
Blending Multiple Views

Ramesh Raskar
Mitsubishi Electric Research Labs

raskar@merl.com

Kok-Lim Low
University of North Carolina at Chapel Hill

lowk@cs.unc.edu

Abstract

Current blending methods in image-based rendering

use local information such as “deviations from the
closest views” to find blending weights. They include
approaches such as view-dependent texture mapping
and blending fields used in unstructured lumigraph
rendering. However, in the presence of depth
discontinuities, these techniques do not provide smooth
transitions in the target image if the intensities of
corresponding pixels in the source images are
significantly different (e.g. due to specular highlights).

In this paper, we present an image blending
technique that allows the use of global visibility and
occlusion constraints. Each blending weight now has a
global component and a local component, which,
respectively, are due to the view-independent and the
view-dependent contributions of the source images.
Being view-independent, the global components can be
computed in a pre-processing stage. Traditional
graphics hardware is exploited to accelerate the
computation of the global blending weights.

Keywords: Image-Based Rendering, Image Blending.

1. Introduction

Image-based rendering (IBR) has become a popular

alternative to traditional three-dimensional graphics.
Two examples of effective IBR methods are the view-
dependent texture mapping (VDTM) [Debevec98] and
the light field/lumigraph [Levoy96, Gortler96]
approaches. Light field, lumigraph and concentric
mosaic [Shum99] require a large collection of input
images from cameras, but they make few, if any,
assumptions about the geometry of the scene. In
contrast, VDTM assumes a relatively accurate geometric
model, but requires only a small number of images from
input cameras that can be in general positions. Both
methods interpolate color values for a desired ray as
some weighted combination of input rays. In VDTM
this interpolation is performed using a geometric proxy
model to determine which pixel from each input image

“corresponds” to the desired ray in the output image. Of
these corresponding rays, those that are closest in angle
to the desired ray are weighted to make the greatest
contribution to the interpolated result.

The blending operation ensures that the influence of
a single source image on the final rendering is a
smoothly varying function across the target image plane
(or, equivalently, across the geometry representing the
scene). These smooth weighting functions combine to
form a “blending field” that specifies how much
contribution each input image makes to each pixel in

Camera 1 Camera 2Target View

Scene
Geometry

a b

a1

a2

b1

at
bt

b2

Camera 1 Camera 2Target View

Scene
Geometry

a b

a1

a2

b1= bt

at

Figure 1. (Top) The blending function at each scene
point can be expressed as a weighted combination
using local information such as the angles between the
target ray and the corresponding source rays. The
yellow region indicates local radiance. (Bottom) In the
case of view-dependent surface reflectance, and in the
presence of depth discontinuities, the neighboring scene
points may have very different contributions from the
source images.

the output image. The reconstructed blending field is
then used to blend pixels from the input images to form
the output image.

The main reasons for blending images are (i) lack of
photometric agreement in the source images (caused by
change in camera response or view-dependent
appearance of scene), and (ii) small errors in
registration and depth maps. Blending may ruin crisp
imagery due to blurring, but is necessary to mask the
unavoidable errors due to the lack of agreement in the
source images. Blending methods can be image-space,
acting on pixel fragments, or they can be object-space,
handling each polygon in the geometric proxy.

Current blending methods use only local information
such as “deviations from the closest views” to find
blending weights. They include approaches such as
view-dependent texture mapping [Debevec98] and
blending fields used in unstructured lumigraph
rendering [Buehler01]. Both these and other methods
(e.g. [Pulli97]) create smooth spatial and temporal
transitions in blended source images. In this paper, we
focus on the specific problem of blending sparse views
in the presence of depth discontinuities. Many previous
papers have mentioned the problem of handling
feathering across depth discontinuities and proposed
solutions based on local computations. We instead use a
global image-space approach to create smooth blending
weights across the scene geometry.

1.1. Contributions

In this paper, we identify the problem in traditional

blending methods and re-state the blending goals to
consider global constraints. We present a general
algorithm that works in the presence of depth
discontinuities. Then we present a fast technique to
implement the global blending algorithm using
traditional graphics hardware.

2. Previous Work

The blending methods in this paper are inspired by

very useful feathering techniques presented by Debevec
et al in their paper about view-dependent texture
mapping [Debevec98] and by Buehler et al in their
paper about unstructured lumigraph rendering
[Buehler01]. We are also influenced by a technique
devised for projector-based augmented reality to fill in
shadows of one projector by other projectors in Shader
Lamps [Raskar01].

The appearance of a scene can be described through
all light rays (2D) that are emitted from every 3D scene
point, generating a 5D radiance function, called the

plenoptic function. In a transparent medium the
plenoptic function is reduced to four dimensions. In
practice, the plenoptic function is sampled from discrete
calibrated camera views, and those radiance values that
are not sampled have to be represented by interpolating
the recorded ones, sometimes with additional
information on physical restrictions.

Often, real objects are assumed to be Lambertian,
meaning that each point on the object has the same
radiance value in all possible directions. This implies
that two viewing rays have the same color value if they
intersect at a surface point. If specular effects occur, this
is no longer true. Two viewing rays then have similar
color values, only if their directions are similar and their
point of intersection is near the real scene point. To
reconstruct an image for a virtual camera, we have to
determine those source rays that are closest, in the above
sense, to those of this camera. The closer a source ray is
to a desired ray, the greater is its contribution to the
target color value.

The basic approach to view-dependent texture
mapping (VDTM) is put forth by Debevec et al in their
Facade image-based modeling and rendering system
[Debevec96]. Facade is designed to estimate geometric
models consistent with a small set of source images. As
part of this system, a rendering algorithm was developed
where pixels from all relevant cameras were combined
and weighted to determine a view-dependent texture for
the derived geometric models. In later work, Debevec et
al describe a real-time VDTM algorithm [Debevec98].
In this algorithm, each polygon in the geometric model
maintains a “view map” data structure that is used to
quickly determine a set of three input cameras that
should be used to texture it. Like most real-time VDTM
algorithms, this algorithm uses hardware supported
projective texture mapping for efficiency.

Buehler et al listed a set of desirable goals that an
ideal image-based rendering algorithm should satisfy
when blending multiple views [Buehler01]. It includes,
among others, the following two main goals:

1. Near-view fidelity

Epipole consistency. When a desired ray passes
through the center of projection of a source camera, it
can be trivially reconstructed from the ray database
(assuming a sufficiently high-resolution input image
and the ray falls within the camera’s field-of-view).
In this case, an ideal algorithm should return a ray
from the source image. An algorithm with epipole
consistency will reconstruct this ray correctly without
any geometric information.

Minimal angular deviation: In general, the
choice of which input images are used to reconstruct

a desired ray should be based on a natural and
consistent measure of closeness. In particular, source
image rays with similar angles to the desired ray
should be used when possible.

2. Continuity
When one requests a ray with infinitesimal small

distance from a previous ray intersecting a nearby
point on the geometric proxy, the reconstructed ray
should have a color value that is correspondingly
close to the previously reconstructed color.
Reconstruction continuity is important to avoid both
temporal and spatial artifacts. For example, the
contribution due to any particular camera should fall
to zero as one approaches the boundary of its field-of-
view [Pulli97], or as one approaches a part of a
surface that is not seen by a camera due to visibility
[Raskar01].

In this paper we focus on the goal of achieving

continuity. Both authors [Debevec98, Buehler01] accept
that spatial continuity is not provided due to visibility
changes. As described below, algorithms based only on
local information cannot achieve smoothness across
depth boundaries. The VDTM algorithm of [Debevec98]
uses a triangulation of the directions to source cameras
to pick the “closest three”. Even if the proxy is highly
tessellated, nearby points on it can have very different
triangulations of the “source camera view map”,
resulting in very different reconstructions. While this
objective is subtle, it is nonetheless important, since lack
of such continuity can introduce noticeable artifacts.

In [Buehler01, Heigl99], the authors use a very large
number of views, and pixels are blended using views
that are very similar and captured by the same (video)
camera. Such dense sampling avoids most of the
artifacts even if the target pixel is blended from very few
source pixels. In later work [Matusik01], in relation to
the sparse unstructured light field blending, the authors
attempt to handle visibility changes. However, since all
the computations are based locally on individual vertices
(or triangles), global smoothness on the scene geometry
cannot be achieved.

In Shader Lamps [Raskar01], multiple projectors are
used to project imagery onto real-world 3D surfaces to
simulate interesting lighting effects. Shadows from one
projector due to occlusion are “filled in” by other
projectors, with feathering around the shadowed region.
Since the illuminated surfaces are diffuse, the blending
weights are computed during pre-processing and do not
need to be updated. Furthermore, the final blending is
automatically done in the “real world” and hence there
is no need to merge the source images.

3. Local and Global Constraints

Despite the formalization of the blending problems,

the previous IBR algorithms attempt to solve the
problem by considering one-fragment at a time. This
only works well when

(i) the surface is diffuse so that radiance is the same in

all directions and corresponding pixels have very
similar intensities and

(ii) there are no occlusion boundaries so that the
relative ordering of corresponding pixels in any
local neighborhood is the same, resulting in
continuous functions without gaps.

Consider the example in Figure 1. In the top part of

the figure, the target value at is a weighted combination
of radiance in the directions of Camera 1 and Camera 2,
i.e. a1 and a2. Similarly, bt is a weighted combination of
b1 and b2. Thus, nearby points a and b in the scene
combine in a very similar fashion.

In the presence of a depth discontinuity (bottom part

Camera 1 Camera 2Target View

Scene
Geometry

a b

a1

a2

b1=btat

Weight for Camera 1

Weight for Camera 2

Weight for Camera 1

Weight for Camera 2

Weights based on deviation of view

Based on deviation of view + depth discontinuity

Figure 2. (Top) The weighted combination at is very
similar to a1 if feathering across depth discontinuity is
considered. (Middle) The traditional feathering based on
local information has a gap in the assigned weights.
(Bottom) Our method considers depth boundaries to
ensure smoothness.

of Figure 1) with respect to Camera 2, at is combined as
before but bt = b1 and there is no contribution from
Camera 2 at b. Thus nearby points a and b combine
very differently. This usually results in an obvious jump
in computed intensities in the target view. It is also clear
that any computation based on local information cannot
detect the variation in the contribution at neighboring
points such as a and b.

We propose a global solution, which considers the
contribution not just at a fragment but also in the
neighborhood of the fragment. As shown in Figure 2,
the blending weights near depth discontinuity (in any
single source view) are modified to maintain local
smoothness. The global processing may not be very
critical for reconstruction from very dense set of views,
but is essential for view-dependent reconstruction from
a sparse set of source views.

For n source images each with m pixels, time
complexity of all blending algorithms is O(n2 + nm),
due to the need to find corresponding pixels between all
source images and the need to process each source pixel.

4. Computing Blending Fields

Spatial smoothness relates to variation of weights of

source images within a target image. Neighboring pixels
in target image should have similar weights if there is
no depth discontinuity. Temporal smoothness relates to
variation of weights of source images at a 3D feature
point in the scene in nearby novel views. The weights at
a scene feature should change smoothly if the views
change smoothly. The guidelines for achieving spatial
and temporal smoothness of contributing weights can be
stated as follows:

1. Normalization. The sum of the intensity weights of

the corresponding source image pixels is one so that
the intensities in the target image are normalized.

2. Continuity:
Scene smoothness. The weights of a source image
along a physical surface should change smoothly in
and near overlaps so that the inter-camera intensity
differences do not create visible discontinuity in
target image.
Intra-image smoothness. The distribution of
intensity weights within a source image should be
smooth if there is no depth discontinuity.

3. Near-view fidelity: Epipole consistency and
minimal angle deviation;

4. Localization. Unnecessary blending should be
avoided by limiting the number of transition regions
to reduce blurring.

The guidelines suggest solving the feathering
problem without violating the weight constraints at
depth discontinuities and shadow boundaries. It is
important to note that, under certain conditions, some of
the guidelines may be in conflict and it may not be
possible to satisfy all of them. For example, when the
boundaries between overlap regions and non-overlap
regions meet at a singularity, the blending weights in
the local neighborhood of the singularity are not
continuous.

4.1. Approach

We use an image-space approach and divide our

blending field calculation into two parts: view-
independent and view-dependent. The view-independent
contributions of the source images are due to the global
relationships among the source images and the scene
features. They primarily include field-of-view and
visibility. One may also include other parameters such
as resolution, i.e. sampling density.

View-dependent contribution is due to relationship
between the target view and the available sampled
source rays. As described in Section 4.4, the final
blending field at a scene feature is a normalized dot
product of the view-independent and the view-
dependent components. The view-independent
calculations take into consideration the global visibility
constraints while view-dependent calculations are
performed per fragment of the target image. A fragment
can be an image pixel or a polygon of the geometric
proxy.

Typically, in scenes with significant depth
discontinuities, view-independent calculations are more
complex than view-dependent calculations. For static
scenes, the view-independent contribution can be pre-
processed. However, the algorithm described below is
sufficiently fast to be implemented for dynamic scenes.

4.1.1. View-independent Contributions

Traditional feathering methods use the distance to
the nearest invisible or boundary pixel to find the weight
[Szeliski97]. In [Debevec98, Buehler01], the
contribution due to any particular source view falls to
zero as one approaches the boundary of its field-of-view.
We, instead use the notion of “distance to the nearest
image boundary or depth discontinuity”. In this paper,
we also refer to depth discontinuity as depth boundary.
We first find pixels corresponding to regions seen in
only a single source image and assign them intensity
weights of 1. Then, for each remaining pixel in the
source image, the basic idea behind our technique is to
find the shortest path to an image boundary or depth

boundary pixel, ignoring paths that cross overlap
boundaries. The assigned weight is proportional to this
distance. Figure 2 shows the result of this feathering
algorithm in flatland for two source images. Even under
view-dependent intensities, the algorithm generates
smooth transitions corresponding to image of a
continuous surface in the presence of shadows and
fragmented overlaps. The algorithm can be used for
three or more source images without modification.

4.1.2. View-dependent Contributions

The view-dependent component is dependent on the
angular deviation of a source ray from the target ray.
We use weights based on the traditional approach of
using the angular deviations with respect to the k-
nearest neighbors [Buehler01]. For each target pixel, we
choose the corresponding pixels in the k-nearest camera
views in which the pixel fragment is visible. The
follwoing pseudo-code shows how the view-depedent
weights are computed:

For each target pixel x,
 For each source image i,
 anglei = deviation of source ray from target ray x
 Find k smallest angles
 For each source image i in k-nearest neighbors,
 wi(x) = max(0, (1/anglei)*(1 – anglei / anglek))

We do not need to normalize the view-dependent

blending weights, wi(x), across source images because
they will be normalized after the dot product with the
view-independent weights. This weighting scheme also
ensures the epipole consistency. If the deviation is zero
(i.e. the target ray is an epipole) then weight is close to
one. The weight gradually drops to zero when the
camera drops out of the first k-nearest views. anglek
denotes the largest angle among the k neighbors.

4.2. View-Independent Weights

Let us consider the view-independent computation in

more detail. For a practical real time implementation,
we use four buffers for each source image: in addition to
the image buffer, Image(x) and depth buffer Depth(x),
we use a overlap buffer v(x) to record overlaps, a
distance buffer d(x) and weight buffer w(x) to store
values for pixel x.

A depth buffer is a 2D array of depth values of a
source images. If a geometric proxy is used, the depth
buffer can be calculated by rendering the geometric
proxy from the source camera’s viewpoint and reading
back the rendered depth buffer. The overlap buffer
contains integer values to indicate the number of
overlapping camera views for each pixel. The overlap

regions (i.e. overlap count of two or more) are computed
using the traditional shadow-buffer technique. The
following is an outline of the subsequent steps to
compute the view-independent weights:

For each source image,
 Compute depth discontinuities in depth buffer
 For each pixel in overlap region,
 Update shortest paths to image or depth boundary

For each source image,
 For each pixel in overlap region,
 Find all corresponding pixels in other source images
 Assign weights proportional to the shortest distance

The following shows how to find the depth

boundaries in a depth buffer.

For each depth buffer Depthi(.)
 For each pixel x with overlap count vi(x) >= 1
 Mark pixel if depth of any pixel in
 8-neighbor is > (Depthi(x)+ threshold)

Due to the inequality, the depth boundary pixels are

only on the nearer surface and do not result in double
boundaries at depth discontinuity (as noticed in
traditional edge detectors). The threshold is used to
eliminate errors due to lack of depth precision.

The algorithm for weight computation basically
creates a smooth function based on the “shortest path to
image or depth boundary”. In the absence of depth
discontinuities, this function will be smooth across the
source image. By ignoring paths that cross overlap
boundaries, we enforce the scene smoothness condition.
Hence, the blending weights are discontinuous only at
the depth boundaries in image space but are continuous
along the scene geometry. During run time, the view-
independent weight d(x) is multiplied by the view-
dependent blending weight, w(x), which is also smooth.
Naturally, the product of these two weighting functions
is also smooth except at the depth boundaries
[Borgefors86].

The time-consuming part of this weight assignment
algorithm is, however, the computation of the distances
along the shortest paths, since the paths may not be
along straight lines.

4.3. Finding Nearest Nodes

The shortest path problem is well-studied in the field

of computational geometry. [Latombe91] suggest many
approaches based on generalized Voronoi diagrams.
They are commonly used for applications such as path
planning in potential field and for avoidance of obstacle
nodes. Motion planning is a fundamental problem, with

applications to the animation of digital actors,
maintainability studies in virtual prototyping, and robot-
assisted medical surgery. The classic Piano Mover’s
problem involves finding a collision-free path for a
robot moving from one location (and orientation) to
another in an environment filled with obstacles. The
underlying idea is to treat the obstacles as repulsion
nodes. The Voronoi boundaries then provide paths of
maximal clearance between the obstacles. Due to the
practical complexity of computing generalized Voronoi
diagrams, the applications of such planners have been
limited to environments composed of a few simple
obstacles.

Recently, hardware based approaches have been used
for greedy path planning algorithms with gradient
approach [Hoff99]. They are relatively fast. However,
encoding of shortest path for all points with respect to
attraction nodes and repulsion nodes is difficult. In our
case, attraction nodes are the overlap boundaries and
repulsion nodes are the image and depth boundaries.

Instead, we propose an approximation of the distance
along shortest path. We try to satisfy the following three
goals:

(i) Weights near overlap boundary in overlap region

are close to one.
(ii) Weights near depth boundary in overlap region are

close to zero.
(iii) Weights for pixels in regions in between transition

smoothly.

4.3.1. Voronoi Diagrams Using Graphics Hardware
Our method is based on [Hoff99] to compute Voronoi

diagrams using graphics hardware. The idea is to render
a cone to approximate each node’s distance function. A
node can be a pixel on a image boundary or a depth
boundary. Each node is assigned a unique color ID, and
the corresponding cone is rendered in that color using a
parallel projection. When rendering a polygonized cone,
the polygon rasterization in the graphics hardware
reconstructs all distances across the image plane using
linear interpolation of depth across polygons and the Z-
buffer depth comparison operation. The Z-buffer depth
test compares the new depth value to the previously
stored value. If the new value is less, the Z-buffer
records the new distance, and the color buffer records
the site’s ID. In this way, each pixel in the frame buffer
will have a color corresponding to the site to which it is
closest, and the depth-buffer will have the distance to
that site. In order to maintain a single-pixel-accurate
Voronoi diagram, a finely tessellated cone needs to be
rendered.

Let Z(x) and z(x) denote the nearest depth boundary
node and distance to that node, for a pixel x. Note that
these Euclidean distances are along straight lines, as
defined by Voronoi diagrams. (We convert the depth-
buffer values to object-space depth distances, which in
this case correspond to distances from boundary pixels
in pixel-units). We need to update z(x) to avoid the
depth boundary nodes. Let d(x) denote the updated z(x),
i.e. the approximate distance that is proportional to the
distance to the nearest image or depth boundary.

The pseudo-code for computing the view-
independent weights for each source image is as
follows:

For each pixel j on image and depth boundary,
 Draw a cone with color(j) using parallel projection
Read buffers: Zcolor = color buffer, and Zdepth = depth buffer
For each pixel x,
 d(x) = Zdepth(x)

4.4. Rendering Target Image

Let xi denote the corresponding pixel for a target

pixel x in source image i. For a given target view, the
following pseudo-code computes the target image using
the view-dependent weights and the view-independent
weights:

For each source image i,
 For each pixel j in image i,
 Splat in target view
 and store di(j), view vector and view depth
For each pixel x in target view
 Eliminate invisible contributions
 Find w(xi) for k-nearest views
 Find normalized weight
 W i(xi) = (wi(xi) * di(xi)) / Σi (wi(xi) * di(xi)) for i = 1..k
 TargetImage(x) = Σi Imagei(xi)* W i(xi)

As mentioned earlier, the procedure can be modified

to use any type of fragments. Instead of pixels, one can
use polygons from geometric proxy [Buehler01,
Debevec98]. The procedure is somewhat simpler than
methods where multiple weights per pixel have to be
assigned and later distinguished depending on depth
values. In our case, to eliminate invisible contributions,
before splatting, we simply render the geometric proxy
to update the depth buffer in the target view. The
summation after dot product on the last line of the
algorithm above is achieved with an accumulation
buffer in the graphics hardware.

5. Results

Figures 3 and 4 show the results for a simple

example. Our objective is to verify our blending method
and compare its results with those of traditional local
approaches. We have also tested the algorithms with
more complex scenes. The multiple source images are
blended in real time using alpha blending and an
accumulation buffer.

5.1. Issues

For sparse views, the depth values (or proxy

geometry) are expected to be sufficiently accurate to
avoid aliasing. However, for blending, stricter
requirement is needed to ensure that the weights
computed using global constraints remain normalized
after re-projection. During implementation, we had to
handle depth precision and image re-sampling problems
and had to use fast morphology (erosion and dilation) to
get rid of isolated regions and the resultant artifacts in
overlap buffers.

Further analysis is required to understand the trade-
off between blurring and limited interpolation of source
samples, similar to the sampling issues discussed in
[Chai00].

6. Conclusion

We have described a new blending method to

influence pixel intensities for merging multiple source
views into a target view. We have presented the need to
use global constraints for handling feathering across
depth discontinuities. In our method, each blending
weight is made up of a view-independent and a view-
dependent component. We have detailed how the view-
independent components can be computed by
considering global information such as depth
discontinuities and visibility. Using traditional graphics
hardware, approximation of the desired view-
independent weights can be quickly computed.

The technique presented in this paper is sufficiently
general to be used for blending operations in many types
of interpolation. They include synthesis from surface
light fields, re-lighting of image-based scenes, and novel
view generation from sampled BRDF values. We are
also investigating adaptive blending techniques for a
given image-content such as in [Burt83] and extend
them to non-planar scene geometry.

More details and images can be found at
http://www.cs.unc.edu/~raskar/Blending/

7. References

[Borgefors86] G. Borgefors. Distance transformations in
digital images. Computer Vision, Graphics and Image
Processing, 34:344–371, 1986.

[Buehler01] C. Buehler, M. Bosse, L. McMillan, S. Gortler,
and M. Cohen, Unstructured lumigraph rendering, Proc.
ACM Conference on Computer Graphics
(SIGGRAPH'01), pp. 425–432, Aug. 2001.

[Burt83] Burt, Peter J, and Adelson, Edward H. A
Multiresolution Spline With Application to Image
Mosaics. ACM Transactions on Graphics 2(4):217-236,
October, 1983.

[Chai00] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and
Heung-Yeung Shum. Plenoptic sampling. SIGGRAPH
00, pages 307–318.

[Debevec96] P. Debevec, C. Taylor, and J. Malik. Modeling
and rendering architecture from photographs.
SIGGRAPH 96, pages 11–20.

[Debevec98] Paul E. Debevec, Yizhou Yu, and George D.
Borshukov. Efficient viewdependent image-based
rendering with projective texture-mapping. Eurographics
Rendering Workshop 1998.

[Gortler96] Steven J. Gortler, Radek Grzeszczuk, Richard
Szeliski, and Michael F. Cohen. The lumigraph.
SIGGRAPH 96, pages 43–54.

[Shum99] Heung-Yeung Shum and Li-Wei He. Rendering
with concentric mosaics. SIGGRAPH 99, pages 299–306.

[Heigl99] B. Heigl, R.Koch, M. Pollefeys, J. Denzler, and
L.Van Gool. Plenoptic modeling and rendering from
image sequences taken by hand-held camera. Proc.
DAGM 99, pages 94–101.

[Hoff99] K. Hoff III, T. Culver, J. Keyser, M. Lin, and D.
Manocha. Fast Computation of Generalized Voronoi
Diagrams using Graphics Hardware. In Computer
Graphics (SIGGRAPH '99), pp. 277–286, 1999.

[Latombe91] J.C. Latombe. Robot Motion Planning. Kluwer
Academic Publishers, 1991.

[Levoy96] M. Levoy and P. Hanrahan. Light field rendering.
SIGGRAPH 96, pages 31–42.

[Matusik01] Matusik, W., Buehler, C., and McMillan, L.,
Polyhedral Visual Hulls for Real-Time Rendering, In
Proceedings of Eurographics Workshop on Rendering
2001.

[Pulli97] Kari Pulli, Michael Cohen, Tom Duchamp, Hugues
Hoppe, Linda Shapiro, and Werner Stuetzle. View-based
rendering: Visualizing real objects from scanned range
and color data. Eurographics Rendering Workshop 1997,
pages 23–34.

[Raskar01] Ramesh Raskar, Greg Welch, Kok-Lim Low and
Deepak Bandyopadhyay. Shader lamps : Animating real
objects with image-based illumination. In Eurographics
Rendering Workshop 2001, August 2001.

[Szeliski97] R. Szeliski and H. Shum. Creating Full View
Panoramic Mosaics and Environment Maps. SIGGRAPH
’97, August 1997.

Source Image 1

Overlap Map 1 Voronoi Diagram 1

Source Image 2

Overlap Map 2 Voronoi Diagram 2

The simple scene consists of a small
square floating high above a bigger

one. Note the view-dependent specular
highlights in the source images.

The overlap map of each source view
shows the overlap regions (green), the

non-overlap regions (red), overlap
boundaries (black) and depth

boundaries (blue).

Each pixel in the above voronoi
diagrams is colored with the color ID of
the nearest node on the image or depth
boundaries. The depth boundaries are

shown in blue.

View-independent weights for Source View 1.

View-independent weights for Source View 2.

View-independent weights. Note that the weights are one in the non-overlap regions, close to one for pixels near the non-

overlap regions and close to zero near depth boundaries.

Figure 3. Results for a simple example.

Figure 4. Constructing a target image. (Left column) Using only “deviation from the nearest views” method. (Right
column) Our method, which considers depth discontinuities. (Top and middle rows) Contribution from individual source
views. (Bottom) Combined sum. Note how in the bottom-left image, the intensities jump near the shadow boundary. In our
method (bottom-right image), due to view-independent feathering, the intensities are smooth. (Please ignore the green
colored artifacts due to unclamped accumulation buffer.)

