
XR-Tree: Indexing XML Data for Efficient Structural Joins∗†

Haifeng Jiang Hongjun Lu‡ Wei Wang
Department of Computer Science

Hong Kong University of Science and Technology
Hong Kong SAR, China

{jianghf, luhj, fervvac}@cs.ust.hk

Beng Chin Ooi
School of Computing

National University of Singapore
Singapore

ooibc@comp.nus.edu.sg

Abstract

XML documents are typically queried with a combina-
tion of value search and structure search. While querying
by values can leverage traditional database technologies,
evaluating structural relationship, specifically parent-child
or ancestor-descendant relationship, between XML element
sets has imposed a great challenge on efficient XML query
processing.

This paper proposes XR-tree, namely, XML Region Tree,
which is a dynamic external memory index structure spe-
cially designed for strictly nested XML data. The unique
feature of XR-tree is that, for a given element, all its ances-
tors (or descendants) in an element set indexed by an XR-
tree can be identified with optimal worst case I/O cost. We
then propose a new structural join algorithm that can evalu-
ate the structural relationship between two XR-tree indexed
element sets by effectively skipping ancestors and descen-
dants that do not participate in the join. Our extensive per-
formance study shows that the XR-tree based join algorithm
significantly outperforms previous algorithms.

1. Introduction

As XML is gaining unqualified success in being adopted
as a universal data exchange format, particularly in the
World Wide Web, the problem of managing and querying
XML documents poses interesting challenges to database
researchers. Although XML documents could have rather
complex internal structures, they share the same data type
underlying the XML paradigm: ordered trees. Tree nodes
represent document elements, attributes or text data, while
edges represent the element-subelement (or parent-child)

∗This work was conducted at the School of Computing, National Uni-
versity of Singapore, Singapore.

†The project was partly supported by the Research Grant Council of the
Hong Kong SAR, China (grants AoE/E-01/99, HKUST6060/00E).

‡This author’s work was also supported by a grant from the National
973 project of China (No. G1998030414).

relationship.
To retrieve such tree-shaped data, several XML query

languages have been proposed in the literature. Ex-
amples include XPath [9] and XQuery [5]. XQuery
is being standardized as a major XML query language.
The main building block of XQuery is XPath, which
addresses part of XML documents for retrieval, both
by value search and structure search. For example,
“paragraph//section” is to find all sections that are
contained in each paragraph. Here, the double slash ‘//’
represents the ancestor-descendant relationship. A single
slash ‘/’ in an XPath represents a parent-child relationship,
for example “section/figure”. To evaluate the query
“paragraph//section”, a naı̈ve tree traversal strategy
could cause a scan of the whole XML data tree even when
there are few results. Alternatively, the “set-at-a-time” strat-
egy would first retrieve all paragraph and section el-
ements, possibly with some tag index, and then find all oc-
currences of the ancestor-descendant relationship between
the element sets. This is termed as structural join in [22].

Since structural join takes the tiger share of time for
evaluating path expression queries, it has attracted a lot of
interest from the research community [25, 18, 22]. The pro-
posed algorithms take advantage of a numbering scheme
that encodes each element with a (start, end) pair, or the
region of each element in a data tree [25].

The state-of-the-art structural join algorithm was pro-
posed in [22], which takes as input two ordered lists, one
for ancestors and the other for descendants. By maintain-
ing an in-memory stack, the algorithm requires to scan the
two input lists only once. Such an approach, however, im-
plies that every ancestor or descendant is accessed once no
matter it has matches or not. The question is: can we skip
ancestors and descendants that have no matches in a join?

Chien et al recently proposed a new structural join al-
gorithm, namely B+ algorithm, which can utilize B+-tree
indexes built on the start attribute of the joining element
sets [8]. Although the B+ algorithm can effectively skip de-
scendants without matches (by B+-tree range queries), it is
not effective in skipping ancestors. As such, using B+-trees

1



only solves half of the problem.
In this paper, we propose XR-tree (or XML Region

Tree), a dynamic external memory index structure specially
designed for XML data. Different from traditional B+-
trees, XR-trees index element nodes on their region codes,
specifically (start, end) pairs. The novel feature of XR-
tree is that, for any element E, all its ancestors (or descen-
dants) in a given element set E indexed by an XR-tree can
be retrieved with optimal O(log N +R) worst case I/O cost,
where N is the size of E and R is the number of elements
retrieved. Such a unique feature of XR-tree makes it possi-
ble to most effectively skip both ancestors and descendants
during a structural join if XR-trees are built on two joining
element sets. The idea of XR-tree is motivated by an in-
ternal memory data structure: interval trees [4]. There are
also works on interval management in external memory [1]
and indexing time intervals [13]. XR-tree stands out among
those proposed approaches in that it deals specifically with
regions of XML elements while existing approaches man-
age arbitrary one-dimensional intervals. By fully exploiting
the strictly nested property of XML, we are able to deploy
more efficient data structures for managing regions of XML
elements.

We summarize the contributions of this paper as follows:

1. We propose a novel external memory index structure,
XR-tree, which supports efficient retrieval of elements
by structural relationship. We further show that XR-
tree takes linear storage consumption and can be dy-
namically maintained in a very efficient manner.

2. We present a new structural join algorithm, namely
XR-stack, which utilizes XR-tree indexes on two join-
ing element sets to effectively skip both ancestors and
descendants that do not participate in a join.

3. An extensive performance study was conducted on the
XR-stack algorithm, in comparison with previous state-
of-the-art algorithms. Our experimental results show
that the XR-stack algorithm performs significantly bet-
ter than existing approaches.

The rest of the paper proceeds as follows. Section 2
is dedicated to some background knowledge and previous
work on XML. We describe the data structure of XR-tree
in section 3 and then show how XR-trees can be dynami-
cally maintained in section 4. In section 5, we present two
types of structural queries supported by XR-tree with I/O
cost analysis. Afterwards, we present an efficient structural
join algorithm, XR-stack, which utilizes XR-trees built on
joining element sets. Section 6 reports experimental results.
Section 7 concludes the paper.

2. Background and related work

XML data is commonly modelled by a tree structure,
where nodes represent elements, attributes and text data,

and parent-child pairs represent nesting between XML ele-
ments. To efficiently evaluate XML queries, it is important
to: (a) efficiently determine structural relationship, specif-
ically parent-child or ancestor-descendant relationship, be-
tween any pair of element nodes; (b) find all occurrences of
a structural relationship between two element sets.

In this section, we first give some background informa-
tion on numbering schemes for XML. Then we discuss ex-
isting structural join algorithms.

2.1. XML numbering scheme

The structural relationship between two element nodes
can be quickly determined by a region encoding scheme,
where each element is assigned with a pair of numbers
(start, end), based on its position in the data tree [25, 22,
8], with the following held: for any two distinct elements
u and v, (1) the region of u is completely before or after v,
or (2) the region of u completely contains v or is contained
by the region of v. Formally, element u is an ancestor of
element v iff u.start < v.start and v.end < u.end. Since
regions of two distinct elements never intersect partially, the
formula can be simplified as u.start < v.start < u.end.

Region codes for element nodes can be effectively gen-
erated by a depth-first traversal of the tree and sequentially
assigning a number at each visit [25, 18]. Figure 1 depicts
an example XML data tree where elements are encoded in
this manner. The root is a dept element, which spans from
position 1 to 100. The first employee element, emp, spans
from 2 to 15, and so on.

emp: (45, 60)

emp: (46, 47)

emp: (80, 91)

emp: (85, 90)

emp: (50, 55)

name: (41, 42)

office: (92, 95)

name: (81,83)

name: (70, 71)

dept: (1, 100)

emp: (2, 15)

name: (5, 6) emp: (8, 12)

emp: (10, 11)

emp: (20, 75)

emp: (22, 35) emp: (40, 65)

emp: (25, 30)

Figure 1. An example XML document

There are other approaches to numbering XML element
nodes. One is the durable numbering scheme, where each
element is numbered with a pair (order, size) [18, 7].
For any two distinct elements u and v, u is an ances-
tor of v iff u.order < v.order < u.order + u.size.
Dietz’s numbering scheme uses tree traversal orders [12].
A tree node is assigned a pair of (preorder, postorder)
tree traversal orders. Element u is an ancestor of ele-
ment v iff u.preorder < v.preorder and v.postorder <
u.postorder.

2.2. Structural joins

A structural join is to find all occurrences of struc-
tural relationship between two element sets. More for-

2



mally, given two input lists, AList of potential ancestors
(or parents) and DList of potential descendants (or chil-
dren), where each element in the lists is of the format:
(DocId, start, end, level), a structural join is to report all
pairs (ai, dj), ai ∈ AList and dj ∈ DList, such that (1)
ai.DocId = dj .DocId; and (2) ai.start < dj .start <
ai.end. To retrieve only parent-child pairs, the condition
ai.level = dj .level − 1 is also required.

XML query processing is dedicated to tree pattern
matching while structural joins are considered as a core
operation in optimizing XML queries [25, 18, 8]. Various
techniques were proposed to leverage the power of widely
available RDBMS [21, 14, 25, 24, 15] or to use native XML
query engines [19]. In particular, [25] proposed a variant of
the traditional merge join algorithm, called multi-predicate
merge join (MPMGJN). However, it may perform a lot of
unnecessary computation and I/O for matching structural
relationship. Similarly, EE-Join and EA-Join in [18] may
scan an element set multiple times.

The Stack-Tree-Desc join algorithm proposed in [22] im-
proved the merge based structural join algorithms with stack
mechanism. The basic idea is to take the two input lists,
AList and DList, both sorted on their start values, and
conceptually merge them. A stack is introduced to main-
tain ancestor elements that will be used later in the join. As
such, only one sequential scan is performed on AList and
DList.

Chien et al, proposed a stack-based structural join algo-
rithm that can utilize the B+-tree indexes built on the start
attribute of the participating element sets [8]. An enhance-
ment to the basic B+-tree approach is to add sibling pointers
based on the notion of “containment”. They also presented
a structural join algorithm that utilizes R-trees with synchro-
nized tree traversal [6, 17].

3. XR-tree index: The structure

In this section, we present the structure of XR-tree, an
index specially designed to index XML data for efficient
structural joins. We first give definitions of some concepts,
followed by the definition of XR-tree and some discussions.

3.1. Preliminary definitions

Definition 1 Given a key k and an element with region
Ei(si, ei) 1, Ei is said to be stabbed by k, or k stabs Ei,
if si ≤ k ≤ ei. Given a set of ordered keys, kj(0 ≤ j < n),
where kx < ky if x < y, and an element Ei(si, ei), Ei is
said to be primarily stabbed by kj , or kj primarily stabs Ei,
if (1) si ≤ kj ≤ ei, and (2) for all l, l < j, kl < si, that is,
kj is the smallest key that stabs Ei.

1Element and region will be used interchangeably hereafter.

Definition 2 Given a set of ordered keys, kj(0 ≤ j < n),
where kx < ky if x < y, and a set of elements E =⋃

i(si, ei), the stab list of a key kj is the list of elements
in E that are stabbed by kj , denoted as SLj or SL(kj). The
primary stab list of a key kj is the list of elements in E that
are primarily stabbed by kj , denoted as PSLj or PSL(kj).

The stabbing and primarily stabbing relationships can
be illustrated with Figure 2. There are five keys,
k0 < k1 < k2 < k3 < k4, and seven regions
(si, ei), 0 ≤ i < 7. The lists of regions stabbed
by kj are SL0 = {(s0, e0), (s1, e1), (s2, e2)}, SL1 =
{(s0, e0), (s3, e3)}, SL2 = {(s0, e0), (s4, e4), (s5, e5)},
SL3 = {(s0, e0), (s4, e4)}, and SL4 = {(s6, e6)}, re-
spectively. The primary stab lists of the keys are PSL0 =
{(s0, e0), (s1, e1), (s2, e2)}, PSL1 = {(s3, e3)}, PSL2 =
{(s4, e4), (s5, e5)}, PSL3 = ∅ and PSL4 = {(s6, e6)}
respectively.

k0 k1 k3k2

s0

s1

s2

s3

s6

k4

e0

e2

e1 e3 s4 e4

s5 e5 e6

Figure 2. Keys and stabbed regions

It is easy to see that, strict ancestor-descendant relation-
ship holds between each pair of neighboring elements in
a (primary) stab list. Take k0 and PSL0 as an example.
(s0, e0) is an ancestor of (s1, e1), which is an ancestor of
(s2, e2). In other words, the first element in a PSL(k) is
the ancestor of all other elements in PSL(k) and its region
covers all other regions in PSL(k).

Definition 3 The start and end positions, psj , pej , of key kj

with primary stab list PSLj are defined the start and end
positions of the first element of PSLj when PSLj 6= ∅, and
(nil, nil) if PSLj = ∅.

In Figure 2, we have (ps0, pe0) = (s0, e0), (ps1, pe1) =
(s3, e3), (ps2, pe2) = (s4, e4), (ps3, pe3) = (nil, nil), and
(ps4, pe4) = (s6, e6).

3.2. XR-tree: Its structure

With the above introduction, we proceed to define the
structure of an XR-tree index.

Definition 4 An XR-tree for a set of region-encoded XML
elements is a tree with the following properties:

1. An XR-tree is a balanced tree.

2. An internal node contains m key entries in the form
of (ki, psi, pei), with k0 < k1 < · · · < km−1, and
d ≤ m ≤ 2d, where d is the degree of the XR-tree.

3



3. An internal node with m keys also contains m + 1
pointers pj , (0 ≤ j ≤ m), pointing to the nodes in
the next level of the tree, such that all keys in the node
pointed by pi are less than ki, and all keys in the node
pointed by pi+1 are greater than or equal to ki, respec-
tively.

4. An internal node n is associated with a stab list,
SL(n), which holds all elements Ei, such that Ei is
stabbed by at least one key in n but not stabbed by any
key of any ancestor of n. Each element in SL(n) is in
the form of (s, e, pointer), where (s, e) is the region of
the element and pointer points to the data entry of the
element.

5. SLj , PSLj for the set of all keys kj in an internal
node n are defined on the list SL(n) by Definition 2.
Each pair of (psj , pej) of kj is defined by Definition 3.

6. Leaf nodes contain element entries, in the form of
(s, e, InStabList, pointer), where (s, e) is the region
of the element, and s is the index key. InStabList is a
flag indicating whether the element is included in any
stab list of internal nodes, and pointer points to the
data entry of the element.

7. Leaf nodes are linked from left to right.

By definition, an XR-tree is essentially a B+-tree with a
complex index key entry and extra stab lists associated with
its internal nodes. We will see later that it is such a complex
key and the stab lists that enable XR-tree indexes to support
efficient structural joins.

In relational systems, indexes are usually built on an at-
tribute or a set of attributes in a table. For XML documents,
we can build indexes on sets of elements/attributes defined
by certain predicates. Figure 3 shows the XR-tree for the
set of emp elements in the example document in Figure 1.
The pointer field is omitted for clarity.

In Figure 3, the left internal node has an empty stab list,
while the root and the right internal node have 2 and 3 re-
gions in their stab lists respectively. Note that, although the
region (20, 75) is stabbed by key 46, it is not put in the stab
list of the right internal node because (20, 75) is already
stabbed by key 24 in the root. By definition, we only in-
clude a region in the stab list of the top-most node. For key
19, ps(19) and pe(19) are set to nil because PSL(19) = ∅.
For key 46, PSL(46) = {(40, 65), (45, 60), (46, 47)}, and
ps(46) = 40, pe(46) = 65. Since PSL(79) = ∅, ps(79) =
pe(79) = nil.

Astute readers may find that some keys in internal nodes
do not appear as start positions (or keys) of elements in the
leaf nodes. In fact, index keys are not necessarily start po-
sitions of certain elements. Ideally, keys should be chosen
to minimize the size of stab lists. For example, if we choose
80, the start of element (80, 91), instead of 79, as the key
in the right internal node, we will have one more stabbed

19, nil, nil - 46, 40, 65 79, nil, nil

24, 20, 75 - - (20,75), (22, 35)

(40, 65), (45, 60), (46, 47)nil

2, 15, no

8, 12, no

10 ,11, no

20, 75, yes

22, 35, yes

-

25, 30, no

40, 65, yes

45, 60, yes

46, 47, yes

50, 55, no

-

80, 91, no

85, 90, no

-

Figure 3. The XR-tree for the element set emp
shown in Figure 1

element. Such optimization can simply be done by using a
value (as the internal key) that is smaller than the keys at
the right branch, if possible. We have to use key 46, which
is equal to the smallest key at the right branch of the key,
since 45 is the start position of another region.

3.3. More on stab lists

An XR-tree is basically a B+-tree augmented with stab
lists of internal nodes. One expected concern is the space
overhead of stab lists, hence the manipulation overhead
caused by them. In this section, we discuss these issues.

Sizes of stab lists

According to the property of XR-tree, each element region
can only be included, if any, in one stab list of all internal
nodes. Therefore, the total elements in all stab lists will not
exceed the total elements indexed. Such an upper bound,
however, is hardly reached. It is obvious that each index
key can only stab at most hd elements, where hd is the
maximum number of nestings of element nodes indexed.
Therefore, the maximum number of pages for a stab list is
Smax = hdBIfmax

BSfmin
, where BI is the maximum number of

entries in an internal node, BS is the maximum number of
tuples a stab list page can hold and fmin, fmax are the min-
imum and maximum page fill ratios, respectively.

If we assume the size of a key entry plus a pointer is the
same as the size of an entry in the stab list, fmin and fmax

be 0.5 and 1.0, respectively, we have Smax = 2hd (pages).
Therefore, with reasonable levels of nesting, we expect that
the number of pages for the stab list attached to an internal
node is small, ranging from zero to a few pages.

Since it is rather difficult to estimate the size of stab lists
more precisely, we conducted some experiments using data
from two benchmarks, XMach [2] and XMark [20]. We
selected various sets of elements by changing the selection
predicates, built indexes on those element sets, and counted
the number of stab list pages. The results show that, for
XR-trees of real-world data, the average size as well as the
maximum size of stab lists is about several disk pages, and
the total size of stab lists is much smaller than the whole set
of elements indexed (less than 10% of leaf pages for highly
nested data sets with the number of nestings larger than 10).

4



Stab list access cost

The formula, Smax = 2hd, implies that the stab list of an
internal node could span a few pages or even tens of pages
in cases where an element set is extremely highly nested.
The cost of access to a stab list becomes a concern for such
extreme cases. For example, we often need to locate the
PSLj for a given key kj when searching in or updating an
XR-tree. It is undesirable if we need to scan a lot of pages
before the PSLj is located in the stab list. The problem,
however, can be tackled with a ps directory page that maps
each psj to the location of PSLj . Figure 4 shows an exam-
ple of a ps directory page that maps ps fields of five index
keys to the beginning of their PSL’s.

ps0 ps1 ps2 ps3 ps4

nil

PSL0 PSL0 PSL2 PSL3 PSL4

ps directory page

the stab list

Figure 4. Mapping psj to PSLj in a stab list

As shown in Figure 4, a ps directory page contains
one entry for each index key. The entry is of the format:
(psj , pointer), where psj is the ps field of key kj and
pointer points to the head of PSLj in the stab list. The
pointer is set to nil if PSLj = ∅, as for ps1. Since the size
of an entry is smaller than the size of a key entry in an inter-
nal node and the numbers of entries in an internal node and
its ps directory page are the same, one ps directory page is
always sufficient to map all ps fields to their PSL’s. Note
that the ps directory page is necessary only when a stab list
spans more than one disk page. It is easy to see that locating
PSLj of key kj takes only 1 or 2 disk I/O’s.

4 Updating

In this section, we present algorithms for insertion and
deletion in XR-trees. Update in XR-trees should not be
confused with update in source XML documents for which
XR-tree indexes are built. We need to update an XR-tree
only when the related part of the source data is updated.
The problem of updating XML is still an open issue and de-
tailed discussion is out of the scope of this paper. Interested
readers may refer to [23].

4.1. Insertion

Inserting new elements is similar to insertion in a B+-
tree in that new elements are added to leaf pages, overflow-
ing pages are split, and splits propagate up the tree [10].
Algorithm 1 lists the routine for insertion.

We now go through Algorithm 1 and review some fea-
tures related to stab list maintenance during insertion.

• In step I1, when navigating down to a leaf page, E

Algorithm 1 Insertion
Input: A new element, E = (s, e, pointer), to be inserted.

I1 [Find a leaf page for insertion] Navigate down to a proper
leaf page for insertion. Insert E into the stab list of the high-
est internal node that stabs it, if any.

I2 [Insert E into the leaf page L ]

I21 If L has room for another element, insert E and return.
I22 Otherwise, split L by moving second half entries to

a new leaf page Lnew . Insert E into the correct leaf
page. Give up a new key entry (k′, pointer′), together
with its StabSet′.

I3 [Insert (k′, pointer′, StabSet′) into internal node I]

I31 If I has enough room, insert the new entry and its
StabSet′ into I .

I32 Otherwise, split I by moving the second half entries,
together with their primary stab lists, to the new node
Inew . Insert the new entry and its StabSet′ into
the proper internal node. Give up a new key entry
(k′, pointer′), together with its StabSet′. Repeat
step I3, or go to I4 if I is the root node.

I4 [Grow the XR-tree taller] If the node split propagation
caused the root to split, create a new root whose children
are the two resulting nodes.

should be inserted into the stab list of the highest inter-
nal node that stabs it, if any, with its InStabList flag
set to yes.

• In case of overflow (step I22 and I32), when splitting
an internal node, we also need to split its stab list. An
illustrative example is shown in Figure 5(a). In fact,
the split cost is independent of the size of the stab list
because we only need to access the page which holds
the splitting point. No other pages of the stab list need
to be touched.

• After split, we propose not only a new key k′ to the
upper level, but also the set of elements stabbed by k′,
denoted as StabSet′, as demonstrated in Figure 5(b),
where k′ is inserted after k2, which is selected as the
key to be given up. Note that StabSet′ contains all
elements from SL(I) and SL(Inew) that are stabbed
by k′ and they are removed from SL(I) and SL(Inew)
at the same time. If the split page is a leaf page, we
retrieve elements in L and Lnew that are newly stabbed
(i.e. InStabList = no) and turn their flags to yes.

I/O cost analysis The insertion I/O cost for XR-trees is
the same as for B+-trees, i.e. O(logF N), except for addi-
tional cost for maintaining stab lists of internal nodes.

We now give amortized I/O cost for stab list maintenance
for each insertion. The basic idea is to consider the worst
case total I/O cost for inserting N elements into an empty
XR-tree and the amortized cost is the total cost divided by

5



k0 k1 k2 k3

k0 k1 - k2 k3 -

-

-

split
stab list splitting point

(a) Splitting a node

k2

k0 k1 - k' k3 -

StabSet'

resultant stab list 1 resultant stab list 2

(b) Giving up a new key with StabSet’

Figure 5. Splitting an internal node and giving up a new key and its StabSet’

N . Here, the worst case is that all elements in leaf pages
are stabbed by internal nodes.

As we know, each stabbed element at height h is either
given up from the lower level node at height h− 1 (step I22
and I32) or directly inserted during insertion(step I1). Let
us assume that all elements in stab lists are given up from
lower level nodes, which will give a looser upper bound
of I/O cost. It is obvious that a stabbed element at height
h is displaced (or given up) for h times all the way from
the leaf page to its current position during node split. Let
the cost of one displacement (i.e from height h − 1 to h)
of an element be CDP (see section 4.3). A stabbed ele-
ment at height h incurs at most CDP · h displacement cost.
The amortized displacement I/O cost CDP for each inser-
tion is the total cost of displacements divided by the total
number of insertions, i.e. CDP =

∑h=H

h=1 NhCDP · h/N ,
where Nh is the total number of stabbed elements at height
h. Since each internal node can stab at most hdBIf ele-
ments, the maximum total number of elements in the stab
lists of internal nodes with height > 1 can be approxi-
mated by hd

BLBIf2 N , where f is the average page fill ra-
tio and hd, BI , BL were introduced in section 3.3. Since

hd

BLBIf2 � 1, it implies that most stabbed elements are at
height 1 in the worst case where all elements are stabbed.
Thus, we have CDP ≈ N1CDP /N ≤ CDP .

Theorem 1 The amortized I/O cost for inserting a new ele-
ment into an XR-tree is O(logF N + CDP ), where N is the
number of elements indexed, F is the fanout of the XR-tree,
CDP is the cost for one displacement of a stabbed element,
or the cost for deleting an element from a stab list and then
inserting it into another stab list.

4.2. Deletion

Deleting elements from an XR-tree is similar to deletion
in a B+-tree in that elements are deleted from leaf pages, re-
distribution or merging occurs if leaf pages underflow. Al-
gorithm 2 shows a sketch of the XR-tree deletion algorithm.
Similarly, we need to take special care of stab list mainte-
nance for internal nodes. We summarize the new features
below:

• When navigating down, we need to remove E from the
internal node if its stab list contains E (step D1).

Algorithm 2 Deletion
Input: An element, E = (s, e, pointer), to be deleted.

D1 [Locate E in leaf page] Locate the leaf page containing E.
Delete E from the internal node I if its stab list contains E.

D2 [Delete E from leaf page L ]

D21 Delete E from L. If L remains at least half full, return.
D22 Otherwise, let S be a sibling of L. If S has extra en-

tries, redistribute entries between L and S and update
their parent entry.

D23 Otherwise, merge S and L. Propagate the deletion up
the tree with the key of their parent entry.

D3 [Delete the entry from an internal node I]

D31 Suppose entry j is to be deleted. Delete entry j from
I and “reinsert” elements in SL(I) that are no longer
stabbed by I . If I remains at least half full, return.

D32 Otherwise, let S be a sibling of I . If S has extra en-
tries, redistribute entries between L and S. Update
their parent entry properly and return.

D33 Otherwise, merge L and S, and their stab lists. Propa-
gate the deletion up the tree with the key of their parent
entry.

D4 [Shorten the tree] If the root has only one child after the
deletion, make the child as the new root.

• Deleting an index entry from I will possibly cause
some elements in SL(I) no longer stabbed by I . For
each such element E′, we need to “reinsert” it into the
highest internal node that stabs it. If no such internal
node exists, we set the InStabList flag of E ′ to no.

• After redistribution between two internal nodes, we
need to update the entry with key k (that separates
them) in the parent node P with a new key k′. SL(k′)

should be removed from the two internal nodes and in-
serted into SL(P ). At the same time, some elements
in SL(P ) might be no longer stabbed by P after k is
replaced with k′. This can be handled similarly as the
entry deletion case. Redistribution between two leaf
pages follows similar procedure.

• When merging two internal nodes, say, from I to its
left sibling S, we also need to merge SL(I) to SL(S).
This can simply be done by linking SL(I) to SL(S).

6



I/O cost analysis As the insertion operation, deletion in
an XR-tree incurs additional cost for stab list maintenance
due to the displacement of stabbed elements. In the interest
of space, we omit the detailed analysis.

Theorem 2 The amortized I/O cost for deleting an element
from an XR-tree is O(logF N + 3 · CDP ), where N is the
number of elements indexed, F is the fanout of the XR-tree,
CDP is the cost for the displacement of an element from one
stab list to another.

4.3. Cost for manipulating stab lists

As has been shown, updating an XR-tree incurs a little
additional I/O for stab list maintenance. We are particularly
interested in the I/O cost for deleting an element from a stab
list, CSD, and inserting an element into a stab list, CSI ,
because they are factors of amortized update cost. Note that
CDP = CSD + CSI .

As a matter of fact, both CSD and CSI will be no more
than 2 or 3 disk I/O’s, based on the analysis in section 3.3,
where we proposed the usage of a ps directory page for stab
lists that span more than one page. (ps, pe) fields of an in-
ternal node can be updated without additional I/O cost after
we insert an element into its stab list or delete an element
from its stab list.

5 Processing structural joins with XR-trees

In this section, we describe how XR-trees can be used
to support efficient structural joins in XML documents. We
first describe two basic operations, followed by a structural
join algorithm for XR-tree indexed data. In our discussion,
we assume that the XML element sets are indexed using
XR-trees.

5.1. Basic operations: Searching for descendants
and ancestors

A structural join finds matching ancestor-descendant, or
parent-child pairs between two sets of elements. To process
such joins, we identify two basic operations:

1. FindDescendants: Given an element Ea, find all its de-
scendants in an element set indexed by an XR-tree.

2. FindAncestors: Given an element Ed, find all its an-
cestors in an element set indexed by an XR-tree.

5.1.1 Searching for descendants

Since XML element nodes are strictly nested, for a given
element (sa, ea), finding all its descendants is to find all el-
ements Ei such that sa < Ei.start < ea. It is just a simple
range query over the start position of elements, on which

Algorithm 3 FindDescendants
Description: find all descendant elements of EA = (sa, ea) in
XR-tree T .

1: node := T.root;
2: while node is not a leaf page do
3: find the largest key ki in node, such that ki ≤ sa;
4: if found, let node := ki.rightChild; otherwise, let node :=

k0.leftChild;
5: end while
6: stop := FALSE;
7: while not stop do
8: for all entries Ei in node do
9: if sa < Ei.start < ea, output Ei;

10: if Ei.start > ea, let stop := TRUE;
11: end for
12: node := node.next;
13: end while

they are indexed in the backbone of XR-trees. The algo-
rithm is rather straightforward as outlined in Algorithm 3.
Note that there is no need to access stab lists when search-
ing for descendants. It is obvious that Algorithm 3 correctly
retrieves all descendants of element (sa, ea) in T . The fol-
lowing theorem gives the I/O cost for the algorithm Find-
Descendants (proof omitted in the interest of space):

Theorem 3 The operation FindDescendants over an XR-
tree can be evaluated with optimal worst case I/O cost:
O(logF N + R/B), where N is the number of elements in-
dexed, F is the fanout of the XR-tree, R is the output size, B
is the average number of element entries in each leaf page.

5.1.2 Searching for ancestors

Since XML elements are strictly nested, for a given element
(sd, ed), finding all its ancestors is to find all elements Ei

such that Ei.start < sd < Ei.end. In other words, it is to
search for all elements stabbed by sd. Note that elements
stabbed by sd could be scattered in any leaf page left to the
leaf page on the search path of sd. Sequential search of
leaf pages could be costly, which is exactly the motivation
for XR-trees. Our basic idea is, during the navigation from
the root to the leaf page, we search the stab lists of internal
nodes to collect elements stabbed by sd. After reaching the
leaf page, we output those elements stabbed by sd but not
included in the stab lists of internal nodes. The process is
outlined in Algorithm 4.

The algorithm for finding stabbed elements in a stab list
is shown in Algorithm 5. Assume that sd falls in [ki, ki+1).
It is clear that sd cannot stab any element in PSLj , where
j > i + 1 because all such elements have their start values
larger than ki+1, i.e. these elements are “behind” sd. There-
fore, we only need to check PSLc of kc, where c <= i+1.

Since element nodes in a PSL are strictly nested, if sd

stabs some element (sj , ej) in a PSL, then it must stab
all its ancestors in the PSL. In other words, all elements

7



Algorithm 4 FindAncestors
Description: Find all ancestors of ED = (sd, ed) in XR-tree T .

S0 Let node be the root of T ;
S1 Search non-leaf pages

While node is not a leaf page do

S11 Retrieve all elements stabbed by sd in its stab list, by
calling SearchStabList (Algorithm 5).

S12 Find the largest key ki, such that ki ≤ sd.
S13 If found, let node be ki.rightChild; otherwise, let

node be the left child of the first index entry.

S2 [Search within the leaf page] Search from the first element
of node to output elements that are stabbed by sd but with
InStabList flags being no, until an element whose start

position is greater than sd is encountered.

Algorithm 5 SearchStabList
Description: Search the stab list of an internal node I for all ele-
ments stabbed by sd.

1: let ki be the key in I , such that ki ≤ sd < ki+1;
2: for c = i + 1 to 0 do
3: if psc 6= nil and psc < sd < pec then
4: Scan PSLc and output the scanned elements until an el-

ement not stabbed by sd is encountered;
5: end if
6: end for

stabbed by sd are clustered at the beginning part of a PSL.
Thus, when searching for stabbed elements in a PSL, we
just scan the PSL and stop as soon as the current element
is not stabbed by sd, which explains line 4 in the algorithm.

The I/O efficiency of SearchStabList is guaranteed by
the fact that, when checking some PSLc for matches, we
do not need to access the stab list until we are guaranteed
to have at least one match (when sd stabs PSLc’s first el-
ement stored in the index entry, i.e. psc < sd < pec).
Furthermore, with the ps directory page, it is possible to ac-
cess the PSL of any key in 1-2 disk I/Os. The following
theorem gives the I/O cost for retrieving the ancestors of an
element.

Theorem 4 The operation FindAncestors takes
O(logF N + R) worst case I/O cost, where N is the
number of elements indexed, F is the fanout of the XR-tree,
R is the output size.

The correctness of the algorithm FindAncestors is as-
sured by the following lemma (in the interest of space, we
omit the proof):

Lemma 1 Let T be an XR-tree of height H , ps be a query
point. Let IH−1 → IH−2 → · · · → I1 → L0 be the path
for ps to navigate from IH−1, the root of T , down to a leaf
page, L0. Let R be the set of elements stabbed by ps in T .
Then, for each element E ∈ R, it must appear in L0 or the
stab list of some Ii, where i ∈ {H − 1, H − 2, · · · , 1}.

5.2. Structural joins on XR-tree indexed data

We are now ready to describe an algorithm for joining
XR-tree indexed data. Assume A and D are two element
sets. Both sets are indexed using XR-trees. Since the leaf
pages are sorted on the start positions of the elements, join
can be processed just like merge-join in relational systems.
That is, using two pointers to move down the lists to find
matches. Different from the typical merge-join algorithm,
we can effectively skip elements that do not have matches
with the two operations described previously. For any el-
ement, we can retrieve its ancestors or descendants using
XR-trees, thus there is no need to touch those elements that
are not ancestors or descendants. We also maintain a stack
to cache the ancestors of the current descendant element.
The algorithm is outlined in Algorithm 6.

Algorithm 6 Stack-based Structural Joins with XR-trees
Input:

A is the ancestor set and D is the descendant set.
1: CurA := First(A);
2: CurD := First(D);
3: stack := ∅;
4: while CurA 6= EndOf(A) and CurD 6= EndOf(D) do
5: if stack 6= ∅ then
6: pop all elements that are not ancestors of CurD;
7: end if
8: if CurA.start < CurD.start then
9: Ad := FindAncestors(A, CurD.start);

10: for each aj ∈ Ad, if aj 6∈ stack, push it on the stack;
11: output pairs (a ∈ stack, CurD);
12: CurA := first element in A whose start >

CurD.start;
13: CurD := next element in D after CurD;
14: else
15: if stack 6= ∅ then
16: output pairs (a ∈ stack, CurD);
17: CurD := next element in D after CurD;
18: else
19: CurD := first element in D whose start >

CurA.start;
20: end if
21: end if
22: end while

The algorithm keeps two pointers, CurA and CurD,
which point to the current elements to be checked in A
and D, respectively. At the beginning, they are set to the
first elements of A and D, respectively (line 1-2). We also
maintain a stack that holds the elements in A, such that
each element in stack is a descendant of the element be-
low it and all elements in stack are ancestors of CurD′,
where CurD′ is the element before CurD in D. In other
words, stack caches the ancestors that could possibly join
with CurD. By definition, stack is initially empty (line 3)
because, trivially, there is no element before CurD.

The basic idea of the algorithm is simple. At each loop,

8



we try to skip ancestors or descendants without matches,
based on current positions of CurA and CurD. If CurA
is before CurD, we try to skip ancestors based on CurD;
Otherwise, we skip descendants based on CurA. The pro-
cess is repeated until one of the lists is exhausted.

Now we explain Algorithm 6 in details. By precondi-
tion, stack keeps the ancestors of an element CurD′ pre-
ceding CurD. Since CurD.start > CurD′.start, some
top elements in stack may not be ancestors of CurD. Such
elements cannot be ancestors of any element after CurD.
Therefore, we pop these elements (line 5-7). The case
where CurA is before CurD is coped with from line 9 to
13. We retrieve all ancestors of CurD, push them on the
stack, output all matched pairs for CurD and then move
forward both CurA and CurD. Since stack is possibly
keeping some of CurD’s ancestors, we should not push
these ancestors on stack (line 9-10). In the implementa-
tion, we used a variation of FindAncestors that can return
CurD’s ancestors after the stack top. Line 15-19 deal with
the case where CurA is behind CurD. As a matter of fact,
it is impossible to skip elements in D if the stack is not
empty because the in-stack ancestors could possibly join
with descendants between CurD.start and CurA.start.
As a result, we proceed CurD by one if stack is not empty
(line 15-17). Otherwise, we move CurD to the element
right after CurA (line 19). This can be done with a vari-
ation of FindDescendants, i.e. an open-ended range query
(CurA.start,+∞), to get the first element found.

5.3. Evaluating parent-child relationship

FindDescendants and FindAncestors can be easily ex-
tended to support parent-child relationship, i.e. FindChil-
dren and FindParent (note that an element has at most one
parent in the tree data model), by storing the level attribute
together with each element in leaf pages of XR-trees. The
search process is similar, but we need to apply an additional
condition: ancestor.level = descendant.level − 1. Sim-
ilarly, FindChildren and FindParent can be used as prim-
itives for a stack-based structural join algorithm evaluates
parent-child relationship between two element sets.

6 A performance study

Comprehensive experiments were conducted to study the
effectiveness of XR-tree indexing. In this section, we de-
scribe these experiments and present some of their results.

6.1. Experimental setup

We used synthetic data for our experiments in order to
control the structure and join characteristics of XML docu-

ments2. Two DTDs, shown in Figure 6, were used to gen-
erate highly nested and less nested data sets respectively. In
particular, the Department DTD is the same as the one in
[8]. About 90MB raw XML data was generated for each
DTD using the IBM XML data generator with default pa-
rameters [11].

departments

department

name email employee

name email

*

+

? +

+ ?

(a) Department DTD

conferences

conference

paper

 authortitle

+

+

+

(b) Conference DTD

Figure 6. The DTDs for synthetic data

Experiments were performed to study the comparative
performance of structural joins on non-indexed, B+-tree
indexed, and XR-tree indexed XML data. Table 1 summa-
rizes the join algorithms for which the results are presented.
We do not show the results for the variations of B+, namely
B+sp and B+psp, because they have similar behavior as that
of B+. We did not test R∗-tree based algorithms because
they have been shown in [8] to be less robust than the B+
algorithm.

Table 1. Notations for algorithms
Notation Represented Algorithm
no-index Merge-join (Stack-Tree-Desc [22])
B+ B+-tree indices (Anc Des B+ [8])
XR-stack The XR-tree based algorithm

The joins tested used employee vs. name (Department
DTD) and paper vs. author (Conference DTD) element sets
as the base element sets. To have a fair comparison with the
work in [8], we adopted similar methodologies to gener-
ate other element sets with different joining characteristics
from the base element sets.

We evaluated the performance of different join algo-
rithms using two performance indicators, number of ele-
ments scanned, and elapsed time.

• Number of elements scanned: This metrics, the total
number of elements scanned during a join, evaluates
the capability to skip the elements that do not produce
join results for a structural join algorithm.

• Elapsed time: It is used to investigate the overall per-
formance of different algorithms.

2Experiments were also conducted with real-world XML data sets,
such as XMark, DBLP, etc. We observed similar performance behaviors
as synthetic data sets, according to nesting properties.

9



The testing system was built on top of our experimen-
tal database system, which includes storage manager, buffer
pool manger, B+-tree and XR-tree index modules. All the
experiments were performed on a Pentium IV 1.60GHz PC
with 256M RAM, 20G hard disk, running Windows XP. The
storage manager directly accesses physical disk drives with
direct I/O functionalities provided by Windows XP. We ran
all the algorithms with varying buffer pool sizes and found
that their performance was not essentially affected. The ra-
tionale is twofold: (1) All algorithms are stack-based and
they require to scan the data at most one; (2) Probing of
indexes (both B+-tree and XR-tree) are ordered, thus, in-
dex pages are accessed at most once. We will discuss this in
more details later. All the experimental results presented be-
low were obtained with a fixed buffer pool size: 100 pages.

6.2. Varying join selectivity on ancestors

The objective of this set of experiments is to study the
capabilities of various algorithms to skip ancestor elements.
During the experiments, we kept the percentage of descen-
dants that match at least one ancestor high (99%) and varied
the selectivity on ancestors, i.e., the percentage of ancestors
that have descendants. For this purpose, we can start with
two lists of ancestors and descendants, and then effectively
remove certain elements from the descendant list so that the
desired selectivity on ancestors can be obtained.

Table 2 shows the total number of elements scanned (in
thousand) for various algorithms. NIDX and XR are short
for no-index and XR-stack algorithms respectively.

Table 2. Number of elements scanned (in
thousand) when 99% of descendants join with
varying proportion of ancestors

(a) employee vs. name

Join-A NIDX B+ XR
90% 1609 1547 1536
70% 1395 1207 1195
55% 1234 953 939
40% 1073 699 683
25% 913 444 427
15% 806 275 256
5% 698 105 85
1% 655 37 17

(b) paper vs. author

NIDX B+ XR
1409 1409 1358
1208 1208 1057
1057 1057 830
906 906 604
755 755 377
654 654 227
554 554 75
513 513 15

It can be seen from Table 2 that the XR-stack algorithm
is able to complete the join by scanning the least number of
elements compared to the other algorithms. The benefit gets
more obvious when the join selectivity on the ancestor set
becomes lower. The B+ algorithm is effective in skipping
ancestor nodes for highly nested ancestor data (Table 2(a))
but it could be as less efficient as no-index for less nested
ancestor data (Table 2(b)).

We further explain such ancestor-skipping capabilities of
B+ and XR-stack with two examples shown in Figure 7, one

for highly nested ancestor data and the other for less nested
ancestor data.

a1
a2

a3
a4

a5
a6

a7
a8

a9

d

XR-stackB+

(a) Highly nested

a1 a4a3a2 a6a5

dXR-stack

B+

(b) Less nested

Figure 7. The ancestor-skipping capabilities
of B+ and XR-stack algorithms for ancestors
with different nesting properties

In both examples, the current examining ancestor and
descendant elements are a1 and d, respectively. The rela-
tionship between a1 and d is a1.start < d.start, i.e. a1 is
before d. Furthermore, the first ancestor of d is a7 in Fig-
ure 7(a) and a6 in Figure 7(b), respectively. Therefore, there
is no need to scan elements between a1 and the first ances-
tor, and those elements can be skipped. no-index always
scans a2, i.e. the one next to a1. The next ancestors to be
scanned for other two algorithms are shown by the dashed
arrows. Since d is not a descendant of a1, d cannot be a
descendant of any descendant of a1, based on the strictly
nested property of XML data. The B+ algorithm makes use
of this property to skip all descendant elements of a1 by lo-
cating the element in A having the smallest start value that
is larger than a1.end. Therefore, in B+ algorithm, the next
elements to be examined are a5 and a2 in the two examples
respectively. For highly nested data, a reasonable number of
ancestors can be skipped, e.g. a2, a3 and a4 in Figure 7(a).
But for less/no nested data, the B+ algorithm could be as
less efficient as no-index. In brief, the B+ algorithm cannot
take full advantage of the place of the current descendant
to decide where the next candidate ancestor resides [8]. On
the other hand, the XR-stack algorithm can directly locate
ancestors of d by issuing a FindAncestors query against the
XR-tree on A, as shown in Figure 7.

We also measured the CPU time, the number of I/O’s and
the total elapsed time for each run. The results show that
the total elapsed time is dominated by the I/O’s performed,
more specifically, the number of page misses. Figure 8(a)
and 8(b) display the elapsed time for various algorithms.

As can be observed from the figures, XR-stack has the
best overall performance. Its advantage margin gets larger
with the decrease of join selectivity on the ancestor set.

Interestingly, we find that even when most of ancestors
and descendants participate in the join, i.e. when only few
elements can be skipped, despite of the possible overhead of
index probing, XR-stack (and also B+) performed no worse
than no-index. This can be best explained as follows: since
both element sets (A and D) are sorted, the keys used to
probe indexes are ordered. The consequence of ordered
probing is that most tree probes cause no page misses and
the index pages only need to be scanned at most once. Since

10



0

20

40

60

80

100

120

140

160

180

90% 70% 55% 40% 25% 15% 5% 1%

E
la

ps
ed

 T
im

e 
(#

se
c)

Percent of ancestors joined with 99% of descendants

no-index
B+

XR-stack

(a) employee vs. name

0

20

40

60

80

100

120

140

160

90% 70% 55% 40% 25% 15% 5% 1%

E
la

ps
ed

 T
im

e 
(#

se
c)

Percent of ancestors joined with 99% of descendants

no-index
B+

XR-stack

(b) paper vs. author

0

20

40

60

80

100

120

140

160

180

90% 70% 55% 40% 25% 15% 5% 1%

E
la

ps
ed

 T
im

e 
(#

se
c)

Percent of descendants joined with 99% of ancestors

no-index
B+

XR-stack

(c) employee vs. name

0

20

40

60

80

100

120

140

160

90% 70% 55% 40% 25% 15% 5% 1%

E
la

ps
ed

 T
im

e 
(#

se
c)

Percent of descendants joined with 99% of ancestors

no-index
B+

XR-stack

(d) paper vs. author

0

50

100

150

200

90% 70% 55% 40% 25% 15% 5% 1%

E
la

ps
ed

 T
im

e 
(#

se
c)

Percent of ancestors and descendants joined

no-index
B+

XR-stack

(e) employee vs. name

0

20

40

60

80

100

120

140

160

90% 70% 55% 40% 25% 15% 5% 1%

E
la

ps
ed

 T
im

e 
(#

se
c)

Percent of ancestors and descendants joined

no-index
B+

XR-stack

(f) paper vs. author

Figure 8. Elapsed time (in second) for different join selectivity. (a)(b): 99% of descendants join with
varying proportion of ancestors; (c)(d): 99% of ancestors join with varying proportion of descen-
dants; (e)(f): varying proportion of ancestors and descendants are joined.

the number of index pages is much less than the number of
leaf pages that hold element entries, the overhead of loading
index pages does not significantly affect the performance.

It is worth noting that the number of elements scanned
is unnecessarily proportional to the elapsed time. The ra-
tionale is that while each element scan causes a pin to a
buffer page, the elapsed time is dominated by page misses.
Consecutive element scans on the same buffer page cause
almost no additional running time. For example, although
the B+ algorithm managed to skip much more elements
than no-index (Table 2(a)), it failed to avoid more disk page
scans. As a result, its elapsed time is similar to no-index as
shown in Figure 8(a).

6.3. Varying join selectivity on descendants

In the second group of experiments, we kept the join se-
lectivity on ancestors high (99%) and varied the join selec-
tivity on descendants. Table 3 shows the total number of
elements scanned (in thousand) for various algorithms.

In terms of skipping descendants, XR-stack is as effec-
tive as B+, regardless of the nesting characteristics of the
joining element sets (Table 3). This can be explained by the
fact that skipping descendants requires the ability to find de-
scendants for a given element, which is the same in XR-tree
indexing and B+-tree indexing.

Figure 8(c) and 8(d) show the overall performance of the
algorithms tested. Compared to B+, XR-stack performed a
bit worse. This attributes to the higher overhead of XR-tree

Table 3. Number of element scanned (in thou-
sand) when 99% of ancestors join with vary-
ing proportion of descendants

(a) employee vs. name

Join-D NIDX B+ XR
90% 1657 1559 1550
70% 1527 1213 1206
55% 1429 953 947
40% 1332 693 689
25% 1234 433 430
15% 1169 260 258
5% 1104 87 86
1% 1078 17 17

(b) paper vs. author

NIDX B+ XR
1459 1359 1359
1359 1057 1057
1283 830 830
1208 604 604
1132 377 377
1082 226 226
1032 75 75
1011 15 15

indexing than B+-tree indexing caused by two additional
fields (ps, pe) in key entries, hence more index pages.

6.4. Varying join selectivity on both ancestors and
descendants

In the last set of experiments, we varied the join selec-
tivity on both ancestors and descendants. Among all the ex-
periments, we show the results for the case where the join
selectivity on the ancestor set and the descendant set var-
ied together, staring from 90% down to 1%, with their sizes
kept unchanged. This was done by effectively removing
joined elements from the two sets and then filling in some
dummy elements that do not join with any other elements.

11



The results for these experiments are shown in Figure 8(e)
and 8(f).

The diversity of the three algorithms is best illustrated by
this group of experiments, where there is potential to skip
both ancestors and descendants. Since no-index always se-
quentially scans elements, it performs the worst. B+ is able
to skip descendants that do not participate in joins, but fails
to effectively skip ancestors. Thus, it performs the second.
XR-stack can fully explore the potential of skipping both
ancestors and descendants based on the XR-trees built on
joining element sets. Therefore, it provides the best perfor-
mance among all.

7 Conclusions and future work

As we know, B-trees and their variants B+-trees have
been an unqualified success in supporting external dynamic
1-dimensional range searching in relational database sys-
tems [10], while R-trees [16] and R∗-trees [3] are success-
ful in indexing high-dimensional data points. Despite the
increasing popularity of XML, to the best of our knowledge,
we have seen no index structures that specifically deal with
strictly nested XML data.

In this paper, we proposed XR-tree, or XML Region
Tree, which is a dynamic external memory index structure
specially designed for such strictly nested XML data. XR-
trees can support, for a given element E, retrieval of all its
ancestors(or descendants) in an element set E indexed by
an XR-tree with optimal worst case I/O cost. By factoring
in such a unique feature of XR-trees, we devised a stack-
based structural join algorithm: XR-stack. In a study that
evaluated the performance of XR-stack, in comparison with
the current state of the art, we showed that the XR-stack
algorithm can most effectively avoid unnecessary element
scans by skipping both ancestors and descendants that do
not have matches.

This paper mainly focused on processing of structural
join, which is a core operation for XML query processing.
Regarding our future work, encouraged by the experimental
results, we will be working on query evaluation strategies
for complex XML queries (i.e. a combination of multiple
structural joins) over XML data on which proper XR-tree
indexes have been built.

References

[1] L. Arge and J. S. Vitter. Optimal dynamic interval manage-
ment in external memory. In FOCS, pages 560–569, 1996.

[2] T. Böhme and E. Rahm. XMach-1: A benchmark for XML
data management. In BTW, 2001.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-Tree: An efficient and robust access method for
points and rectangles. In SIGMOD, pages 322–331, 1990.

[4] M. D. Berg, M. V. Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and
Applications. Springer-Verlag, Berlin, Germany, 1997.

[5] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu,
J. Robie, and J. Siméon. XQuery 1.0: An XML query
language. In W3C Working Draft 16 August 2002,
http://www.w3.org/TR/xquery/, 2002.

[6] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient pro-
cessing of spatial joins using R-Trees. In SIGMOD, pages
237–246, 1993.

[7] S.-Y. Chien, V. J. Tsotras, C. Zaniolo, and D. Zhang. Ef-
ficient complex query support for multiversion XML docu-
ments. In EDBT, pages 161–178, 2002.

[8] S.-Y. Chien, Z. Vagena, D. Zhang, V. Tsotras, and C. Zan-
iolo. Efficient structural joins on indexed XML documents.
In VLDB, pages 263–274, 2002.

[9] J. Clark and S. DeRose. XML path language
(XPath). In W3C Recommendation 16 November 1999,
http://www.w3.org/TR/xpath, 1999.

[10] D. Comer. The ubiquitous B-Tree. ACM Computing Surveys,
11(2):121–137, 1979.

[11] IBM Corporation. XML data generator.
http://www.alphaworks.ibm.com/tech/xmlgenerator.

[12] P. F. Dietz. Maintaining order in a linked list. In ACM Sym-
posium on Theory of Computing, pages 122–127, 1982.

[13] R. Elmasri, G. T. J. Wuu, and Y.-J. Kim. The time index:
An access structure for temporal data. In VLDB, pages 1–12,
1990.

[14] D. Florescu and D. Kossmann. Storing and querying XML
data using an RDMBS. IEEE Data Engineering Bulletin,
22(3):27–34, 1999.

[15] T. Grust. Accelerating XPath location steps. In SIGMOD,
pages 109–120, 2002.

[16] A. Guttman. R-Trees: A dynamic index structure for spatial
searching. In SIGMOD, pages 47–57, 1984.

[17] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Spatial joins
using R-trees: Breadth-first traversal with global optimiza-
tions. In VLDB, pages 396–405, 1997.

[18] Q. Li and B. Moon. Indexing and querying XML data for
regular path expressions. In VLDB, pages 361–370, 2001.

[19] J. McHugh and J. Widom. Query optimization for XML. In
VLDB, pages 315–326, 1999.

[20] A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. Manolescu,
M. J. Carey, and R. Busse. The XML benchmark project.
Technical report, CWI, Amsterdam, The Netherlands, 2001.

[21] J. Shanmugasundaram, K. Tufte, C. Zhang, H. Gang, D. J.
DeWitt, and J. F. Naughton. Relational databases for query-
ing XML documents: Limitations and opportunities. In
VLDB, pages 302–314, 1999.

[22] D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas,
J. M. Patel, and Y. Wu. Structural joins: A primitive for
efficient XML query pattern matching. In ICDE, pages 141–
152, 2002.

[23] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Up-
dating XML. In SIGMOD, pages 413–424, 2001.

[24] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. In SIGMOD, pages
204–215, 2002.

[25] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.
Lohman. On supporting containment queries in relational
database management systems. In SIGMOD, pages 425–436,
2001.

12


