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1 INTRODUCTION 
The HiBall wand is an elongated hard plastic that can be attached 
rigidly to the bottom of a HiBall [1, 2, 3] (see Figure 1). The other 
end of the wand is a moderately-sharp metal tip. In the HMD Lab 
at UNC-Chapel Hill, it is a convenient device for measuring the 
3D position of any point in a space where the HiBall can be 
tracked by an optical ceiling tracker. 

When a HiBall is being tracked by a ceiling tracker, its poses 
(orientations and positions) within the fixed ceiling coordinate 
frame are known, and can be obtained from the ceiling tracker 
system. Each pose tells how the HiBall’s local coordinate frame 
is positioned relative to the ceiling coordinate frame. 

To use the tip of the wand to measure the 3D position of a point 
with respect to the ceiling coordinate frame, we first need to know 
the tip’s 3D position in the HiBall’s local coordinate frame. If the 
tip’s position in the HiBall coordinate frame is known, we can 
always use the HiBall’s current pose in the ceiling coordinate 
frame to express the tip’s position with respect to the ceiling 
coordinate frame. 

This article explains a method to calibrate the wand—to find the 
tip’s position in the HiBall coordinate frame. 

2 WAND CALIBRATION 
The calibration consists of two steps. The first step collects the 
necessary data, and the second step computes the result using the 
collected data. 

2.1 Data Collection 
With the HiBall attached to the wand, we place the tip of the wand 
at a fixed point, P, on a firm and stable surface within the tracking 
range of the ceiling tracker. While always keeping the tip fixed at 
P, we slowly rotate the wand about its tip (see Figure 1). While 
rotating the wand, the pose of the HiBall is continuously acquired 
from the tracker system, and recorded. 

We need to obtain at least two different poses of the HiBall (the 
next section explains why). Moreover, it is desirable to have poses 
that are very different, which can be obtained by rotating the wand 
by a large angle. 

Each recorded pose of the HiBall is actually made up of a rotation 
Ri and a translation Ti that transform the ceiling coordinate frame 
into the HiBall coordinate frame. In other words, Ri and Ti 
transform a point’s position in the HiBall coordinate frame into a 
position in the ceiling coordinate frame. 

2.2 Solution Computation 
The crucial observation necessary to solve for the tip’s position in 
the HiBall coordinate frame is that when the wand is being rotated 
about its tip fixed at point P, the point P always has a constant 3D 
position in the HiBall coordinate frame and also has another 
(possibly the same) constant 3D position in the ceiling coordinate 
frame. 

Let (xH, yH, zH)T and (xC, yC, zC)T be the position of P in the HiBall 
and ceiling coordinate frames, respectively. Both (xH, yH, zH)T and 
(xC, yC, zC)T are unknown, but (xH, yH, zH)T is the one we are 
interested in solving. Next, for each pose Ri and Ti, we can write 
the following equation: 
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(EQ-1)

where Ri is a 3 × 3 rotation matrix and Ti is a 3 × 1 column 
vector. We can expand EQ-1 to get 
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(EQ-2)

By doing the matrix multiplication, we get the following three 
equations: 

Figure 1: Calibrating the HiBall wand. 
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After�rearranging,�we�have�
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(EQ-4)

Next,�we�rewrite�EQ-4�as�matrix�multiplication�
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EQ-5�is� in� the�form�Ax�=�b,�where�A�and�b�are�known.�Our�task�
now�is�to�solve�for�x.�However,�since�x�has�6�unknowns�and�A�has�
only� 3� rows� (equations),� we� do� not� have� enough� constraints� to�
solve� for�x� yet.�We�need�to�have�at� least�6� rows�in�A� (provided�
they�are�all�independent).�Since�each�pose�of� the�HiBall�provides�
3�rows�in�A,�we�need�at�least�2�poses�to�get�at�least�6�rows�in�A.�

Since� there� are� errors� in� the� poses� obtained� from� the� tracker�
system,� we� would� like� to� use� as� many� poses� as� possible� to�
minimize�the�error�in�our�solution�of�x.�Let�n�≥�2�be�the�number�of�
poses�collected.�Then,�by�writing�them�in�the�form�of�EQ-5,�and�
combining�them,�we�have�
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(EQ-6)

which�we�will�refer�to�as�

Ax�=�b� (EQ-7)

Because�of�errors� in� the�measurements,�Ax�=�b� is�almost�always�
an�inconsistent�system,� i.e.�b� is�not� in�the�range�of�A.�Generally,�
the�columns�of�A�are�independent,�therefore�A�has�a�rank�of�6.�So,�
the�least�squares�solution�(see�Appendix)�of�Ax�=�b�is�just��

( ) bAAAx T1T −
= .�

ATA�is�invertible�because�it�is�a�6�×�6�matrix�and�it�has�the�same�
rank�as�A.�

The�last�step�of�the�calibration�is�just�to�extract�xH,�yH,�and�zH�from�
x .� (xH,� yH,� zH)T� is� the� 3D� position� of� the� tip� in� the� HiBall�
coordinate�frame.�

Using� MATLAB� [5],� the� least� squares� solution� x �can� be�
computed�as�follows:�

x = A \ b 

provided�A�and�b�have�already�been�set�up�as�in�EQ-6.�
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APPENDIX�
Least�Squares�Solution�

The� column� vectors� in� A� span� a� 6-dimensional� subspace� S,�
embedded�in�a�3n-dimensional�space.�In�order�for�Ax�=�b�to�have�
a� unique� solution,� the� 3n-dimensional� vector� b� must� lie� in� the�
subspace�S.�However,� errors� in�measurements�usually� cause�b� to�
lie�outside�S.�In�this�case,�we�call�Ax�=�b�an�inconsistent�system,�
and�there�is�no�solution�x�such�that�Ax�=�b.�In�spite�of�this,�we�do�
not� just�give�up�here.�Inconsistent�equations�arise� in�practice�and�
have�to�be�solved�in�some�way.�

One�way�we�can�do�in�the�case�when�b�lies�outside�S� is� to�find�a�
point�p,�such�that�it�is�in�S�and�it�is�the�point�in�S�that�is�closest�to�
b.� To� find� the� point� p,� we� can� project� b� onto� S.� To� help� you�
understand,� you� can� imagine� that� S� is� a� 2-dimensional� plane�
embedded� in� a� 3-dimensional� space,� and� b� is� a� 3-dimensional�
point�not�on�the�plane.�Then�if�you�project�b�onto�the�plane�S,�you�
get�p,�which�is�the�point�on�the�plane�closest�to�b.�

For�the�system�in�EQ-7,�p�can�be�computed�from�b�as�in�

( ) bAAAAp T1T −
= .� (EQ-A)

However,� instead� of� p,� we� are� more� interested� in� solving� for� x �
such�that� pxA = .�By�comparing� pxA = �with�EQ-A,�we�can�see�
that��

( ) bAAAx T1T −
= ,�

which� is�what�we�call� the� least�squares�solution�of�Ax�=�b.� It� is�
called� the� least� squares� solution� because� 2�� − bxA �is� the�

minimum�of�all�the� 6Rx∈ .�

You�can�refer�to�[4]�for�more�details.�
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