
1

Simulated 3D Painting

Kok-Lim Low

Department of Computer Science
University of North Carolina at Chapel Hill

ABSTRACT

This paper looks at the motivation for simulating painting directly
on 3D objects, and investigates the main issues faced by such
systems. These issues include the provision of natural user
interfaces, the reproduction of realistic brush effects and the
surface parameterization for texture mapping so that the results of
the painting can be stored on texture maps. The paper further
investigates the issues involved in using a haptic interface for
simulating 3D painting, and the issues in surface parameterization
for texture mapping with application to 3D painting. A survey of
some work related to 3D painting, haptic rendering and surface
parameterization for texture mapping is presented.

1 INTRODUCTION

1.1 Texture Mapping

In the early days of computer graphics, the quest for realistic
imagery has proven polygons and other geometric primitives
inadequate in representing the required surface complexity. As
detail becomes finer and more intricate, explicit modeling with
polygons or other geometric primitives becomes impractical. An
elegant solution to this was introduced by Catmull [Catmull74], in
which the surface details are represented in images, and the
images are then mapped onto the surfaces. This approach is
known as texture mapping; each image is called a texture map,
and its individual elements are called texels. The rectangular
texture map resides in its own texture coordinate space.

Texture mapping has become a successful technique for adding
realism to computer-generated imagery. It has become such a
common technique that even today’s low-end personal computers
have hardware-accelerated texture mapping capabilities. Besides
surface color, texture maps with other surface properties, such as
transparency, normal vector perturbation (bump maps) and
specular reflection (environment maps), have been used. Heckbert
gives a comprehensive explanation of texture mapping in
[Heckbert86], and Haeberli and Segal collected many creative
uses of texture mapping in [Haeberli93].

1.2 Why Paint in 3D

Texture maps are typically created by scanning in existing
artwork, generated using procedural image models, or painted
with a 2D painting program. Before a texture map can be “pasted”
on the 3D surfaces, each 3D surface must first be parameterized to
establish a mapping from each point on the surface to a point in
the texture coordinate space. When the creation of the texture
maps and the surface parameterization are separated (which is
usually the case), it becomes very hard to get every part of a
surface mapped with the desired portion of the texture map. Even
with the knowledge of the mapping function, it is still not trivial
to accurately create the correct texture maps. Moreover, the user

should not be required to know the mathematics of the surface
parameterization when creating the texture maps.

A solution to this problem is to allow the user to paint directly on
the surface of the 3D model. In this case, the surface
parameterization will be used to map the result of the painting on
the 3D surface onto the corresponding texture map, which can
then be permanently stored. The images may look distorted on the
texture maps, but they will appear correct (or as desired) on the
3D surfaces. However, this solution poses many challenges, and a
number of issues need to be addressed:

1. The user interface must allow the user to easily paint on the
3D surfaces in a natural style.

2. The nonplanarity of the 3D surfaces and the greater freedom
of movement of the brushes enable very interesting brush
effects to be simulated. Efficient methods must be used to
create these effects and to correctly map the result on the 3D
surface onto the texture map.

3. The quality of the surface parameterization of the 3D model
for texture mapping should be sufficiently high to allow
efficient representation and storage of the painting results.
Surface parameterization for texture mapping is not a
problem of 3D painting only, but a problem of all texture
mapping onto non-trivial surfaces. For the purpose of 3D
painting, some additional criteria can be used to judge the
quality of parameterization.

These issues are discussed further in the next section.

2 MAIN ISSUES

2.1 User Interface

User interface includes the input and output hardware devices,
and the software that is responsible for getting the input data from
the input devices, translating them into actions and providing
appropriate feedback via the output devices. The main factor that
determines the “intuitiveness” of a user interface is the design of
the associations that relate the specific physical actions on the
input devices to the actual actions to be performed on the
computer, and also relate the physical feedback on the output
devices to the results of the performed actions.

A general user interface design principle is to use common
metaphors. Users can then rely on their everyday experience to
infer how a program works by analogy with how everyday things
work. Another principle in designing user interfaces is direct
manipulation. For example, a mouse can be used to drag graphical
representations on the screen. The act of moving the mouse is
directly associated with some action to be performed, and
feedback is given immediately to reinforce the action. Direct
manipulation is able to provide the user a more realistic
experience, but it usually places high demand on the capabilities
of the hardware devices and the software that controls them.



2

Taking a 3D painting program as an example: ideally, using the
input device to “paint” on a virtual model should be no different
from using a real paintbrush (or pencil and other artistic tools) to
paint on a real 3D object.

Painting on real 3D objects often involves a high degree of spatial
freedom in the movement of the paintbrush and also in the
placement of the object. Though 2D input devices have been used
for simulated 3D painting, the limited degree of spatial freedom
made the user interface awkward and unintuitive [Hanrahan90].
More recently, with the advent of 3D input devices, such as the
Spaceball and many trackers, a new dimension in 3D user
interfaces was opened up. However, it was the introduction of
haptic (force feedback) devices that really created a revolution in
3D user interfaces.

These haptic devices are capable of providing force feedback to
the user to recreate the sense of touch, and some are also high
degree-of-freedom 3D input devices. Examples of such haptic
devices are the PHANToM of SensAble Technologies (Figure 1)
and the SARCOS Dextrous Arm. Many of these devices can be
fitted with a pen-like probe, which can be held like a paintbrush
when used in simulated 3D painting. This creates many
possibilities that could significantly narrow the gap between real
3D painting and simulated 3D painting. Not only can the user
apply his brush strokes differently each time, he can also “touch”
the surface of the virtual object with the brush. Coupled with
visual display, this can undoubtedly provide a very natural user
interface for 3D painting.

Figure 1: A PHANToM haptic device by SensAble Technologies, Inc.
(photograph from SensAble Technologies, Inc.).

However, creating a reasonably realistic sense of touch on the
haptic device requires a very high haptic update rate, usually at
over 1000 Hz. This high rate is necessary to maintain system
stability and to provide a sense of stiff virtual surfaces. Contact
determination between the virtual scene and the virtual object
controlled by the user is necessary for computing the feedback
force. Such high haptic update rate implies that the contact
determination must be done very efficiently and accurately in
order to generate realistic forces.

Very fast contact determination for real-time haptic interaction
has always been a challenge for large complex models. Recently,
with very efficient algorithms and more powerful computers, it
has become possible to achieve sustained kHz update rates in 6
degree-of-freedom haptic rendering [McNeely99]. Besides
contact information, a good and efficient force model is required
to produce realistic forces on the haptic device. I have devoted
Section 3 and 4 to a further discussion of the issues of haptic
rendering.

2.2 Brush Effects and Texture Map Update

Just like in 2D paint programs, many brush effects can be
implemented in 3D paint programs. Because of the nonplanarity
of the 3D surfaces and the many possible orientations of the
brush, many effects can be made more interesting and more
realistic. For example, spray-painting on a surface partially
occluded by another surface can create disjoint painted regions,
which cannot happen in 2D painting. If we use a 3D shape other
than a sphere as the brush volume, the brush effect will change
with the orientation of the brush. It is also possible to have a brush
that is deformable under varying pressure.

For every brush stroke, we need to find out which parts of the 3D
surfaces have been affected. Contact determination is needed to
compute the intersections between the brush volume and the
surfaces. Using the surface parameterization for texture mapping,
we can then map the intersection regions onto the texture map and
update the affected texels. Several compositing filters can be
applied to combine the current paint with the paint previously laid
down on the surface.

2.3 Surface Parameterization

Because the result of the painting is recorded on a texture map (or
more than one texture map), the surface parameterization must
assign every 3D surface primitive a unique region on the texture
map, i.e. no two regions overlap.

With 3D painting, we have successfully avoided the distortion of
the image features of the texture map when the texture map is
mapped onto the 3D surfaces, even though the texture map is still
being distorted by the surface parameterization. However, it is
still desirable to have a surface parameterization that produces
little or no distortion of the texture map, because less distortion
implies a more uniform resolution of the texture map on the 3D
surfaces. Moreover, with the knowledge that there is little or no
distortion, assumptions can be made to simplify and speedup the
update of the texture map when paint is applied [Johnson99].

For 3D painting, it is not necessary to have adjacent 3D surface
primitives assigned to adjacent regions on the texture map, but
there are benefits in keeping those regions adjacent to one
another. Firstly, adjacent texture map regions corresponding to
adjacent surface primitives can simplify and speedup the update
of the texture map. Secondly, texture mapping involves filtering
the texture map, and it cannot be done correctly near the
boundaries of the surface primitives if adjacent primitives do not
map to adjacent texture map regions.

Section 1 of this paper presented the motivation for simulating 3D
painting, and introduced the main issues to be addressed by such
systems. We further elaborated these main issues in Section 2.
Next, we present a survey of some previous work on simulated
3D painting in Section 3. Section 4 discusses the issues of haptic
rendering and Section 5 surveys some previous work in this area.
In Section 6, we study the issues related to surface
parameterization for texture mapping, and look at the criteria for
good parameterization with application to 3D painting. Similarly,
a brief survey in surface parameterization for texture mapping is
presented in Section 7. Section 8 concludes this paper.

3 PREVIOUS WORK ON 3D PAINTING

Though real-time haptic rendering and surface parameterization
for texture mapping have been actively researched, there is not



3

much work on 3D painting. The ultimate goal of simulated 3D
painting is to provide a realistic experience to the user, both in the
user interface and the simulation of realistic paint effects. Below,
we review some of the previous work in chronological order, and
observe the advancement in the area.

3.1 3D Painting Using 2D Input Devices

Hanrahan and Haeberli [Hanrahan90] developed an interactive
paint program that allows the user to directly paint with different
types of pigments and materials onto 3D shapes. This is the
pioneering work of simulated 3D painting, and its motivation was
to overcome the distortion of texture images caused by the surface
parameterization.

Although the user can paint directly onto 3D object surfaces, the
brush is controlled by a 2D input device, such as a mouse or a
tablet, by moving a 2D cursor on the screen. With this, it is
impossible for the user to freely position the brush in his intended
orientation, so it is necessary for the program to assume the brush
is in one of the few predefined orientations. Moreover, the user
can only paint on the surfaces that are visible on the screen, and
this often abruptly discontinues a brush stroke when the brush
reaches the silhouette of the displayed object.

In the paint program, the geometric objects are represented as
rectangular meshes. The results of the painting are first internally
recorded as vertex attributes, and these attributes are then stored
in files as a set of associated texture maps. In this case, each
surface parameterization simply maps consecutive rows and
columns of mesh vertices to consecutive rows and columns of
texels on the texture map. Representing paint information at the
mesh vertices has the disadvantage that added paint detail requires
an increase in mesh complexity.

When painting, the object remains stationary, and typically many
paint strokes are laid down. The whole object needs to be redrawn
only when there is a change of view or the object position, and
between full redraws, only the polygons affected by the brush
need to be redrawn. This method ensures that the rendering can be
done in real-time when painting on complex models.

The brush position on the object surfaces is computed using an
item buffer, taking advantage of the graphics hardware. Given the
position of the cursor on the screen and an item buffer, the brush
position can be found by reading the pixel in the item buffer under
the cursor. This pixel contains the object identifier of the polygon
that the brush is on. Since the object stays stationary for many
paint strokes, the same item buffer can be reused many times
between redraws.

Having determined the position of the brush, the brush is assigned
an orientation with respect to the object surface. The orientation
determines how the brush geometry affects the surface. Three
types of brushes are considered: (1) parameter-space brushes, (2)
screen-space brushes, and (3) tangent-space brushes. With a
parameter-space brush, the 2D brush paints directly into the
texture maps at the texture coordinates of the brush position on
the surface. A screen-space brush has an orientation that is
perpendicular to the view plane, and it is capable of producing
spray-paint effect on the surface. A tangent-space brush is always
oriented perpendicular to the surface at the brush position, and the
brush is projected onto the surface in the direction parallel to the
surface normal.

3.2 Painting on Scanned Surfaces

In the quest for a more realistic 3D painting experience,
Agrawala, Beers and Levoy have extended the above approach to
3D input devices [Agrawala95]. In their work, they used a 6D
Polhemus space tracker to track the 3D position and orientation of
a stylus. Their system was intended for scanned models. When
painting on a scanned model, the registered physical model
provides an object to paint against with the stylus. This provides a
natural force feedback to the user, without the use of any haptic
device.

One problem with this user interface is that while the user is
moving the sensor along the physical object, the paint is only
applied to the mesh on the monitor. Thus, the user must look at
two places at once to see where the paint is being applied.

Since the scanned model is usually a result from multiple scans,
the resulting mesh is irregular and difficult to parameterize for
texture mapping. Because of this, the painting results are stored at
the mesh vertices instead of on texture maps. Thus, this approach
shares the same disadvantage as the approach by Hanrahan and
Haeberli. To avoid sampling artifacts when displaying the mesh,
polygons should be small, and that leads to a large number of
polygons in the model.

To speed up the contact determination between the virtual brush
and the large model, the model is spatially subdivided into
uniform voxels, and each voxel is associated a list of vertices. A
hash table is used to index the voxels, and this avoids wasting
space storing empty voxels. The tip of the virtual paintbrush is a
3D shape that defines the volume within which paint is applied.
During painting, the position and orientation of the brush
determine how the brush volume is positioned in the 3D space.
The voxels intersected by the brush volume are checked to see
which vertices lie within the brush volume. These enclosed
vertices are then assigned the selected paint color.

A disadvantage of this 3D painting approach is that only meshes
with corresponding physical objects can be painted. Furthermore,
the use of a physical object requires it to be accurately registered
with the virtual model. The registration process usually takes
several minutes and must be done every time the user wants to
paint an object. However, registration errors cannot be eliminated
and can cause the virtual brush tip to lie some distance away from
the mesh even when the stylus is physically touching the object
surface.

3.3 Painting NURBS Models with a Haptic Interface

In the areas of CAD modeling and animation, NURBS have
become the de facto model representation standard. In their work,
Johnson et al. [Johnson99] developed a system to allow the user
to paint texture maps directly onto trimmed NURBS models using
a 3 degree-of-freedom haptic interface. Using the sense of contact
provided by the force-feedback device, the user can draw on
portions of the model that are not directly visible.

The contact determination necessary for the haptic rendering is
done by directly tracing the surface of the model using a method
described in [Thompson97]. This tracing algorithm works only for
NURBS. It keeps track of the point on the surface closest to the
tip of the probe, and computes the penetration depth of the probe.
If the penetration depth is positive, a restoring force proportional
to it is then generated on the haptic device to resist penetration
into the virtual model.



4

In their system, each surface parameterization is done by simply
applying uniform discretization of the parameter space of each
NURBS. Though the method is simple, the texture map can still
be highly distorted at regions of high curvature. When painting,
the perimeter of the brush in texture space is computed using the
surface parameterization, and the enclosed region on the texture
map is filled with the brush color using a flood-fill method.

3.4 Painting Polygonal Models with a Haptic Interface

Gregory et al. have developed a system for interactive
multiresolution modeling and 3D painting with a 3 degree-of-
freedom haptic interface [Gregory2000]. The models are
represented as subdivision polygonal meshes and texture maps are
used to store the results of the painting. The contact determination
for haptic rendering is done by their H-Collide method
[Gregory99]. The method uses a hybrid representation of the
model, utilizing both spatial partitioning and bounding volume
hierarchy. In addition, to achieve the required runtime, the method
needs to exploit frame-to-frame coherence.

In [Gregory2000], the authors did not mention how surface
parameterization is done. When paint is laid down on the surface,
the texture map is updated by doing a standard 2D scan-
conversion in the texture space. Each affected 3D triangle is
mapped to a 2D triangle in texture space using the surface
parameterization. Then, for each texel in the 2D triangle, its
corresponding 3D location is computed. This 3D location is used
to decide how the texel is affected by the brush function.

4 HAPTIC RENDERING

There are many types of haptic devices, for example, haptic
gloves (e.g. Cybergrasp by Virtual Technologies, Inc.) for virtual
reality, haptic joysticks and haptic steering wheels for computer
games and vehicle simulations. Here, we only consider devices
that are similar to the PHAMToM arms of SensAble Technologies
and the SARCOS Dextrous Arms. These devices are essentially
small robot arms that are used in reverse. Many of these devices
can be fitted with a pen-like probe, which can be held like a
paintbrush when used in simulated 3D painting. These haptic
robot arms also serve as 3D input devices.

During haptic rendering, the position and orientation of the probe
are continually sent to a computer. The computer then simulates
the contacts between the probe and a virtual environment to
compute the appropriate reaction force. Controls are then sent to
the haptic device to display the resultant force. These three actions
constitute a typical haptic update cycle. In contrast to graphics
display update rate, which usually ranges from 20 to 60 frames
per second, the haptic update rate must be as high as 1000 updates
per second in order to achieve system stability. For example, if the
haptic update rate is too low and the user moves too fast, the
virtual probe may be “trapped” in the interior of a virtual object.
In even worse cases, unstable systems can cause device damage or
user injury. Moreover, high haptic update rates are required to
produce a sense of stiff surfaces. Also, our skin is sensitive to
vibrations of greater than 500 Hz, so changes in force at even
relatively high frequencies are perceptible.

There are two main issues concerning realistic haptic display.
Firstly, the requirement for very high haptic update rates implies
that very efficient contact determination algorithms must be used.
Secondly, the force model used to compute the reaction forces

must be capable of realistically modeling the different sense of
touch in the virtual environment.

Currently, most haptic rendering methods can only produce force
feedback in 3 degrees of freedom (3 DOF), i.e. translational force.
In these 3-DOF systems, the tip of the probe usually corresponds
to a point in the virtual environment. Each haptic update cycle
then involves (1) reading in the 3D position of the probe’s tip, (2)
computing the contact point between the virtual objects and the
path swept out by the virtual point since the last update cycle, (3)
computing the translational reaction force according to the force
model, and (4) sending controls to the haptic device to actually
produce the physical force. If the haptic feedback is coupled with
visual display, then the position of the virtual point has to be
sampled and sent to the graphics system for display update.

In comparison to 3-DOF haptic rendering, 6-DOF haptic
rendering is considerably more difficult. Instead of just a virtual
point, the probe can be used to manipulate, by both translations
and rotations, a 3D virtual object with arbitrary shape. The
resulting force feedback is no longer just translational, but
rotational (torque) also. Contact determination must now identify
multiple contact points between the manipulated object and the
other object in the virtual environment, and a more complex force
model is necessary to generate both translational forces and
torques.

Ultimately, for realistic simulation of 3D painting, the haptic
system must handle deformable 3D virtual objects, in order to
simulate the reaction force caused by the change in brush shape
under varying pressure and brush motion.

In the next section, we survey three papers on haptic rendering,
and see how they address the main issues.

5 PREVIOUS WORK ON HAPTIC RENDERING

5.1 Simple 3-DOF Haptic Rendering

Using a hybrid hierarchical representation for fast and accurate
collision detection, Gregory et al. have developed a simple 3-DOF
haptic system for polygonal models [Gregory99]. Given a
polygonal model, its hybrid hierarchical representation is
computed by first spatially decomposing it into uniform grids or
cells. Polygons within each cell are then bounded by a tight-fitting
oriented bounding box tree (OBB-tree) [Gottschalk96].

Spatial decomposition and hierarchical bounding volumes, such
as OBB-trees, are very commonly used to speed up collision
detection. Spatial decomposition allows direct constant-time
access to each individual cell. Because a cell may contain many
polygons, potentially all polygons in an intersected cell must be
tested for actual intersections during collision detection. We can
use smaller cells, but that can increase the space requirement
dramatically. As an alternative data structure, the hierarchical
bounding volumes can offer logarithmic-time search down to each
individual polygon during collision detection. However,
sometimes a bounding-volume tree can be badly skewed, and
have leaves at great depths. By combining spatial decomposition
and hierarchical bounding volumes, Gregory et al. hope to reduce
these undesirable long traversals.

In their 3-DOF haptic system, the tip of the probe corresponds to a
point in the virtual environment. The contact point between the tip
of the probe and the virtual environment is computed as the
intersection between a polygon and the straight-line path swept



5

out by the tip of the probe between two successive time steps. For
this, a specialized overlap test between a line segment and an
OBB (oriented bounding box) is used. Once the surface contact
point is found, a force proportional to the distance between the
current probe position and the contact point is generated. It has a
direction from the current probe position to the contact point.

Typically, if the haptic update rate is always maintained above 1
kHz, there is little movement in the probe position between
successive time steps. Their collision detection algorithm utilizes
this frame-to-frame coherence by caching the contact information
for use in the next time step.

Their system is able to achieve sustained kHz haptic update rates
because very simple object interaction and haptic models are
used. More complex haptic simulation requires more complex
object interaction and haptic models. However, complex
interaction/haptic models are more computationally expensive and
make achieving the desired update rates harder. Thererfore,
additional measures should be used to reduce instability in the
system and improve its robustness when the update rate is not
high enough. Moreover, when the tip of the probe corresponds to
a zero-sized point, it can fall through gaps between polygons
caused by numerical errors.

5.2 Towards Realistic 3-DOF Haptic Rendering

In contrast, Ruspini et al. place their emphasis on realistic and
robust haptic rendering more than on collision detection
[Ruspini97]. They suggest that a haptic system should be capable
of representing the surfaces and objects that are commonly found
in graphic environments. These environments are usually
composed of many zero-width polygons, lines and points. The
haptic system should also make use of the additional graphical
information such as surface normals and texture maps. In
addition, the haptic controller should be robust and degrade
gracefully as the limits of its performance are reached.

In their system, a virtual “proxy” is used to substitute for the
physical probe in the virtual environment. Figure 2 illustrates the
motion of a virtual proxy as the probe’s position is altered. The
virtual proxy always attempts to move towards its goal, which is
the tip of the probe. When unobstructed, the proxy moves directly
towards the goal. When obstructed, direct motion is not possible,
but the proxy can move along the surfaces to reduce its distance
from the goal, and when the distance cannot be reduced, it stops at
the local minimum configuration. With this interaction model, the
force is generated on the haptic device by physically moving the
goal to the location of the proxy.

The use of the virtual proxy enables their system to be stable,
since the proxy can “remember” where the exterior of the object
is. Moreover, the use of a finite-size proxy prevents it from
slipping through the tiny numerical gaps found in most polygonal
meshes. With these benefits, however, the price is the more costly
computation to update the proxy position in every time step.

Polygonal models for graphic display usually have surface
normals at their vertices. Ruspini et al. utilize these normals to
produce “smoother” proxy motion by interpolating the vertex
normals of the polygon with which the proxy comes into contact.
This is called force shading, and is similar to that done in Phong
shading to produce smoother-looking surfaces. Force shading
provides more accurate haptic modeling of the object’s surfaces.
In addition, their system even allows the use of texture maps to

modulate any of the surface parameters—friction, viscosity or
stiffness—to create different haptic effects.

Figure 2: Virtual proxy example (figure from [Ruspini97])

For contact determination between the proxy’s path and the
surfaces, a simple hierarchical bounding sphere representation is
used. Because the bounding-volume tree is constructed in a
bottom-up manner, they are able to balance the tree. However,
simple bounding spheres are usually very space-inefficient
bounding volumes for most polygons, since most polygons cannot
be tightly bound. This can cause the proxy’s path to frequently
intersect many spheres, and result in relatively longer collision
detection time.

To further improve stability and robustness, the low-level haptic
device control loop is separated from the contact/proxy update
loop, so that the haptic device is always controlled at a high fixed
rate. As the complexity of the virtual environment increases, the
system is able to degrade gracefully instead of becoming unstable
and behaving dangerously.

5.3 6-DOF Haptic Rendering

As metioned, 6-DOF haptic rendering is a much more difficult
problem than 3-DOF haptic rendering. In 6-DOF haptic rendering,
the probe can be used to freely manipulate a 3D virtual object of
arbitrary shape. One of the two main challenges is that the
manipulated object can simultaneously have multiple contacts
with the other objects in the virtual environment. Therefore, an
extremely time-efficient contact determination techniques must be
used. The second main challenge is the generation of realistic
forces and torques on the haptic device.

To achieve the required speed to detect the multiple contact points
at each time step, McNeely et al. have sacrificed contact accuracy
in their 6-DOF haptic system [McNeely99]. In the system, the
virtual environment consists of many static rigid objects, and one
dynamic rigid object that can be manipulated by the user using a
haptic handle on the haptic device. In off-line preprocessing, the
static objects are approximated using uniform-sized voxels, and
the dynamic object is approximated using point samples of its
surfaces. The set of voxels form a volume occupancy map, or
voxmap, and the set of surface point samples, plus associated
inward pointing surface normals, form a point shell. Figure 3
shows an example of a point shell colliding with a voxmap.



6

Figure 3: A point shell colliding with a voxmap (figure from [McNeely99]).

They use a tangent-plane force model to compute the reaction
force and torque when the point shell comes in contact with some
occupied voxels. When a point is inside an occupied voxel, a
tangent plane perpendicular to the point’s normal is constructed.
This plane is made to pass through the center of the voxel. If the
point has penetrated below this plane, then the force at this point
is proportional to its distance from the tangent plane. This
effectively creates a half-voxel-thick force field around the static
objects. The net force and torque acting on the dynamic object is
obtained as the sum of all force/torque contributions from such
point-voxel intersections. We can see that this simple model has
discontinuities in force magnitude when a point crosses a voxel
boundary.

To improve stability, the occurrence of interpenetration between
the exact surfaces of the objects is reduced by offsetting the force
field outward away from the surface by two voxel layers. In
addition, in the outer proximity voxel layer of the force field, pre-
contact braking force is generated to reduce the point’s velocity,
thereby further reduce the chance of exact-surface
interpenetration.

The force discontinuities mentioned earlier are mitigated by a
dynamic simulation based on virtual coupling, which connects the
user’s haptic motions with the motions of the dynamic object
through a virtual spring and damper.

With the above, the authors claim that their system is able to
produce stable and convincing force feedback.

6 SURFACE PARAMETERIZATION FOR
TEXTURE MAPPING

Since the result of the painting is recorded on a texture maps (or
more than one texture map), each surface on the 3D object must
be assigned a unique area on the texture map. This criterion,
which will be called the unique-region criterion, alone can be
easily satisfied by mapping each surface primitive separately onto
an unoccupied location on a large-enough texture map, without
considering its connectivity to other primitives. The obvious
problem with this approach is that large gaps appear between
texture regions of mapped primitives. This waste of texture space
results in many texture maps or very large texture map, and can
become inefficient for interactive rendering. Optimization
algorithms can be used to minimize the waste, however, this
problem is inherently NP-hard, and approximation algorithms still
cannot produce satisfactory solutions. Moreover, some additional

criteria discussed below cannot be satisfied by this separate-
mapping approach.

We would like to map adjacent 3D surface primitives to adjacent
regions on the texture map. We will refer to this as the adjacency
criterion. When texture mapping is done during rendering of the
3D object, filtering of the texture map is usually required for
antialiasing. Because the filter kernel is normally larger than a
texel, pixels near the boundaries of the surface primitive get
contributions from texels outside the texture region assigned to
the primitive. If the adjacency criterion is not met, the filtered
results near the boundaries of the surface primitive can be
incorrect. Another advantage of satisfying the adjacency criterion
is that painting results can be more easily updated on the texture
map. In this case, the texture area to be updated is usually in one
contiguous area.

For the third criterion, as mentioned in Section 2.3, we want to
have a surface parameterization that minimizes texture map
distortion. This problem is still being actively studied by many
researchers, but the traditional goal is to map a texture map that
already has a non-pre-distorted texture pattern onto 3D surfaces
with minimal distortion to the texture pattern. This traditional goal
also requires that adjacent regions on the texture map are mapped
to adjacent 3D surface primitives.

When an object’s surface curvature is high or its topology is non-
trivial, finding a satisfactory parameterization becomes very
difficult. Sometimes, trade-offs must be made and some criteria
may not be fully satisfied. Regardless of that, for 3D painting, the
unique-region criterion must always be upheld.

In the following section, we briefly survey two papers on surface
parameterization for texture mapping, targeted at the traditional
goal.

7 PREVIOUS WORK ON SURFACE
PARAMETERIZATION

7.1 Two-Part Texture Mappings

Early attempts to minimize texture map distortions were made by
Bier and Sloan [Bier86]. In their method, texture mapping is
separated into two steps. In the first step, the texture map is
applied to a simple 3D intermediate surface such as a cylinder or a
box. This intermediate surface can be any shape that can be made
by cutting, folding, and curling paper (i.e. without stretching), and
thus has no distortion at all. Texture mapping onto this
intermediate surface is simple. In the second step, the intermediate
surface is projected onto the target object to derive the final
mapping.

The choice of the intermediate surface, its orientation, and the
projection method can dramatically affect the results, and a lot of
user interaction is therefore required.

Their method is only suitable for objects that are geometrically
very similar to the intermediate surfaces. For objects with high
surface complexity or non-trivial topology, it is possible that all
three criteria are not met.

7.2 Global Minimization of Texture Distortion

More recently, some researchers have used optimization
techniques to derive surface parameterizations that minimize
texture distortions. In the work by Maillot et al. [Maillot93], a



7

global energy function is minimized. Treating each surface as a
deformed elastic plane, the energy function measures the total
energy needed to perform the deformation. However, the original
energy function is too complex, and the optimization process
could be very slow. To obtain a simple expression, Maillot et al.
approximate the original energy function by considering only the
lengths of the edges of each surface triangle in the 3D object
space, and their lengths in the texture space.

This global optimization still cannot handle objects that have high
surface complexity, and excessive distortions appear on the
mapped texture. Maillot et al. solve this problem by splitting the
object surface into several independent regions, and apply the
optimization to each of them separately. The splitting of the object
is automated, using the curvature information on the surface.
Their system also provides an interactive tool for the user to
further control the splitting of the object.

Because of the splitting of the object into regions, the adjacency
criterion can be considered only partially met. Since most of these
regions are relatively large, it is not a very big problem.

8 CONCLUSION

We have presented the motivation for simulating painting directly
on 3D objects, and investigated the main issues faced by such
systems. For realistic simulation, a haptic interface can be used to
provide the user a more natural painting experience. We have
looked at some of its issues and surveyed some of the work in
haptic rendering. We have also discussed the issues in surface
parameterization for texture mapping, and the criteria it needs to
meet in order to be useful for 3D painting.

Although non-distorted texture mapping of models with complex
shapes still remains an open problem, current surface
parameterization methods are sufficient for simulated 3D
painting. However, fast and accurate 6 DOF haptic rendering still
remains a major challenge.

Another major challenge in simulating 3D painting is the
simulation of realistic brush effects. Baxter et al. have
implemented an interactive haptic painting system in which the
brush heads are deformable, and they produce realistic brush
strokes on a flat rectangular virtual canvas [Baxter2001]. Their
haptic interface enables 6 DOF of input but only 3 DOF of output.
It remains a challenge to extend their method to arbitrary 3D
surfaces.

ACKNOWLEDGEMENTS

I would like to thank Anselmo Lastra and Greg Welch for their
helpful suggestions.

BIBLIOGRAPHY

[Agrawala95] Maneesh Agrawala, Andrew C. Beers and Marc
Levoy. 3D Painting on Scanned Surfaces. In Proceedings of
1995 ACM Symposium on Interactive 3D Graphics, pp.145–
150, April 1995.

[Baxter2001] Bill Baxter, Vincent Scheib, Ming C. Lin and
Dinesh Manocha. DAB: Interactive Haptic Painting with 3D
Virtual Brushes. To appear in Proceedings of ACM
SIGGRAPH 2001.

[Bier86] Eric A. Bier and Kenneth R. Sloan, Jr. Two-Part Texture
Mappings. IEEE Computer Graphics and Applications, pp.
40–53, September 1986.

[Catmull74] Ed Catmull. A Subdivision Algorithm for Computer
Display of Curved Surfaces. Ph.D. thesis, Department of
Computer Science, University of Utah, December 1974.

[Gottschalk96] S. Gottschalk, M. C. Lin and D. Manocha. OBB-
Tree: A Hierarchical Structure for Rapid Interference
Detection. In Proceedings of ACM SIGGRAPH 96, August
1996.

[Gregory99] Arthur D. Gregory, Ming C. Lin, Stefan Gottschalk
and Russel Taylor. H-Collide: A Framework for Fast and
Accurate Collision Detection for Haptic Interaction. In
Proceedings of IEEE Virtual Reality Conference 1999, pp.
38–45, 1999.

[Gregory2000] Arthur D. Gregory, Stephen A. Ehmann and Ming
C. Lin. inTouch: Interactive Multiresolution Modeling and
3D Painting with a Haptic Interface. In Proceedings of IEEE
Virtual Reality Conference 2000.

[Haebarli93] Paul Haeberli and Mark Segal. Texture Mapping as
a Fundamental Drawing Primitive. Grafica Obscura—
Collected Computer Graphics Hacks,
http://www.sgi.com/grafica/texmap/, June 1993.

[Hanrahan90] Pat Hanrahan and Paul Haeberli. Direct WYSIWYG
Painting and Texturing on 3D Shapes. In Proceedings of
ACM SIGGRAPH 90, pp. 215–223, August 1990.

[Heckbert86] Paul S. Heckbert. Survey of Texture Mapping. IEEE
Computer Graphics and Applications, pp.56–67, November
1986.

[Johnson99] David Johnson, Thomas V Thompson II, Matthew
Kaplan, Donald Nelson and Elaine Cohen. Painting Textures
with a Haptic Interface. In Proceedings of IEEE Virtual
Reality Conference 1999.

[Lévy98] Bruno Lévy and Jean-Laurent Mallet. Non-Distorted
Texture Mapping for Sheared Triangulated Meshes. In
Proceedings of ACM SIGGRAPH 98, August 1998.

[Maillot93] Jerôme Maillot, Hussein Yahia and Anne Verroust.
Interactive Texture Mapping. In Proceedings of ACM
SIGGRAPH 93, August 1993.

[McNeely99] William A. McNeely, Kevin D. Puterbaugh and
James J. Troy. Six Degree-of-Freedom Haptic Rendering
Using Voxel Sampling. In Proceedings of ACM SIGGRAPH
99, August 1999.

[Ruspini97] Diego C. Ruspini, Krasimir Kolarov and Oussama
Khatib. The Haptic Display of Complex Graphical
Environments. In Proceedings of ACM SIGGRAPH 97,
August 1997.

[Thompson97] Thomas V Thompson II, David E. Johnson and
Elaine Cohen. Direct Haptic Rendering of Sculptured
Models. In Proceedings of 1997 ACM Symposium on
Interactive 3D Graphics, pp. 167–176, April 1997.


