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ABSTRACT 
In this technical report, we derive some conditions that allow the ICP (Iterative Closest Point) 
surface registration algorithm to attain some absolute accuracy when aligning two surfaces. 
 

1   INTRODUCTION 
3D shape alignment is an important part of many applications. It is used for object recognition in 
which newly acquired shapes in the environment are fitted to model shapes in the database. For 
reverse engineering and building real-world models for virtual reality, it is used to align multiple 
partial range scans to form models that are more complete. For autonomous range acquisition, 
3D surface registration is used to accurately localize the range scanner, and to align data from 
multiple scans so that they can be merged to allow planning of the next views. 
 
Since its introduction by Besl and McKay [Besl1992], the ICP (Iterative Closest Point) algorithm 
has become the most widely used method for aligning three-dimensional shapes, especially 3D 
surfaces obtained by range scanners. A similar algorithm was also introduced by Chen and 
Medioni [Chen1992]. Rusinkiewicz and Levoy [Rusinkiewicz2001] provide a recent survey of 
the many ICP variants based on the original ICP concept. 
 
During autonomous range acquisition, each newly acquired range image must be registered to 
the current model of the scene before it can be merged with the latter. Therefore, when planning 
for a new view to make the next scan, before the scan is actually made, the view planner must 
ensure that the new range image acquired from the planned view can be successfully registered 
with the current model, and to within certain error tolerance. The success of the registration 
depends on a few factors, for example, the registration algorithm used, the initial relative pose 
between the two surfaces, the “frequencies” on the surfaces, the amount of overlap between the 
two surfaces, the amount of measurement errors, and the shape constraint on the 3D rigid-body 
transformation between the two surfaces. In this technical report, the registration method we 
consider is the ICP algorithm [Besl1992], and among the many other factors, we consider only 
the amount of measurement errors and the shape constraint on the 3D rigid-body transformation.  
 
 
 
 

Figure 1.1: The autonomous acquisition cycle with automated view planning. 
 
In his doctoral thesis [Simon1996], Simon proposed a means to measure the relative amount of 
shape constraint on a surface, which is proportional to how well the surface can be registered 
using the ICP algorithm. More specifically, his method is able to compute, for a set of surface 
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points, a value that represents the amount of constraint on the 3D rigid-body transformation 
when the surface is being registered with itself. This value is only good for comparing with the 
values of other point sets, so as to determine which point set has the best constraint on the 
transformation. The value does not tell the absolute accuracy that can be achieved with each 
point set during the registration. In this technical report, we extend Simon’s results to derive 
conditions and constraints required to achieve some given absolute accuracies.  
 
In order to understand the derivations in this technical report, the reader has to be familiar with 
the material in 3.3.1 and Section 3.3.3 of [Simon1996]. We adopt Simon’s notation. 
 
Unlike Simon’s derivation, in the following derivations, we consider translation and rotation 
separately. This makes sense because translation and rotation are parameterized by different 
entity types (translation is parameterized by distances and rotation by angles). By doing so, as we 
will see, the result of the rotation error analysis becomes independent of the scale of the object. 
 
 

2   CONDITIONS FOR TRANSLATIONAL ACCURACY 

Following the derivation in [Simon1996], the translational component of )( sxV  can be written 
as 

sss TD xττ nx
τ

xV =
∂
∂

= ))(()(  (A1)

where [ ]Tzyx t,t,t=τ , [ ]Tzyx t,t,t ∂∂∂=∂τ  and 
sxn  is the unit surface normal at point sx . Then 

τxVx ττ dTD ss  )())(( T=  (A2)

Squaring this equation results in 
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where )()()( T
sss xVxVxM τττ =  is a symmetric, positive semi-definite 3x3 matrix. Summing the 

quantity in Eq. A3 over a set P of discrete surface points results in 
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The symmetric 3x3 matrix τΨ  is the sum of the )( sxM τ  matrices evaluated at each point in P. 

τΨ  is a scatter matrix that contains information about the distribution of the original )( sxVτ  
vectors over all points in the set P. By decomposing τΨ  using principal component analysis, we 
get 
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where 1λ , 2λ  and 3λ  are the eigenvalues of τΨ , with 321 λλλ ≥≥ , and the columns of τQ  are the 
corresponding unit eigenvectors. Since the sum of the eigenvalues is equal to the trace of the 
original matrix [Strang1986], 
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where M is the number of points in P. 
 
For the alignment of the surface to be successful, it must be that 0>iλ  for 3 and2, 1,=i . Ideally, 
we wish to select the set of points for P such that 3321 /Mλλλ === , which means that the 
surface alignment is constrained equally in all three orthogonal translation directions. The 
minimum requirement for alignment is 3=M , and the three surface normals must span the 3D 
space. In practice, because of errors in the range measurements, it is necessary to have 

3min >≥ MM , such that the translational alignment can be performed to a certain desired 
accuracy, assuming the surface is already correctly oriented. 
 
The translation that resulted from the alignment can be decomposed into three orthogonal 
directions. In the following, we investigate the relationship between minM  and translational 
alignment accuracy by looking at the alignment errors in the three orthogonal directions. Without 
loss of generality, we choose the x, y, and z directions. 
 
Let [ ]Tiii z,y,x  be the 3D coordinates of the ith true surface point, where Mi  , 2, 1, K= . Suppose 
there are two sets of measurements of the surface points, producing the point set A with 
coordinates [ ]TAiiAiiAii wz,vy,ux +++  and the point set B with coordinates 

[ ]TBiiBiiBii wz,vy,ux +++ , where { Aiu , Biu }, { Aiv , Biv }, and { Aiw , Biw } are measurement 
errors in the x, y, and z directions, respectively.  
 
Suppose point set B is to be translated so that it is aligned with point set A. For the alignment, the 
correspondences between points in point sets A and B are known. The alignment uses the least-
squares (least-sum-of-squares) error metric, where we want to find the translation vector 

[ ]Tzyx t,t,t=τ  to translate point set B to minimize 

( ) ( ) ( )∑∑∑

∑

===

=

−−+−−+−−=
















−

















+
+
+

−
















+
+
+

=

M

i
zBiAi

M

i
yBiAi

M

i
xBiAi

M

i
z

y

x

Bii

Bii

Bii

Aii

Aii

Aii

twwtvvtuu

t
t
t

wz
vy
ux

wz
vy
ux

SSE

1

2

1

2

1

2

2

1
  

 (A7)



4 

In the following, we determine the conditions such that the alignment error is within a specified 
threshold. 
 
Differentiating SSE with respect to tx, ty, and tz, we have 
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and similarly 
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We now first consider only the translation in the x direction. Let Aiu  and Biu  be the values of the 

random variables AiU  and BiU , respectively, and Au  and Bu  be the values of the random 

variables AU  and BU , respectively. Suppose each AiU  has normal distribution with mean 
AUµ  

and standard deviation 
AUσ , and each BiU  has normal distribution with mean 

BUµ  and standard 
deviation 

BUσ , i.e. 

( )
AA UUAi ,N~U σµ      and     ( ),,N~U

BB UUBi σµ  (A11)

then the sampling distributions [Walpole1993] of AU  and BU  are  
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Since BAx uut    −= , we have 
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where tx is the value of the random variable Tx. 
 
In practice, we can assume 0==

BA UU µµ . With the above assumptions, we can be (1 –
 α) 100% confident that the translational alignment error in the x direction will not exceed 0>ε  
when the following condition is true [Walpole1993]: 
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where  

( ) ααα −=<<− 122 zZzP  (A15)

and Z is a random variable that has the standard normal distribution. 
 
If AiU  and BiU  are not normal distributions, then the condition in Eq. (A14) is still a good 
approximations as long as M is greater than 30 [Walpole1993]. 
 
Normally, 

AUσ , 
BUσ , 

AVσ , 
BVσ , 

AWσ , and 
BWσ  are not constant and they vary depending on 

factors such as the choice of the coordinate system with respect to the surface’s orientation, the 
incident angle of the laser to the surface point, the surface reflectance properties, and the distance 
between the sensor and the surface point. To simplify the analysis, and the fact that we can be 
more conservative in this case, we can assume all the above standard deviations are less than or 
equal to the worst possible RMS error in range measurement, RMSe . Then from Eq. (A14), we 
obtain the more conservative condition 

( )22
2 2 RMSezM αε ≥  (A16)

However, the condition in Eq. (A16) is only true in a special case. When a point [ ]Tiiii z,y,x=p  
is translated by a small distance xt  in the x direction, its contribution to the energy function (the 
constraint), ))(( iP TE pτ  in Eq. (A4), is 
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where in  is the unit surface normal at ip . We can easily see that ))((2
iTD pτ  is maximum only 

if [ ]T001 ,,i ±=n , and in this case we get 
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The R.H.S. of Eq. (A18) is basically the same as the L.H.S. of Eq. (A16). This makes sense 
because Eq. (A16) is derived on the assumption that each point in point set B is matched 
correctly with the corresponding point in point set A. The vector between each pair of 
corresponding points is parallel to the direction of the translation. When the translation is 
[ ]T00,,tx , this is equivalent to having a surface normal [ ]T001 ,,i ±=n  at every point of one of the 
point sets. Therefore, we can say that the condition in Eq. (A16) is true only in the special case 
when each point ip  is at its maximum constraint on the translation in the x direction, i.e. when 

[ ]T001 ,,i ±=n . However, in the general case when each in  is a true surface normal on the 
surface, and it can be any unit vector, we have 
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Now, for the general case, we can be (1 – α) 100% confident that the translational alignment 
error in the x direction will not exceed 0>ε  when the following condition is true: 
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Similarly, we can obtain the following conditions for translation in the y and z directions, 
respectively: 
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By combining the three inequalities in Eq. (A20) and (A21), and Eq. (A6), we get 
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With the results in Eq. (A20), (A21) and (A22), in the general case when in  can be any unit 
vector,  
 

we can be (1 – α)3 100% confident that the translational alignment error in any 

direction will not exceed εεεε  3222 =++  when 3min1 Mλ ≥ , 3min2 Mλ ≥  and 

3min3 Mλ ≥ , where ( )22min 6 εα RMSezM = . 
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3   CONDITIONS FOR ROTATIONAL ACCURACY 

The rotational component of )( sxV  can be written as 
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quantity in Eq. B3 over a set P of discrete surface points results in 

θθθxMθxx
xx

ddddTDTE
P

s
P

ssP
ss

θθθθ Ψ=









== ∑∑

∈∈

TT2  )())(())((  (B4)

The symmetric 3x3 matrix θΨ  is the sum of the )( sxMθ  matrices evaluated at each point in P. 

θΨ  is a scatter matrix that contains information about the distribution of the original )( sxVθ  
vectors over all points in the set P. By decomposing θΨ  using principal component analysis, we 
get 
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where 1γ , 2γ  and 3γ  are the eigenvalues of θΨ , with 321 γγγ ≥≥ , and the columns of θQ  are 
the corresponding unit eigenvectors. Since the sum of the eigenvalues is equal to the trace of the 
original matrix [Strang1986], 

( )

s
ss

s
s

ss

sin

S

P
s

P
s

P
s

P
ss

P
s

x
xx

x
x

xx

xnxxV

xVxVxM

φ

γγγ

θ

θθθθ

2222

T

321

   )(

)()( trace)( trace trace

∑∑∑

∑∑

∈∈∈

∈∈

=×==











=










=Ψ=

++=

 
(B6)

where 
sxφ  is the angle between the vector sx  and 

sxn . 
 
For the alignment of the surface to be successful, it must be that 0>iγ  for 3 and2, 1,=i . Ideally, 
we wish to select the set of points for P such that 3321 /S=== γγγ , which means that the 
surface alignment is constrained equally in the rotations about all three orthogonal axes. The 
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minimum requirement for alignment is 3=M , where M is the number of points in P, and the 
three vectors in the set { }Pss s

∈× xnx x :  must span the 3D space. In practice, because of errors 

in the range measurements, it is necessary to have 3min >≥ MM , such that the rotational 
alignment can be performed to a certain desired accuracy, assuming the surface is already 
correctly translated. In the following, we investigate the conditions necessary to attain a specified 
accuracy in rotational alignment. 
 
Let [ ]Tiii z,y,x  be the 3D coordinates of the ith true surface point, where Mi  , 2, 1, K= . Suppose 
there are two sets of measurements of the surface points, producing the point set A with 
coordinates [ ]TAiiAiiAii wz,vy,ux +++  and the point set B with coordinates 

[ ]TBiiBiiBii wz,vy,ux +++ , where { Aiu , Biu }, { Aiv , Biv }, and { Aiw , Biw } are measurement 
errors in the x, y, and z directions, respectively.  
 
Suppose point set B is to be rotated about the origin so that it is aligned with point set A. For the 
alignment, the correspondences between points in point sets A and B are known. The alignment 
uses the least-squares (least-sum-of-squares) error metric, where we want to find the rotation 
vector [ ]Tzyx ,, ωωω=θ  to rotate point set B to minimize 
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where ( )xωR , ( )yωR  and ( )zωR  are the rotation matrices for rotations of xω , yω  and zω  
radians about the x-axis, y-axis and z-axis, respectively. Since the rotations will be small, we can 
approximate the matrix ( )zyx ,, ωωωR  by using the approximations θθ ≈sin  and 1≈θcos  when 

0≈θ . With this approximation, we get 
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To simplify the analysis, we first consider only the rotation about the x-axis. This gives us 
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Differentiating SSEx with respect to xω , we have 
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Normally Bii wz >>  and Bii vy >> , so we can further simplify the above by  

( ) ( ) ( )( )∑
=

−−−+−≈
∂

∂ M

i
ixBiAiiixBiAii

x

x ywwyzvvzSSE

1
2 ωω

ω
 (B11)

SSEx is minimum when ( ) 0=
∂

∂

x

xSSE
ω

, and it is true when 

( ) ( )( )

( ) ( ) ( )( )∑∑

∑

==

=

−−−=+⇒

=−−−+−

M

i
BiAiiBiAii

M

i
iix

M

i
ixBiAiiixBiAii

vvzwwyzy

ywwyzvvz

11

22

1
02

ω

ωω
 

(B12)

Let Aiv , Biv , Aiw  and Biw  be the values of the random variables AiV , BiV , AiW  and BiW , 

respectively. We also let ( )∑
=

+
M

i
iix zy

1

22ω  be the value of the random variable Qx. Suppose each  

AiV , BiV , AiW  and BiW  has normal distribution with mean 
AVµ , 

BVµ , 
AWµ  and 

BWµ , and 
standard deviation 

AVσ , 
BVσ , 

AWσ  and 
BWσ , respectively, i.e. 

( )
AA VVAi ,N~V σµ      and     ( ),,N~V

BB VVBi σµ  
( )

AA WWAi ,N~W σµ      and     ( ),,N~W
BB WWBi σµ  

(B13)

then the mean [Walpole1993] of Qx is  

( ) ( )( )∑
=

−−−=
M

i
VViWWiQ BABAx

zy
1

µµµµµ  (B14)

and the standard deviation [Walpole1993] of Qx is  

( )∑
=

+++=
M

i
ViViWiWiQ BABAx

zzyy
1

22222222 σσσσσ  (B15)

Since ∞→
xQσ  as ∞→M , Qx satisfies the Lindeberg condition, and by Lindeberg’s Theorem 

[Ash1972, pp. 336–337], Qx converges to a normal distribution, i.e. 
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( )

( ) ( )( ) ( )








+++−−− ∑∑

==

M

i
ViViWiWi

M

i
VViWWix

QQx

BABABAA

xx

zzyy,zyN~Q

,N~Q

1

22222222

1
    

B
σσσσµµµµ

σµ

 (B16)

In practice, we can assume 0====
BABA VVWW µµµµ . With the above assumptions, we can be 

(1 – α) 100% confident that the rotational alignment error about the x-axis will not exceed 0>ε  
radians when the following condition is true: 

( ) ( )∑∑
==

+++≥+
M

i
ViViWiWi

M

i
ii BABA

zzyyzzy
1

22222222
2

1

22        σσσσε α  (B17)

where  

( ) ααα −=<<− 122 zZzP  (B18)

and Z is a random variable that has the standard normal distribution. 
 
Normally, 

AUσ , 
BUσ , 

AVσ , 
BVσ , 

AWσ  and 
BWσ  are not constant and they vary depending on 

factors such as the choice of the coordinate system with respect to the surface’s orientation, the 
incident angle of the laser to the surface point, the surface reflectance properties, and the distance 
between the sensor and the surface point. To simplify the analysis, and the fact that we can be 
more conservative in this case, we can assume all the above standard deviations are less than or 
equal to the worst possible RMS error in range measurement, RMSe . Then from Eq. (B17), we 
obtain the more conservative condition 

( ) ( )

( ) ( )22
1

222

1

22222222
2

1

22

2         

      

RMS

M

i
ii

M

i
RMSiRMSiRMSiRMSi

M

i
ii

ezzy

ezezeyeyzzy

α

α

ε

ε

≥+⇒

+++≥+

∑

∑∑

=

==  

(B19)

However, the condition in Eq. (B19) is only valid for a special case. When a point 
[ ]Tiiii z,y,x=p  is rotated a small angle xω  about the x-axis, its contribution to the energy 

function (the constraint), ))(( iP TE pθ  in Eq. (B4), is 

( )22

22

TT2

0
0

0
0

 )( )())((

y,iiz,iix

x

z,i

y,i

x,i
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i

ix
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z
y
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


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
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

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


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
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








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






























⋅×=

=

ω
ωω

θθθ

np

θpVpVθp

 (B20)

where in  is the unit surface normal at ip . ))((2
iTD pθ  is maximum if in  is perpendicular to 

both the vector ip  and the x-axis, i.e. 
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n  (B21)

Then, 

( )

( )222
2

22222

222 ))((

iixiiiiiiiix

y,iiz,iixi

zyzyzzzyyy

nznyTD

+=




 





 +±−





 +=

−=

ωω

ωθ

m

p
 (B22)

and 

( )∑∑
=∈

+==
M

i
iix

P
iiP zyTDTE

s 1

2222 ))(())(( ωθθ
x

pp  (B23)

The R.H.S. of Eq. (B23) is basically the same as the L.H.S. of Eq. (B19). This makes sense 
because Eq. (B19) is derived on the assumption that each point in point set B is matched 
correctly with the corresponding point in point set A. The vector between each pair of 
corresponding points is parallel to the direction of the rotation. When the rotation is about the x-
axis, this vector is perpendicular to both the vector ip  (coordinates of the point i in point set B) 
and the x-axis. This vector can be treated as the normal in . Therefore, we can say that the 
condition in Eq. (B19) is true only in the special case when each point ip  is at its maximum 
constraint on the rotation about the x-axis, i.e. in  is perpendicular to both the vector ip  and the 
x-axis. However, in the general case when each in  is a true surface normal on the surface, and it 
can be any unit vector, we have 

( )
( )∑∑

=∈

−==⇒

−=
M

i
y,iiz,iix

P
iiP

y,iiz,iixi

nznyTDTE

nznyTD

s 1

222

222

))(())((

))((

ω

ω

θθ

θ

x
pp

p
 (B24)

Now, for the general case, we can be (1 – α) 100% confident that the rotational alignment error 
about the x-axis will not exceed 0>ε  radians when the following condition is true: 

( ) ( )22
1

22 2        RMS

M

i
y,iiz,ii eznzny αε ≥−∑

=

 (B25)

The conditions for rotations about the y-axis and z-axis can be similarly derived respectively as 

( ) ( )22
1

22 2        RMS

M

i
z,iix,ii eznxnz αε ≥−∑

=

   and   ( ) ( )22
1

22 2        RMS

M

i
x,iiy,ii eznynx αε ≥−∑

=

 (B26)

By combining the three inequalities in Eq. (B25) and (B26), and Eq. (B6), we get 
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 (B27)

With the results in Eq. (B25), (B26) and (B27), in the general case when in  can be any unit 
vector,  
 

we can be (1 – α)3 100% confident that the rotational alignment errors about the x-axis, 
y-axis and z-axis, respectively, will not exceed 0>ε  radians when 3min1 S≥γ , 

3min2 S≥γ  and 3min3 S≥γ , where ( )22min 6 εα RMSezS = . 
 
 

4   NOTES AND REMARKS 

• The above analyses and their results assume the two surfaces to be registered are already 
very well aligned.  

 
• For the evaluation of the rotational constraint in Section 3, the values of the eigenvalues 1γ , 

2γ  and 3γ  are dependent on the scale of the surface. Simon [Simon1996] suggested rescaling 
the surface so that the average distance of the selected surface points from the origin is 1. 
However, in our error analysis, this normalization is not necessary because we do not 
compare the eigenvalues 1γ , 2γ  and 3γ  of the rotational constraint with those, 1λ , 2λ  and 3λ , 
of the translational constraint. 

 
• Both of the above analyses do not consider errors in the surface normals at the measured 

points. The surface normal at a point can be estimated by fitting a plane to the points in the 
neighborhood of the candidate point. The estimation is more accurate if larger neighborhood 
is used. In addition, we would like to select only points in relatively smoother regions on the 
surface, i.e. smaller error when plane-fitting a large neighborhood. 
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