
Technical Report TR02-019, Department of Computer Science, University of North Carolina at Chapel Hill, April 2002.

1

Viewpoint Calibration With Respect To A Tracker
Kok-Lim Low

Department of Computer Science
University of North Carolina at Chapel Hill

Email: lowk@cs.unc.edu

March 18, 2002

1 INTRODUCTION
In many virtual reality (VR) and augmented reality (AR)
applications, view-dependent images of the virtual worlds are
often displayed for the users. These images can be displayed on
computer monitors, head-mounted displays, or projected by
projectors onto some surfaces. In order to produce perspective-
correct images as viewed by a user, the positions of the user’s
eyes must be known when generating the images. A way to get
the positions of the eyes (viewpoints) is to use a tracking device.

A tracking system typically consists of a tracker and one or more
tracker targets. The tracker is installed in a fixed location in the
physical space, and defines a tracker coordinate frame. For the
purpose of measuring the positions of the eyes, a tracker target is
usually rigidly attached to the user’s head (see Figure 1). When
the tracker target moves together with the user’s head, the
tracking system constantly keeps track of the target’s pose
(position and orientation)† with respect to the tracker coordinate
frame. Each pose tells how the target’s local coordinate frame
(target coordinate frame) is positioned relative to the tracker
coordinate frame. Note that the eyes’ positions are always
constant with respect to the target coordinate frame, therefore, to
determine the eyes’ positions in the tracker coordinate frame, we
can first determine the constant positions of the eyes with respect

† A 6-DOF (degrees of freedom) tracking system provides both position
and orientation of the target, while a 3-DOF tracking system usually
provides only the position.

to the target coordinate frame. Then, we can always use the
target’s current pose in the tracker coordinate frame to express the
eyes’ positions with respect to the tracker coordinate frame.

This article explains a method to calibrate the viewpoints with
respect to a tracker—to find the eyes’ positions in the target
coordinate frame.

2 VIEWPOINT CALIBRATION
The calibration of each viewpoint consists of two steps. The first
step involves some physical procedures to collect the necessary
data from the tracking system. These data represent at least two
lines in the target coordinate frame, and these lines are supposed
to intersect at the viewpoint. They are then fed to the second step
to compute an estimate of the viewpoint’s position.

Since the calibration steps are exactly the same for both eyes,
from here onwards, we will describe the calibration of only the
right eye.

2.1 Data Collection
We want to collect data of at least two lines in the target
coordinate frame that are supposed to intersect at the right eye.
We begin by physically marking two points in the space within
the tracking range of the tracker. Let these two points be P and Q
(see Figure 1), and they are preferably more than 6 feet apart. One
of the two points, say P, should be at about eye level, and there
should be a clear line of sight from P to Q.

Next, we measure the positions of P and Q with respect to the
tracker coordinate frame. This usually can be done by using a
pointing device that is attached with a tracker target. Let pT and qT
be the positions of P and Q with respect to the tracker coordinate
frame.

Next, we attach a tracker target firmly to the user’s head. The user
then positions his right eye near point P (preferably within a foot)
and tries to line-up points P and Q, as shown in Figure 1. When P
and Q are lined-up, the pose of the target with respect to the
tracker coordinate frame is recorded. At this very moment, P and
Q actually form a line that passes through the right viewpoint.
Since we already know pT and qT (the positions of P and Q with
respect to the tracker coordinate frame), and we also know the
pose of the target at that moment, we can now express the
positions of P and Q in the target coordinate frame, as p1 and q1,
respectively. More specifically, we use the target’s pose to
transform pT and qT to get p1 and q1, respectively. Even though, a
moment later, the user might move his right eye away from the
line formed by P and Q, p1 and q1 still remain the same and still
form a line that passes through the right eye in the target
coordinate frame. You can imagine that the line passing through
p1 and q1 has become rigidly “attached” to the target coordinate

Figure 1: A tracker target is rigidly mounted on a user’s head.
Our objective is to find the positions of the user’s eyes with
respect to the target coordinate frame. P and Q are two fixed
points in the physical space and their positions with respect to the
tracker coordinate frame are known. This diagram is not drawn to
scale.

Tracker
Target

Target
Coordinate

Frame

Headband

Fixed Point P

Fixed Point Q

�

2�

frame,�and�will�always�pass� through�the�right�eye�no�matter�how�
the�user�moves.�Up�to�here,�we�say�we�have�captured�the�first�line�
of�sight�passing�through�p1�and�q1.�

In� order� to� find� the� position� of� the� right� eye� in� the� target�
coordinate�frame,�we�need�to�capture�at�least�another�line�of�sight,�
so� that�its�intersection�with�the�first�can�be�used�to�determine�the�
viewpoint’ s�position.�To�do�this,�the�user�is�asked�to�line-up�P�and�
Q�again,�but�with�a�different�head�orientation�from�the�first� time.�
This�requires�the�user�to�roll�his�right�eyeball�to�another�direction‡.�
The�new�pose�of�the�tracker�target�at�that�moment�is�recorded�and�
used�to�transformed�pT�and�qT�into�the�target�coordinate�frame,�as�
p2� and� q2,� respectively.� p2� and� q2� represent� the� second� line� of�
sight.�

We�can�repeat�the�above�procedure�to�capture�additional� lines�of�
sight.� In�practice,�because�of�measurement�errors,� these� captured�
lines� of� sight� might� not� pass� through� the� viewpoint� exactly,� and�
they�might�not�intersect�one�another�at�all.�Additional�lines�help�to�
improve�the�accuracy�of�the�estimate�of�the�viewpoint’ s�position.�

2.2� Solution�Computation�
In� this� section,� we� will� look� at� two� ways� to� estimate� the�
viewpoint’ s�position�in�the�target�coordinate�frame.�The�first�way�
considers� only� two� lines� of� sight,� and� the� second� way� can�
accommodate�the�more�general�case�of�two�or�more�lines�of�sight.�

2.2.1 Two Lines of Sight

When�only�two�lines�of�sight�are�captured,� the�basic� idea�to�find�
the�viewpoint’ s�position�is�to�solve�for�the�intersection�of�the�two�
lines.� However,� measurement� errors� can� produce� two� lines� of�
sight� that�do�not� intersect�with� each�other� at� all.� In� this� case,�we�
can�look�for�the�points�on�the�lines�of�sight�at�which�the�two�lines�
are� closest.� Two� lines� of� sight,� l1� and� l2,� are� shown� in� Figure� 2.�
The�two�lines�are�closest�to�each�other�at�points�r1�and�r2�on�l1�and�
l2,�respectively.�We�will�use�the�midpoint,�m,�between�r1�and�r2�as�
an�estimate�for�the�viewpoint�position.�

To�find�m,�we�have�to�first�find�r1�and�r2.�We�start�by�letting�u1�be�
the�vector�from�q1�to�p1,�and�u2�be�the�vector�from�q2�to�p2:�

���
‡�We�are�assuming�that�the�position�of�the�center�of�projection�of�the�eye�
does�not�change�significantly�when�the�eyeball�rolls.�

222

111

qpu
qpu

−=
−= � (1)

Let�t1�and�t2�be�two�scalars.�We�can�express�r1�and�r2�as�follows:�

2222

1111

uqr
uqr

t

t

+=
+= � (2)

Our�objective�is� to�solve�for� t1�and�t2,�so� that�we�can�compute�r1�
and� r2.� Observing� that� the� line� passing� through� r1� and� r2� is�
perpendicular�to�both�l1�and�l2,�we�can�construct�the�following�two�
constraints:�

0)(

0)(

212

112

=•−
=•−

urr
urr � (3)

where�• �is�the�dot�product�operator.�

By�substituting�(2)�into�(3),�we�get�the�following�equations:�

2122222211

1112212111

)()(

)()(

uququuuu
uququuuu
•−•=•−•

•−•=•−•
tt

tt � (4)

After�solving�the�simultaneous�linear�equations�in�(4)�for�t1�and�t2,�
we�can�compute�r1� and�r2� in�(2).�The�midpoint�between�them� is�
just�

)(212
1 rrm += .� (5)

Therefore,�the�position�m�is� the�estimate�of� the�right�viewpoint’ s�
position�in�the�target�coordinate�frame.�

2.2.2 n Lines of Sight

In� this�case,�we�will�compute�the�point� that�has�the�shortest�total�
distance� to� all� the� n� lines� of� sight.� First,� let� li� be� the� ith� line� of�
sight,� passing� through� the� points� pi� and� qi,� where� 1�≤�i�≤�n.� We�
further� let� pi�=�(pix,�piy,�piz)

T,� qi�=�(qix,�qiy,�qiz)
T,� and� ui�=�

(uix,�uiy,�uiz)
T�=�pi�–�qi.�Let�m�=�(mx,�my,�mz)

T� be� the�point� that�has�
the�shortest�total�distance�to�all�the�n�lines�of�sight.�

Suppose� all� the� lines� of� sight� intersect� exactly� at� the� common�
point�m,�then�the�following�is�true�for�all�1�≤�i�≤�n:��

iiit qum =+ � (6)

where�each�ti�is�some�scalar�whose�value�is�yet�to�be�determined.�

By�combining�(6)�for�all�1�≤�i�≤�n,�we�can�write�them�in�the�form�
of�Ax�=�b�as�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

=

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

nz

ny

nx

z

y

x

z

y

x

n

z

y

x

nz

ny

nx

z

y

x

z

y

x

q
q

q

q

q
q
q

q
q

t

t
t

m
m

m

u
u

u

u

u
u

u

u
u

�
�

�

�

�

�������

�

�

�

�

�

�

2

2

2

1

1

1

2

1
2

2

2

1

1

1

�

00100
00010

00001

00100

00010
00001
00100

00010
00001

�

(7)

Figure 2:� Estimating� the� intersection� of� two� lines� of� sight.� The�
two� lines�of� sight�do�not�actually� intersect,� so�we� find� the�points�
on� the� lines� at� which� the� two� lines� are� closest,� and� use� the�
midpoint� between� these� two� points� as� an� estimate� of� the�
viewpoint’ s�position.�This�diagram�is�not�drawn�to�scale.��

q2�

p2�

q1�

p1�

r2�

r1�

m�

l1�

l2�

�

3�

where�A� is� the�3n�×� (n�+�3)�matrix,�x� is� the� (n�+�3)�×� 1� column�
vector,�and�b�is�the�3n�×�1�column�vector.�

In� practice,� because� of� errors� in� the� measurements,� Ax� =� b� is�
almost�always�an�inconsistent�system,�i.e.�b�is�not�in�the�range�of�
A.�Generally,�the�columns�of�A�are�independent,�therefore�A�has�a�
rank�of�n�+�3.�So,�the�least�squares�solution�of�Ax�=�b�is�just��

() bAAAx T1T −
= .�

ATA�is�invertible�because�it�is�a�(n�+�3)�×�(n�+�3)�matrix�and�it�has�
the� same� rank� as� A.� For� more� information� about� linear� least�
squares�solution,�see�[1].�

The� last� step� of� the� calibration� is� just� to� extract� mx,� my,� and� mz�
from� x .�m�=�(mx,�my,�mz)

T�is�the�estimate�of�the�right�viewpoint’ s�
position�with�respect�to�the�target�coordinate�frame.�

Using� MATLAB� [2],� the� least� squares� solution� x �can� be�
computed�as�follows:�

x = A \ b

provided�A�and�b�have�already�been�set�up�as�in�(7).�

REFERENCES�
[1]� Gilbert� Strang.� Linear� Algebra� and� Its� Applications,� Third�

Edition�(1988).�International�Thomson�Publishing.�

[2]� MATLAB.�See�http://www.mathworks.com/�

�

