg (B9)
M
= z ((qu —Up; )2 + (VAi — Vg T O, (Zi +Wp; ))2 + (WAi —Wp — a)x(yi + Vg ))2)

Differentiating SSE, with respect to o, , we have

ASSE,) U

oo ) ~ 22 ((Zi + Wp; )(VAI' — Vg T a)x(zi + Wpg; ))_ (yi + Vg, )(WAz' — Wp; — @y (J’i +Vpi ))) (B10)
X i=1

Normally |z,| >> |wy| and |y;| >> |v4]|, so we can further simplify the above by

8 SSE M
22 vAz Bi T a)xzi)_ yi(WAi —Wp — @Y, )) (B11)
SSE, is minimum when % =0, and it istrue when
a)x
22 VAz g+ a’xzi)_ Vi (WAi —Wp; — @, ); )) =0
M
= w Z(yz +z; ) Z Vi WA; WB: (VAz' _vBi)) (B12)

i=1

|_|

Let v, , vz, w,; and wy be the values of the random variables V,,, Vy, , W, and W, ,
M

respectively. We also let a)xz (yl.z + z,.z) be the value of the random variable Q.. Suppose each
i=1

Viis Vi v Wy and Wy, has normal distribution with mean u, , wy, . 1y, and py, , and
standard deviation oy, , o, , oy, and oy, , respectively, i.e.

Vi~Ny, o) ad Vy~Nl, o)

B13
WAiNN(:uWA’GWA) and WBz’NN(:uWB’O-WB)’ (B13
then the mean [Walpolel993] of Q. is
M
ty =Y i, — 1y )=z, — a1, ) (B14)
=1
and the standard deviation [Walpole1993] of O, is
M
Op, = \/z (ylzoﬁ, +y,20'§, + z 0'5 +220'5 ) (B15)
=1

Since o, — 0 as M — «, O, satisfies the Lindeberg condition, and by Lindeberg’'s Theorem
[Ash1972, pp. 336-337], O, converges to anormal distribution, i.e.

9



0, ~ Nlyg,.0,,)

0. ~ N[i (v, (:UWA ~ iy, )-z, (,uVA — Hy, ). \/ i(yfm% +yloy, +zio, +zioy )J (B16)

i=1 i=1

In practice, we can assume ;= uy, = uy, = py, = 0. With the above assumptions, we can be

(1 - @) 100% confident that the rotational alignment error about the x-axis will not exceed ¢ >0
radians when the following condition is true:

M( 2 2) M( 2 2 2 2 2 2 2 2 )
gz itz ) 2 zyp z ViOy, tyioy, +z;oy +z;0p (B17)
i=1 i=1
where
Plozyp<Z<z,,)=1-a (B18)

and Z is arandom variable that has the standard normal distribution.

Normaly, oy, , oy, ., oy,, oy, , oy, ad oy, are not constant and they vary depending on
factors such as the choice of the coordinate system with respect to the surface’s orientation, the
incident angle of the laser to the surface point, the surface reflectance properties, and the distance

between the sensor and the surface point. To smplify the analysis, and the fact that we can be
more conservative in this case, we can assume all the above standard deviations are less than or

equal to the worst possible RMS error in range measurement, eg,,s. Then from Eq. (B17), we
obtain the more conservative condition

M M
2 2 2 2 2 2 2 2 2 2
gz (yi +z; ) 2 Za/Z\/z (yi €rms tVi€rus T Zi €rus + Z; eRMS)
i-1 i-1

= €2§:(yl.2+zl.2) > Z(ZQ/ZeRMS)Z (B19)

However, the condition in Eq. (B19) is only vaid for a specia case. When a point
p. =[x,z is rotated a small angle w, about the x-axis, its contribution to the energy
function (the constraint), £,(7,(p;)) in Eq. (B4), is

D*(T,(p,)) =d0"V,(p.)V, (p,;) do

2
a)x ’ xi ni,x wx (BZO)
=| p;xn;-| 0 =y % my | 0 = a)f(yini,z —z;n; )2
0 z, n. 0

where n; is the unit surface norma at p, . Dz(Tg (p;)) is maximum if n; is perpendicular to
both the vector p; and the x-axis, i.e.

10



X, +1 0

; 0
z; =|=x Zl./wlyl.z + zl.2 (B21)

n; =normalize| | y; |x| O | |=normalize| | £
Z; 0 T iyi/\/yi2+zi2
Then,
DZ(TH (p) = a’j(yl'”i,z —Zify )2
2 (B22)
= a))f(yz($ yz/Vylz +Zi2j_zi[i Zi/Vyl'2 +Zi2jj = a))f(ylz +Zl'2)
and
2 &2 2
EpTy(p) = Y D*(Ty(p) = 02 17 + 22) (623)
x,eP i=1

The R.H.S. of Eq. (B23) is basicaly the same as the L.H.S. of Eqg. (B19). This makes sense
because Eqg. (B19) is derived on the assumption that each point in point set B is matched
correctly with the corresponding point in point set 4. The vector between each pair of
corresponding points is parallel to the direction of the rotation. When the rotation is about the x-
axis, this vector is perpendicular to both the vector p; (coordinates of the point i in point set B)

and the x-axis. This vector can be treated as the normal n;. Therefore, we can say that the
condition in Eqg. (B19) is true only in the special case when each point p; is at its maximum
constraint on the rotation about the x-axis, i.e. n; is perpendicular to both the vector p; and the

x-axis. However, in the genera case when each n; is atrue surface normal on the surface, and it
can be any unit vector, we have

DZ(Te (p) = a)j(yini,z —zn;, )2

= Eo(T,(p)) = Y. D*(T,(p,)) = @®> (v, —zm,, F

x,eP i=1

(B24)

Now, for the general case, we can be (1 — @) 100% confident that the rotational alignment error
about the x-axis will not exceed ¢ > 0 radians when the following condition is true:

gzi(yini,z _Zini,y)2 2 Z(Zot/ZeRMS)2 (825)
=)

The conditions for rotations about the y-axis and z-axis can be similarly derived respectively as

M

& (Zz'ni,x —Xh;, )2 2 Z(Za/zeRMS)2 and gzi(xini,y - yinz',x)2 2 Z(Za/ZeRMS)Z (B26)
i=1

i=1

By combining the three inequalitiesin Eq. (B25) and (B26), and Eq. (B6), we get

11



gzi ((yini,z —Zil; )2 + (Zini,x —Xh;, )2 + (xini,y — Vil x )2)2 3 2(Za/ZeRMS )2
i=1
2 (B27)
= & Z|Pi X”i| ?> 6(Za/ZeRMS)2 = ntV2+732Shin = ({@j

x,eP

With the results in Eqg. (B25), (B26) and (B27), in the genera case when n; can be any unit
vector,

5

we can be (1 — @)* 100% confident that the rotational alignment errors about the x-axis,
y-axis and z-axis, respectively, will not exceed ¢ >0 radians when y, > S,,,/3,

V2 2 Smin/3 and V3 2 Smin/3’ where Smin = 6(Za/ZeRMS/€)2'

NOTESAND REMARKS

The above analyses and their results assume the two surfaces to be registered are aready
very well aligned.

For the evaluation of the rotational constraint in Section 3, the values of the eigenvalues y, ,
7, and y5 are dependent on the scale of the surface. Simon [Simon1996] suggested rescaling

the surface so that the average distance of the selected surface points from the origin is 1.
However, in our error analysis, this normalization is not necessary because we do not
compare the eigenvalues y,, 7, and y; of the rotational constraint with those, 4,, 1, and 43,

of the translational constraint.

Both of the above analyses do not consider errors in the surface normals at the measured
points. The surface normal at a point can be estimated by fitting a plane to the points in the
neighborhood of the candidate point. The estimation is more accurate if larger neighborhood
is used. In addition, we would like to select only pointsin relatively smoother regions on the
surface, i.e. smaller error when plane-fitting a large neighborhood.
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