
Computing Bounding Volume Hierarchies
Using Model Simplification

 Tiow-Seng Tan†, Ket-Fah Chong† Kok-Lim Low‡

 National University of Singapore University of North Carolina at Chapel Hill

Abstract
This paper presents a framework that uses the outputs of model
simplification to guide the construction of bounding volume
hierarchies for use in, for example, collision detection. Simplified
models, besides their application to multiresolution rendering, can
provide clues to the object’s shape. These clues help in the
partitioning of the object’s model into components that may be
more tightly bounded by simple bounding volumes. The
framework naturally employs both the bottom-up and the top-
down approaches of hierarchy building, and thus can have the
advantages of both approaches. Experimental results show that
our method built on top of the framework can indeed improve the
bounding volume hierarchy, and as a result, significantly speedup
the collision detection.

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling –
surface and object representations.

Additional Keywords: collision detection, hierarchical data
structure, intersection searching, space partitioning, ray tracing,
level of detail, multiresolution rendering, vertex clustering.

1 INTRODUCTION
Fast rendering and collision detection are two fundamental goals
of many interactive 3D graphics applications. Many realistic-
looking 3D models, containing millions of polygons where almost
all are visible in a complex scene, can hardly be rendered at
interactive frame rates. A solution for this is to use multiresolution
or level-of-detail modeling, in which each object has a series of
geometric approximations or simplified models with increasingly
lower rendering cost, and they resemble the original models from
all directions. Also, navigation in a complex scene requires

extensive detection of collisions between models and thus needs
support from very efficient collision detection data structures and
algorithms to achieve interactive frame rates.

Though there are significant advances in constructing good
bounding volume hierarchies, there still remains many open
issues, such as the choice between the top-down and the bottom-
up approaches, and the choice of bounding volume
[Klosowski98]. Our work differs from all previous work by
looking beyond the above issues to focus on the importance of the
objects' shapes for constructing good bounding volume
hierarchies.

The new framework proposed in this paper uses the outputs of
model simplification to guide the construction of bounding
volume hierarchies. Simplified models, besides their application
to multiresolution rendering, can provide clues to the object's
shape. These clues help in the partitioning of the object's model
into components that may be more tightly bounded by simple
bounding volumes. The framework naturally employs both the
bottom-up and the top-down approaches of hierarchy building,
and thus can have the advantages of both approaches.

A method, based on the proposed framework, has been built to
experiment on architectural, mechanical and CAD models found
in applications such as simulation, modeling, and virtual
prototyping. Motivated by the interactive 3D design and modeling
environment where the method may be used, we have adopted
approaches that have efficient processing time.

The rest of the paper is organized as follows. Section 2 reviews
some previous work in simplification and collision detection.
Section 3 presents the basic idea of the proposed framework.
Section 4 describes the details of a method built on top of our
framework. Section 5 discusses the roles of model simplification
in the framework, section 6 presents our experimental results, and
section 7 concludes the paper.

2 PREVIOUS WORK
Recently, there has been much research in polygonal
simplification algorithms. This is demonstrated by the explosion
of papers lately, see for example, [Cohen98, Garland97, Hoppe97,
Luebke97,

� � � � � � � � � � 	
Heckbert and Garland have given a good

overview of the area [Heckbert97]. These algorithms form a
spectrum, ranging from fast, simple methods that yield outputs
with moderate quality to slower, more sophisticated methods with
superb quality outputs.

Similarly, collision detection has been studied extensively in the
literature. A comprehensive discussion has been given by
Klosowski et al. [Klosowski98]. Many popular algorithms are
based on either the hierarchy of bounding volumes that
successively approximate the parts of the object’s model until the
exact geometry of the model is reached (e.g. [Barequet96,

–––––––––––––––––––––––
† School of Computing, National University of Singapore, Lower
Kent Ridge Road, Singapore 119260.
Email: { tants | chongket} @comp.nus.edu.sg.

‡ Department of Computer Science, University of North Carolina
at Chapel Hill (on study leave from the School of Computing,
National University of Singapore). Email: lowk@cs.unc.edu.

Beckmann90, Hubbard96, Palmer95, Klosowski98,
Gottschalk96]) or spatial decomposition of the space occupied by
the model (e.g. [Garcia94, Held95, Moore88, Naylor90,
Noborio89]). Both approaches are aiming to reduce the number of
pairs of objects or primitives that need to be checked for contact.

With our proposed framework, we are able to improve the OBB-
trees constructed by RAPID [Gottschalk96] (a leading publicly
available software library for collision detection). These better
bounding volume hierarchies, in turn, speedup the detection of
collisions during runtime. Apart from collision detection
purposes, bounding volume hierarchies are also used to accelerate
ray-tracing [Arvo90, Klimaszewski97].

3 THE FRAMEWORK
In the proposed framework, the outputs of model simplification
are used to guide the construction of a bounding volume hierarchy
for the input model. We will also call a bounding volume
hierarchy a BV-tree.

Here is the basic idea of the general framework. For each
simplified model, which is usually drastically simplified from the
input model, its primitives are grouped into parts. For each part, a
component of the original model is formed by collecting all the
original polygons that simplify into the primitives in the part.
These disjoint components form a partition of the original model.
Note that a component is a subset of the original model’s
polygons.

These first-level components can be further decomposed into sub-
components in the same way by invoking the simplification
process again with higher level of detail than the first
simplification. There are mainly two ways of invoking the higher
level of detail simplification. In the first, the simplification is
separately applied to each first-level component, whereas in the
second, the simplification is applied to the entire original model.
For the second way, some sub-component may not be a subset of
any first-level component, i.e. it contains polygons that come
from more than one first-level component. This can be resolved
by breaking the sub-component into smaller sets such that every
one of them is a subset of some first-level component. Each sub-
component thus formed is then linked to the first-level component
that is a superset of the sub-component. The further
decomposition can be recursively applied to the sub-components.
The result of this recursive partitioning is a component tree of the
original model. Figure 1(a) shows an example of a component
tree.

We can view a component tree as the topmost levels of a
bounding volume hierarchy. However, due to the possibly many
number of components generated for each node in the component
tree, the degree of the BV-tree can be high. Since it is generally
agreed that high degree may be harmful to the performance of
collision detection, we need to convert the original tree to a low-

degree tree. For each node in the tree, we can combine its
components in a bottom-up manner to reduce the tree’s degree.
Figure 1(b) shows a binary component tree converted from the
original tree in Figure 1(a).

The topmost levels of the BV-tree (which we will refer to as the
upper BV-tree) is then derived from the new component tree by
computing a bounding volume for each node in the component
tree. In practice, we do not perform the component
decompositions down to the level where each leaf component is a
single polygon. Therefore, in the next step of the framework, a
traditional BV hierarchy building method is applied to each leaf
component in the component tree. Each leaf component’s BV-tree
replaces the corresponding leaf in the upper BV-tree, and this
completes the construction of the BV-tree for the input model.
Figure 1(c) shows a BV-tree constructed from the example
component tree in Figure 1(b).

The framework has a few potential advantages. The information
we get from the simplified models can allow us to better partition
the original model into components that may be more tightly
bounded by a pre-specified type of simple bounding volumes.
Since the number of components is usually much smaller than the
number of polygons in the input model, we can afford to use a
more exhaustive bottom-up algorithm to perform the conversion
of the component tree to one with a low specified degree. The
above two factors allow us to compute a BV-tree that is good in
its topmost few levels.

input model

Component 1 Component 2 Component 3

Component 1a

Component 1c

Component 1b Component 3a Component 3b

Figure 1(a): An example of a component tree.

Figure 1(b): A binary component tree converted from
the original tree in Figure 1(a).

input model

Component 1 Component 23

Component 1ac Component 1b Component 2 Component 3

Component 1a Component 1c Component 3a Component 3b

Figure 1(c): The final BV-tree constructed from the
binary component tree in Figure 1(b).

BV of
input model

BV of
 Component 1

BV of
Component 23

BV of
Component 1ac

BV of
Component 3BV-tree of

Component 1b
BV-tree of

Component 2

BV-tree of
Component 1a

BV-tree of
Component 1c

BV-tree of
Component 3a

BV-tree of
Component 3b

As the lower part of the BV-tree can be built using a fast
traditional top-down algorithm, the overall framework can be very
time-efficient, provided the simplifications are fast too.

4 DETAILS OF THE METHOD
This section describes the details of our method that materialize
the proposed framework. In the discussion, we assume that the
input model is made up of triangles only.

Let T be the set of triangles of the input model M for which we
need to construct a BV-tree B(T). Each node v of B(T)
corresponds to a subset Tv of T, with the root node being
associated with the full set T. Each internal node v of B(T) has
two or more children whose associated subsets form a partition of
Tv. The maximum number of children for any internal node of
B(T) is called the degree of B(T). Associated with each node v of
B(T) is a bounding volume that is an outer approximation to the
set Tv using a smallest instance of some specified class of shapes,
e.g. axis-aligned bounding boxes (AABBs) [Beckmann90,
Bergen98], spheres [Hubbard96], oriented bounding boxes
(OBBs) [Gottschalk96] and discrete orientation polytopes (K-
dops) [Klosowski98].

4.1 Simplification of Input Model
One of the objectives of our method is to be time-efficient. The
overall time efficiency is very much affected by the speed of the
simplification process. For this, we have chosen the vertex-
clustering simplification algorithm described in [Low97] to do the
simplifications. The simplification algorithm, which we will refer
to as the floating-cell simplification (FCS) algorithm, is similar to
the original vertex-clustering method proposed by Rossignac and
Borrel [Rossignac93], but produces better approximation quality,
and thus, is able to give a better "sketch" of the input model than
the latter.

The FCS algorithm outputs simplified models that may contain
triangles, edges and points. From our observations, in many cases,
the edges give the most important clues to the basic shape of the
model. An edge represents an elongated part in the model, and
once the elongated part is identified, a good way to bound it is to
use a bounding volume that can be oriented to fit along the length
of the elongated part. Oriented bounding boxes (OBBs) and
oriented cylinders are examples of such suitable simple bounding
volumes. For our purpose, we have chosen the OBBs because
their use in collision detection has recently been improved greatly
by Gottschalk et al. [Gottschalk96].

4.2 Computing Component Tree C(T)
Let T be the set of triangles in a polygonal model M. After
simplification, each triangle of T is simplified to a point, an edge
or remains as a (possibly different) triangle. Let S be the set of
triangles, edges, and points of a simplified model m of M. Notice
that all elements in S are open sets, i.e., each triangle does not
contain the three edges on its boundary, and each edge does not
contain the two points at its ends. Define Fm : T → S be the
mapping such that Fm (t) = s iff triangle t ∈ T is simplified to an
element s ∈ S.

We first partition elements of S into parts, and then divide the
triangles in T into components (with respect to m) so that t1, t2
belong to a same component iff Fm(t1) and Fm(t2) are in a same

part of S. Intuitively, a part of S contains elements that are
maximally connected among themselves as discussed next.

Define S3, S2, S1 respectively as the set of triangles, edges, and
points in S. Let us first consider the partition of S3 into parts. Let
R be a relation on S3 such that a R b iff a can reach b by traversing
the triangles in S3 where two adjacent triangles in the traversal
must share an edge. It is easy to check that R is reflexive,
symmetric and transitive thus an equivalence relation and defines
a unique partition on S3 (step A1). Then, for the purpose of having
small total bounding volume of B(T), the edges of S2 (step A2)
and the points of S1 (step A4) that exist in some triangles of S3 are
included into the respective parts in S3. Also, each stray edge of S2

(i.e. an edge not in any triangle of S3) with both its endpoints in a
same part is included into the part (step A3), since the bounding
volume of the component corresponding to the part is likely to
include the edge. Next, we consider the partition of the remaining
elements in S2. Each remaining stray edge is taken as a separate
part (step B1). Also, each point that is an endpoint of a single
stray edge can be grouped into the same part as the edge (step
B2). Finally, each remaining point in S1, isolated or incident upon
by elements of different parts, forms an individual part (step C1).
The following pseudo-code summarizes the above description.

/* Initializations */
S3, S2, S1 are initialized, respectively, to the set of triangles, edges
and points in S ;

/* Form parts due to triangles */
do while S3 ≠ ∅

P := { t } where t is any triangle in S3 ;
S3 := S3 – { t } ;

(A1) do while ∃ t ∈ S3 where t shares a side with some t ∈ P

P := P ∪ { t } ; S3 := S3 – { t } ;

endDo
(A2) let S 2 ⊆ S2 whose every edge is a side of some triangle in P ;

(A3) let S 2 ⊆ S2 whose every edge is an isolated edge with both
endpoints incident to some triangles in P ;

(A4) let S 1 ⊆ S1 whose every point is incident to some triangle in
P but not any other triangle in S ;

Form a new part with P ∪ S 2 ∪ S 2 ∪ S 1 ;

S2 := S2 – S 2 – S 2 ; S1 := S1 – S 1 ;
endDo

/* Form parts due to stray edges */
do while S2 ≠ ∅
(B1) let e be an edge in S2 ;

(B2) let S 1 ⊆ S1 whose every point is an endpoint of e but not any
other edge or triangle in S ;
Form a new part with { e } ∪ S 1 ;

S2 := S2 – { e } ; S1 := S1 – S 1 ;

endDo

/* Form parts due to remaining points */
(C1) Form a new part each with each remaining point in S1 ;

Figure 2 shows the parts extracted from a simplified model by the
above algorithm. Also, simple data structures are sufficient, in
particular, on keeping information about the triangles incident to
each vertex. When given this, the algorithm runs in time linear to |
S |. The partition of S can be viewed as a shape of the input
model. Shape, in general, is studied in various other areas such as
computational geometry (see, for example, [Edelsbrunner94])
where input vertices are the basis to form shape. For our purpose,
shape is defined from simplified model whose vertices are just
approximation of the original. Furthermore, a shape is unlike, for
example, the medial axis of an object [Sheehy96], which is
expensive to compute and whose role is not clear for our purpose
of object decomposition.

A simple step after the application of the above algorithm in turn
divides T into various components. The algorithm can be
recursively applied, each time with a simplified model of higher
level of detail, to obtain sub-components of components and so
on. To divide a component containing triangles Tc ⊆ T into sub-
components using another simplified model m of higher level of
detail, we only need to consider elements Fm (Tc) in m . Figure 4
(color plate) shows examples of components computed from some
simplified models. In each picture, different colors are used to
differentiate the different components and sub-components. Note
that the edges in the simplified model are rendered using
thicklines with variable thickness, as discussed in [Low97]. The
components identified from T can naturally be arranged into a
component tree C(T), in which each node represents a component,
and its children, if any, represent the sub-components.

4.3 From C(T) TO B(T)
The component tree C(T) corresponds to the topmost levels of the
whole bounding volume hierarchy of T, B(T). However, some
nodes in C(T) may have many children and thus contribute to the
high degree of the component tree. As we have already mentioned
that high degree in a BV-tree may be ineffective for the purpose

of collision detection, we next describe ways to convert C(T) into
a binary tree before making it the topmost few levels of B(T).

We discuss the process with reference to the children vi of each
node v in C(T) for i = 1, 2,…, k, where k is the number of children
of v. Each child vi has an associated bounding volume and a set of
triangles Ti ⊆ T in its represented component. We adopt the
bottom-up approach to construct a binary tree with leaves vi and
root v. The method is similar to constructing a Huffman code tree.
We first choose a pair, say vi and vj, to combine into v , which
now contains the set of triangles Ti ∪ Tj and has an associated
bounding volume. Then, we treat v as a new child in place of vi

and vj in the set of children to repeat the process until we are left
with one child, which is the node v. It is natural to pick a pair
where the resulting bounding volume of v is minimum in the
hope to minimize the total bounding volume of B(T). This can
result in large components (generally with higher probabilities of
collision) appearing higher in the B(T). Though such an approach
requires searching of the smallest bounding volume, it remains
efficient and effective as the number of children is normally
small.

Let us discuss other possibilities. One other way is to use all
triangles in the union of Ti (i = 1, 2, …, k) to compute a
partitioning halfplane by, for example, the RAPID system, and
then assign each node vi to the halfspace containing most of its
triangles. This can be applied recursively to each halfspace until
when there is only one or a few vi in a subspace. The resulting tree
obtained from the recursive partitioning will have nodes vi as the
leaves and node v as the root. Such top-down approach does not
follow our principle of working with the components directly, and
indeed does not show the best outcome in our experience.

Another possible top-down approach is as discussed in
[Goldsmith87] for computing bounding volumes hierarchies for
ray-tracing. This approach achieves efficient tree construction
time of O(n log n), where n is the number of primitives in the
input model, by working with estimated bounding area/volume at
each stage of the computation. Though efficient, the method is
sensitive to the order in which nodes are inserted into the tree. Our
bottom-up approach seems more thorough in examining the
possibilities and more direct in using the actual cost.
Traditionally, bottom-up construction appears to be more difficult
than top-down in that clusters of objects would have to be defined
and grouped locally before they could be put together to form the
bounding volume hierarchy. Such difficulty disappears in the
proposed framework by the use of component hierarchy C(T).
Notice that our method of computing the components for the
topmost few levels of B(T) adheres to all the good properties
(especially on the issue that BV-tree construction should
concentrate on the nodes nearer the root of the tree) of BV-tree
construction mentioned in [Kay86].

Once the topmost few levels of B(T) has been computed from
C(T), the remaining computation to complete B(T) can be carried
out next on each leaf of B(T) using traditional partitioning
halfplane or spatial partitioning techniques. Our current
implementation adopts the top-down partitioning method
provided in the RAPID system [Gottschalk96].

With the complete B(T), checking for collisions can be performed
as usual. In fact, in our implementation, the collision detection
routine in RAPID is used, without modification, on the BV-trees
created by our method.

T1

T2 T3

T4

T5

T6 T7
P1

P2

P3 P4

P5

P6

E1

E2

E3

E4

edge

point

triangle

Parts formed due to triangles:
1. { T1, T2, T3, T4, T5, T6, E1, E2, E3, P1, P2, P3 }
2. { T7, P5 }

Parts formed due to stray edges:
3. { E4, P6 }

Parts formed due to remaining points:
4. { P4 }

Figure 2: Computing parts from a simplified model.

5 ROLES OF SIMPLIFICATION
The success of our framework depends on the fact that
simplification produces simplified models that show good
sketches of the input model. Equally important, the simplified
models should be consistent across different levels of detail, since
these consistencies affect the goodness of the recursive
partitioning of components into sub-components. From our
experience, the floating-cell simplification (FCS) meets the above
requirements, and moreover, it is very time-efficient. It is
currently adapted for our implementation of the framework. Note
that FCS requires an input parameter of the clustering cell width
to determine the resolution of the simplified model. For many
models, due to their locally dense but globally sparse nature, the
frequency distribution of the lengths of the edges (sides of the
triangles) indicates locations with drastic changes in frequencies.
Figure 3 shows the histogram that depicts the frequency
distribution of the lengths of the edges in the Enterprise model
(shown in Figure 4). Such locations are good lengths for
clustering cell widths. A straightforward algorithm has been
designed to detect a few of such locations to generate simplified
models.

The Enterprise’s Edge Length Distribution

0

5

10

15

20

25

30

35

40

1 27 52 78 10
4

12
9

15
5

18
1

20
6

23
2

25
8

28
3

30
9

33
5

36
0

38
6

41
2

Edge Length

P
er

ce
n

ta
g

e
o

f
E

d
g

es

Figure 3: Edge length distribution.

In our implementation of the framework, we first compute a few
(< 4) simplified models for the input model before the
construction of B(T). One other possibility is to alternate between
simplification and construction of a level of C(T) where
simplification is performed to triangles of each component
separately. The main advantage of the latter is the higher
consistencies. However, it requires tight coupling between the
simplification process and the construction of C(T). Nevertheless,
our FCS has shown to produce consistent simplified models, and
this latter approach is not necessary in our implementation.

As mentioned, the speed, the quality and the smoothness in
transition are the main reasons for our choice of the FCS
algorithm. Though there are other vertex and edge contraction
algorithms that guarantee extremely high quality simplified
models (and usually slower in computation time), this is,
however, unnecessary for our purpose of constructing C(T). More
importantly, the simplification algorithm must produce drastically
simplified models that contain useful clues, such as stray edges
and triangles sharing no edges with others, so that the original
model can be decomposed into its components.

Note also that the use of simplification in the proposed framework
is very different from that described by Faverjon [Faverjon89], in
which the simplified model is directly used in the bounding
volume hierarchy to verify collisions.

6 EXPERIMENTAL RESULTS
In the experiments to test the performance of our method built on
the proposed framework, we have used the original, unmodified
RAPID as the basis of our comparisons. In our method, we have
integrated RAPID into the algorithm to construct the lower
portion of the complete BV-trees. The BV-trees constructed by
our method are then used by the RAPID collision detection
routine to check for collision between objects. Here, we will refer
to our collision system as U-Collide.

We ran our experiments on a SGI Indigo2 workstation with a
250MHz MIPS R4400 CPU/R4000 FPU and 128 MB of main
memory. Table 1 shows the preprocessing times to build the BV-
trees for some test models. In our experiment, we used only 2 to 3
simplified models to extract the components from each model.
We observe that the simplification and the computation of the
components can be done quite fast. Our implementation of the
preprocessing routines has yet to be optimized. For example, on
the bottom-up processing to convert C(T) to the top few levels of
B(T), our current implementation simply computes the bounding
volumes repeatedly using the routines in the RAPID system—this
can be avoided by progressively removing the triangles not useful
in the bounding volume computation.

One of the demos found in the RAPID package was adapted to be
the benchmark for measuring the collision query time. With that,
we specified the number of simulation steps, the number of
instances of a model, and the size of the environment. The number
of simulation steps was set to 5000, the environment was
populated with models so that the number of triangles is over
200000, and the size of the environment was set to simulate
sparse, normal or dense situations. In a sparse environment, the
sum of the topmost bounding volumes of all the instances is about
25% of the volume of the environment; a normal environment,
about 50%; and a dense environment, about 100%. Table 2 shows
the statistics of our experiments. The overall result is consistent
over a few runs on each model. For all our examples, we obtain
better collision detection performance in all the different
environments. The percentages of improvement over the
performance of RAPID are shown within parenthesis. Table 3
shows a comparison on the number of nodes in B(T) traversed
during the simulation. In general, U-Collide performs better than
RAPID.

7 CONCLUSION
Our proposed framework exploits the outputs of simplification in
the construction of bounding volume hierarchies. In the
framework, simplified models are used to extract the components
and sub-components of the input model, so as to construct
efficient topmost few levels of the bounding volume hierarchy.
The framework explores our belief that the set of primitives in a
simplified model shows a sketch of the object, thus revealing its
shape.

Our experiments have shown that the framework can be used to
improve existing bounding volume hierarchy building algorithms.
In particular, the RAPID system can be improved to generate
more efficient bounding volume hierarchies with little extra
preprocessing overhead and without user intervention. Collision
detection performance, as a result, improves significantly for a
number of test cases.

Acknowledgments
This work is supported by the National University of Singapore
under grant RP960618. Also, the authors would like to thank
Tong-Wing Woon for his helpful discussion and programming
support to the project.

References
[Arvo90] J. Arvo and D. Kirk. A Survey of Ray Tracing

Acceleration Techniques. In An Introduction to Ray Tracing,
A.S. Glassner, ed., 201—262, Academic Press, 1990.

[Barequet96] G. Barequet, B. Chazelle, L. Guibas, J. Mitchell and
A. Tal. BOXTREE: A Hierarchical Representation for
Surfaces in 3D. Proceedings Eurographics’96, Vol. 15(3), C-
387—396, C-484, August 1996.

[Beckmann90] N. Beckmann, H. Kriegel, R. Schneider and B.
Seeger. The R*-tree: An Efficient and Robust Access Method
for Points and Rectangles. Proceedings ACM SIGMOD
International Conference on Management of Data, 322—331,
1990.

[Bergen98] G. van den Bergen. Efficient Collision Detection of
Complex Deformable Models using AABB Trees. To appear in
Journal of Graphics Tools (http://www.win.tue.nl/cs/tt/gino/solid).

[Cohen98] J. Cohen, M. Olano and D. Manocha. Appearance-
Preserving Simplification. Computer Graphics
(SIGGRAPH’98 Proceedings), 115—122, July 1998.

[Edelsbrunner94] H. Edelsbrunner and E. M
 cke. Three-
Dimensional Alpha Shapes. ACM Transactions on Graphics,
Vol. 13(1), 43—72, January 1994.

[Faverjon89] B. Faverjon. Hierarchical Object Models for
Efficient Anti-collision Algorithms. Proceedings IEEE
International Conference on Robotics and Automation, 333—
340, 1989.

[Garcia94] A. Garcia-Alonso, N. Serrano and J. Flaquer. Solving
the Collision Detection Problem. IEEE Computer Graphics &
Applications, Vol. 14, 36—43, May 1994.

[Garland97] M. Garland and P. Heckbert. Surface Simplification
Using Quadric Error Metrics. Computer Graphics
(SIGGRAPH’97 Proceedings), 209—216, August 1997.

[Gottschalk96] S. Gottschalk, M.C. Lin and D. Manocha.
OBBTree: A Hierarchical Structure for Rapid Interference
Detection. Computer Graphics (SIGGRAPH’96 Proceedings),
171—179, 1996.

[Goldsmith87] J. Goldsmith and J. Salmon. Automatic Creation of
Object Hierarchies for Ray Tracing. IEEE Computer Graphics
& Applications, 14—20, 1987.

[Heckbert97] P. Heckbert and M. Garland. Survey of Polygonal
Surface Simplification Algorithms. School of Computer
Science, CMU, Pittsburgh, May 1997,
http://www.cs.cmu.edu/~ph.

[Held95] M. Held, J. Klosowski and J. Mitchell. Evaluation of
Collision Detection Methods for Virtual Reality Fly-throughs.
Proceedings 7th Canad. Conf. Computational Geometry,
205—210, 1995.

[Hoppe97] H. Hoppe. View-Dependent Refinement of Progressive
Meshes. Computer Graphics (SIGGRAPH’97 Proceedings),
189—198, August 1997.

[Hubbard96] P. Hubbard. Approximating Polyhedra with Spheres
for Time-critical Collision Detection. ACM Trans. Computer
Graphics, Vol. 15(3), 179—210, July 1996.

[Kay86] T. Kay and J. Kajiya. Ray Tracing Complex Scenes.
Computer Graphics (SIGGRAPH’86 Proceedings), 269—278,
1986.

[Klimaszewski97] K. Klimaszewski and T. Sederberg. Faster Ray
Tracing Using Adaptive Grids. IEEE Computer Graphics &
Applications, Vol. 17(1), 42—51, 1997.

[Klosowski98] J. Klosowski, M. Held, J. Mitchell, H. Sowizral
and K. Zikan. Efficient Collision Detection Using Bounding
Volume Hierarchies of k-DOPs. IEEE Transactions on
Visualization and Computer Graphics, Vol. 4(1), 21—36,
1998.

[Low97] K-L. Low and T.S. Tan. Model Simplification Using
Vertex-Clustering. Proceedings of 1997 Symposium on
Interactive 3D Graphics, 75—81, April 1997.

[Luebke97] D. Luebke and C. Erikson. View-Dependent
Simplification of Arbitrary Polygonal Environments.
Computer Graphics (SIGGRAPH’97 Proceedings), 199—208,
August 1997.

[Moore88] M. Moore and J. Wilhelms. Collision Detection and
Response for Computer Animation. Computer Graphics
(SIGGRAPH’88 Proceedings), 289—298, August 1988.

[Naylor90] B. Naylor, J. Amatodes and W. Thibault. Merging
BSP Trees Yields Polyhedral Set Operations. Computer
Graphics (SIGGRAPH’90 Proceedings), 115—124, August
1990.

[Noborio89] H. Noborio, S. Fukuda and S. Arimoto. Fast
Interference Check Method using Octree Representation.
Advanced Robotics, Vol. 3, 193—212, 1989.

[Palmer95] I. Palmer and R. Grimsdale. Collision Detection for
Animation using Sphere-trees. Computer Graphics Forum,
Vol. 14(2), 105—116, June 1995.

� �
 �
 � � � � � �
J. � � � � � � � and H. Hoppe. Progressive Simplicial

Complexes. Computer Graphics (SIGGRAPH’97
Proceedings), 217—224, August 1997.

[Rossignac93] J. Rossignac and P. Borrel. Multi-Resolution 3D
Approximations for Rendering Complex Scenes. In Modeling
in Computer Graphics, B. Falcidieno and T. Kunii, Eds.,
Springer-Verlag, 1993, 455—465.

[Sheehy96] D. J. Sheehy, C. G. Armstrong and D. J. Robinson.
Shape Description by Medial Surface Construction. IEEE
Transactions on Visualization & Computer Graphics, Vol.
2(1), 62—72, March 1996.

U-Collide RAPID

Model # of
instances

of
triangles

per
instance

of
level
of

detail
(LOD)

of
components
from each

LOD

simplification
plus

component
computation
time (sec)

B(T)
bottom-up
processing
time (sec)

B(T)
top-down
processing
time (sec)

bounding
volume per

instance
B(T)

processing
time (sec)

bounding
volume per

instance

Windmill 100 3526 3 4, 4, 11 0.36 0.57 0.35 276 0.36 436
Helicopter 35 6448 3 7, 3, 8 0.57 0.83 0.77 573 0.72 1025
Chair 100 2481 3 8, 11, 0 0.24 0.65 0.27 7810 0.25 10399
Spacestation 20 10235 3 28, 41, 51 1.10 8.08 1.10 1941 1.14 2705
Rat 200 1180 3 3, 9, 7 0.12 0.25 0.13 139 0.11 117
Triceratops 40 5660 2 4, 10 0.40 0.42 0.66 649 0.61 601
Skateboard 10 22842 2 11, 8 2.10 4.91 2.94 1650 2.66 1809
Forklift 80 2529 3 4, 7, 3 0.26 0.14 0.28 1.48e+06 0.26 1.66e+6
F16 50 4428 3 4, 2, 2 0.45 0.24 0.49 352 0.46 348
Enterprise 150 1422 2 8, 0 0.98 0.18 0.15 7.27e+07 0.13 1.02e+8

Table 1: Preprocessing time.

total number of collisions time taken per simulation step (second)

Dense Normal SparseModel Dense Normal Sparse
RAPID U-Collide RAPID U-Collide RAPID U-Collide

Windmill 572394 111548 16077 0.733000 0.335000 (54%) 0.113516 0.068434 (40%) 0.020152 0.012674 (37%)
Helicopter 107027 20388 3192 0.093428 0.063392 (32%) 0.019228 0.012998 (32%) 0.003700 0.002668 (28%)
Chair 510796 75046 10151 0.203400 0.160178 (21%) 0.032756 0.026536 (19%) 0.006324 0.006072 (4%)
Spacestation 70447 13692 2065 0.039104 0.027584 (30%) 0.008066 0.005604 (31%) 0.001528 0.001092 (29%)
Rat 1176528 233628 35116 0.627400 0.447760 (29%) 0.140146 0.099404 (29%) 0.033194 0.023194 (30%)
Triceratops 198962 40705 6775 0.096716 0.077646 (20%) 0.020610 0.017570 (15%) 0.004290 0.003668 (15%)
Skateboard 32697 11118 2558 0.013558 0.012842 (5%) 0.004908 0.004692 (4%) 0.001296 0.001254 (3%)
Forklift 565922 102249 14012 0.222600 0.220800 (1%) 0.043592 0.043034 (1%) 0.008172 0.007840 (4%)
F16 138417 28131 4511 0.077502 0.076230 (2%) 0.017474 0.016708 (4%) 0.003824 0.003588 (6%)
Enterprise 1677138 282050 38570 0.858909 0.543322 (37%) 0.137036 0.099162 (28%) 0.020814 0.018732 (10%)

Table 2: Comparison of the collision query performance.

total number of B(T) nodes traversed
Dense Normal SparseModel

RAPID U-Collide RAPID U-Collide RAPID U-Collide
Windmill 330202542 213824501 (35%) 63894027 41451429 (35%) 9319980 5927499 (36%)
Helicopter 77569724 50280421 (35%) 15374727 9816672 (36%) 2484058 1572789 (37%)
Chair 144954471 112391953 (22%) 21555385 16794014 (22%) 2899858 2264126 (22%)
Spacestation 29767382 19985683 (33%) 5827253 3909421 (33%) 889271 581203 (35%)
Rat 397614854 316675111 (20%) 79774076 63546366 (20%) 11999895 9593104 (20%)
Triceratops 66255389 57398844 (13%) 13994163 12235287 (13%) 2341780 2045785 (13%)
Skateboard 10198879 9632627 (6%) 3555106 3427609 (4%) 833820 791443 (5%)
Forklift 164030935 163289124 (0.5%) 30329028 30193989 (0.4%) 4205738 4202565 (0.1%)
F16 57886338 57971941 (-0.1%) 11867579 11881557 (-0.1%) 1900567 1885667 (0.8%)
Enterprise 579426848 383526252 (34%) 99317494 65541615 (34%) 13191728 8922053 (32%)

Table 3: Comparison of the number of nodes traversed.

Figure 4: Components identified from simplified models.

Chair Helicopter

Simplified Model
17 triangles, 9 edges, 4 points

Simplified Model
493 triangles, 6 edges

Simplified Model
8 triangles, 7 edges, 6 points

Simplified Model
8 triangles, 10 edges, 4 points

Components Sub-Components Components Sub-Components

Windmill Spacestation Enterprise Skateboard

Simplified Model
4 triangles, 8 edges, 1 point

Simplified Model
20 triangles, 20 edges

Simplified Model
48 triangles, 5 edges

Simplified Model
690 triangles, 74 edges,

14 points

Components Components Components Components

