
Efficient Skyline Query Processing on Peer-to-Peer Networks

Shiyuan Wang1 ∗, Beng Chin Ooi2 , Anthony K. H. Tung2 , Lizhen Xu1

1Southeast University, China & 2National University of Singapore
desiree wsy@yahoo.com.cn, {ooibc, atung}@comp.nus.edu.sg, lzxu@seu.edu.cn

Abstract

Skyline query has been gaining much interest in database
research communities in recent years. Most existing stud-
ies focus mainly on centralized systems, and resolving the
problem in a distributed environment such as a peer-to-peer
(P2P) network is still an emerging topic. The desiderata of
efficient skyline querying in P2P environment include: 1)
progressive returning of answers, 2) low processing cost in
terms of number of peers accessed and search messages, 3)
balanced query loads among the peers. In this paper, we
propose a solution that satisfies the three desiderata.

Our solution is based on a balanced tree structured P2P
network. By partitioning the skyline search space adap-
tively based on query accessing patterns, we are able to
alleviate the problem of “hot” spots present in the sky-
line query processing. By being able to estimate the peer
nodes within the query subspaces, we are able to control the
amount of query forwarding, limiting the number of peers
involved and the amount of messages transmitted in the net-
work. Load balancing is achieved in query load conscious
data space splitting/merging during the joining/departure
of nodes and through dynamic load migration. Experiments
on real and synthetic datasets confirm the effectiveness and
scalability of our algorithm on P2P networks.

1. Introduction

Peer-to-Peer (P2P) systems, as a popular medium for
distributed information sharing and searching, have been
gaining increasing interest in recent years. To provide P2P
users efficient information exchange and rich query func-
tions, existing studies have focused extensively on exact
query [18, 20], range query [4, 2, 8, 19, 12] and keyword-
based information retrieval [22].

Skyline queries are well studied in centralized systems.
A skyline query returns a set of data points that are not dom-
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inated by any other points in a given data set. A point dom-
inates another point if it is no worse in all concerning di-
mensions and better in at least one dimension. Examples
are searching hotels with cheap price and yet close to beach
and querying the overall best players in NBA seasons.

However, little work has concentrated on efficient sky-
line query processing in P2P context. The problem is that it
is not straightforward and efficient to adopt a centralized al-
gorithm and build a centralized index to compute skylines.
[23] is the first attempt on progressive processing of sky-
line queries on a P2P network such as CAN [18]. The pro-
posal controls query propagation based on the partial order
of CAN’s zones. Unfortunately, it focuses on constrained
skyline queries [16, 23], and consequently, its load balanc-
ing approach has been designed to solve workload imbal-
ance caused by skewed query ranges.

BestPeer [15] is a P2P platform that supports both struc-
tured and unstructured overlays. In this paper, we pro-
pose a solution called Skyline Space Partitioning (SSP)
on the BestPeer’s structured P2P network called BATON
[12] to provide efficient processing of unconstrained skyline
queries that search skyline points in the whole data space.
The following desiderata are deemed essential for the ef-
ficient processing: (1) Small number of involved nodes.
(2) Small number of search messages. (3) Query load bal-
ancing. Unlike exact, range or constrained skyline queries
which might access data in any part of the space, the data
access of an unconstrained skyline query is likely to be
skewed towards the portion of the space that contain the
skyline. Such hot spots must be relieved to avoid imbalance
in query loads on the network.

Our solution satisfies the above desiderata in three folds.
First, we organize the multi-dimensional data regions using
a balanced BATON tree. We assign each region an ordered
region number, in which each bit encodes a data space split
whose detail is kept in the region split history. In such way,
we can route a query by computing the target region number
based on local split histories. Second, we define the skyline
search space to limit the number of involved nodes and par-
tition the search space into subspaces adaptively at each hop



to parallelize processing and control the number of search
messages. Third, we balance the query loads in load bal-
anced partitioning of data space during the joining/leaving
of nodes. Furthermore, we dynamically sample load from
both linked and random nodes and migrate data in case of
load imbalance.

We make the following main contributions:

• We propose a novel approach called SSP that partitions
and numbers the data space among the peer nodes such
that the target subspace (region) number can be derived
with good accuracy in order to control the peers ac-
cessed and search messages during skyline query pro-
cessing. We formally prove the necessity and com-
pleteness of visiting non-dominated nodes within the
delimited skyline search space.

• We balance the query loads among peers through both
load balanced data space partition and dynamic load
migration. We propose a novel load sampling mecha-
nism that attends the quality of sampled load distribu-
tion and the efficiency of sampling process by combin-
ing direct and random sampling.

• We conduct extensive experimental study to evaluate
the effectiveness and scalability of our algorithm.

Organization: Section 2 reviews related work. Sec-
tion 3 describes the space partitioning strategy. Section 4
presents our skyline query algorithm. Section 5 discusses
query load balancing, followed by experiments validation
in Section 6. Finally, Section 7 concludes the paper.

2. Related Work

Our work is motivated by previous studies on both sky-
line query processing and multi-dimensional indexing on
P2P, which are reviewed in this section.

2.1. Skyline Query Processing

Skyline computing was first introduced to the database
field in [3] with Block-Nested-Loops(BNL),Divide-and-
Conquer(D&C) and B-tree algorithms. Later work [6]
improved BNL by presorting. [21] proposed progressive
Bitmap and Index algorithms. Subsequently, there are stud-
ies employing R-tree index to compute skyline [13, 16]
faster and using external algorithm to compute the maximal
vectors [9]. Some recent works investigate the semantics of
skyline by subspace analysis [17, 24], processing of skyline
over data streams [14] and in high dimensional spaces [5].

Distributed skyline query was recently addressed in [1]
for web information systems and in [11] against mobile de-
vices. By visiting all nodes to retrieve skyline answers, the

above approaches dedicated for small-scale distributed sys-
tems are not efficient to be applied on P2P networks. Re-
cent work of skyline query processing on P2P [23] paral-
lelizes search by enforcing a partial order on query prop-
agation based on CAN. It emphasizes on constrained sky-
line queries that are posed within a query range, and con-
sequently its skyline search method and zone replication
approach have been designed for such constrained skyline
queries, while we aim to solve skyline queries efficiently in
the global range in which we are faced with a more serious
query load imbalance along the portion in the skyline.

2.2. Multi-dimensional Indexing on P2P

Multi-dimensional indexing for supporting efficient
search on structured P2P networks has been a hot research
topic. MAAN [4] uses locality preserving hashing to map
data values onto Chord identifier space. Mercury [2] at-
tempts to support multi-attribute range queries by plac-
ing values of each attribute contiguously on a separate
routing hub, while performing explicit load balancing for
non-uniform data distribution. However, the separate at-
tributes structure in MAAN and Mercury are not effective
for processing skyline queries that implicitly specify the
constraints among the attributes. The works closer to ours
are Murk [8], SkipIndex [25] and ZNet [19]. Murk indexes
multi-dimensional data partitions using the kd-tree. Like
Murk, SkipIndex stores partition information in a binary
tree, while ZNet splits data partitions in a quad-tree man-
ner. Though SkipIndex and ZNet balance data loads during
partition, they do not deal with the query load balancing
problem present in skyline query processing.

3. Space Partitioning

In this section, we begin with the problem definition. We
map the multi-dimensional data space on an existing P2P
network called BATON [12] which is briefly introduced in
Section 3.2. By numbering the data region and recording its
split history, we can estimate the target region number for
supporting efficient search. The regions are maintained in
balanced query loads during node join / departure which is
the first part of our query load balancing solution.

3.1. Problem Definition

Without loss of generality, we assume that the data val-
ues of each dimension are in the range [0, 1]. The whole
d-dimensional data space {[0, 1], [0, 1], . . . , [0, 1]} is dis-
tributed on a P2P network with N nodes, in which each
node maintains a non-overlapping d-dimensional data re-
gion and the data points falling inside the region. A data re-
gion is constructed with one or more hyper-rectangles, each



of which is confined by its bottom left point (lower bound)
and top right point (upper bound).

We process the skyline query in the form SQ =
(q1, q2, . . . , qd) , in which qi ∈ {Max,Min} (1 ≤ i ≤ d,
Max, Min indicates larger, smaller preference) for dimen-
sionality d. All examples in the paper are based on the net-
work shown in Figure 1, in which each node is identified by
a region number and a physical node id attached within the
parentheses. Example SQ1 = {Min,Min} is used in the
discussion of skyline querying.

3.2. Background about BATON

BATON(BAlanced Tree Overlay Network) [12] is based
on a binary balanced tree structure in which each node of
the tree is maintained by a peer. The position of a node
is defined by a (level, number) pair, in which level starts
from 0 at the root, and number starts from 1 at the leftmost
node at each level. Each tree node stores links to its parent,
children, adjacent nodes, and selected nodes at the distance
of power of two on its left / right side at the same level in
left/right routing tables. BATON maintains the tree struc-
ture balanced by forcing each node to have both its left and
right routing tables full before it has a child node, which
is crucial for effective routing. It takes O(logN) cost for
joining / leaving of nodes and exact search.

3.3. Region Mechanism for Search

We employ the z-curve method for mapping the multi-
dimensional data space onto the one-dimensional BATON.
We number a data region according to the z-order and the
position of the region in space split. Our search mechanism
relies on the relationships of the regions and the operations
of region numbers.

Figure 2 describes the mapping of the data regions in
Figure 1. We see each tree node maintains a data region and
the in-order traversal of the tree corresponds to the sequen-
tial visit of data regions in z-order. As shown in the right
part of Figure 2, we keep the routing table structure of BA-
TON, and add adjacent nodes in each routing table entry to
facilitate data space merge check.

Each node maintains the following information for the
region it owns: (1) Region number: a 0-1 string RNum
that identifies a region and is consistent with the z-order
of the region, in which the bit values of 0, 1 at certain
bit locations indicates the region is in a lower or upper
part in the corresponding space split. (2) Data range:
pairs of lower bound LowerBound (bottom left point) and
upper bound UpperBound (top right point). (3) Split
history: a list of entries of split value and dimension
(SplitPos, SplitDim). (4) Next partition dimension: a
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bit indicating the next split dimension. An example for the
region information of node 6 is given in Figure 1.

Note that ”region” does not only represent a data parti-
tion held by a node, but also can refer to a region superset
that a search range or target falls inside. Given a region m,
let RNum(m) be its region number, RNum(m).length be
the number of bits in RNum(m). We define the following
relationships of regions based on the operations of region
numbers.

Definition 3.1 (Region Succeed, �) Region m ”Succeed”
n, or m � n, i.f.f. RNum(m)[b] = 1,RNum(n)[b] =
0 and RNum(m)[i] = RNum(n)[i] for 1 ≤ b ≤
min(RNum(m).length,RNum(n).length), 1 ≤ i < b.
The precede or ≺ relationship is argued in the same way.

Definition 3.2 (Region Cover, ⊇) Region m ”Cover” n, or
m is the superset of n, or m ⊇ n, i.f.f. RNum(m).length ≤
RNum(n).length and RNum(m)[i] = RNum(n)[i] for
1 ≤ i ≤ RNum(m).length. The covered or ⊆ relation-
ship is defined in the same way.

To route a query, a node first delimits the region of the
searched target by computing its region number based on lo-
cal split history, and then passes the query to a linked node
whose region is covered by or nearest to the delimited re-
gion. Algorithm 1 describes the process of computing the
target region number. By ”estimation”, we mean we can
only compute the region number of a superset of the tar-
get region. The accuracy depends on how many times the



Algorithm 1 estimate num(node n, target p, bit b)
1: if (Region(p) ⊇ Region(n)) then
2: for b to RNum(n).length do
3: if (p[b%d] ∈ HistoryRange(n)[b]) then
4: RNum(p)[b]← RNum(n)[b]
5: else
6: RNum(p)[b]← 1− RNum(n)[b]
7: break
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Figure 3. Routing process

searched point p falls in the same range with local region
after a history split (line 3–4). The computation terminates
once p falls out of a history range of the current node (line
6–7).

Suppose node 3 wants to locate a point in node 8 as
shown in Figure 1, node 3 first computes its region num-
ber as 0, for it is in the lower part in the first space split
on axis x. Then node 3 routes the query to its nearest left
neighbor node 2 whose region the delimited target region
covers. The same process is executed on node 2 and node
4 subsequently until the query is routed to the target node
8 as illustrated in Figure 3. The maximum number of rout-
ing hops is approximately the number of bits in the accurate
region number of the searched target. For the uniformly dis-
tributed loads and corresponding equal space partitions, the
average routing path length is O(logN).

3.4. Query Load Balanced Partition

This section presents the first part of our query load bal-
ancing solution. We split load equally in data space parti-
tions and select better candidates to share load in node join
/ departure.

We observe that allocating relatively smaller space to the
“hot” regions should facilitate load balancing. So we parti-
tion data space by dividing a hyper-rectangular region into
two equally loaded hyper-rectangular regions. Accordingly,
we combine two buddy regions (such as region 2, 10 in Fig-
ure 1) or the regions of adjacent nodes in data space merge.
An example of such partitions is demonstrated in Figure 1.

Node Join. We seek better query load balance during
node join by selecting a node with heavier load among sev-
eral known candidates at the same level instead of directly
joining the first qualifying node that does not have enough
children and has full routing tables as in [12]. Candidates
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are picked amongst the neighbors in the routing tables.
For example, when node 4 receives the joining request

of a new node 11 as the arrows show in Figure 4, it finds
two qualifying neighbors: node 5 and node 6. Assume the
load on node 5 is heavier than the load on node 6. Node 4
will make a decision and pass the new node to node 5. The
process of candidate selection only adds constant terms of
cost, thus the total cost for node join is still O(logN).

Node Departure. When a node leaves, it first requests
the adjacent node to take over its region. If the empty po-
sition caused by leaving does not incur tree imbalance and
the two regions can be combined without bringing a heavy
load, no further action needs to be taken. Otherwise, the
procedure to search for a leaf node replacement is called on
one of its adjacent nodes at the lower level.

For replacement, we choose a leaf node with lighter load
whose region can be better combined with the region of its
adjacent node from a list of known leaf node neighbors at
the same level. As an example, when node 7 leaves in Fig-
ure 5, it has to find a replacement at the level of node 10.
Among node 10 and its two neighbor nodes 9 and 8, if node
9 has a lighter load, it will be the best candidate for replac-
ing node 7, besides its region can merge with the region
of its adjacent node 4. The cost for replacement search is
O(logN) with constant cost addition for choosing candi-
date.

4. Skyline Query Processing

Efficient skyline query processing on P2P networks de-
mands quick response and small number of involved nodes
and search messages. Obviously, simple approaches of nei-
ther sequential scanning in the order of region number nor
query flooding through linked nodes would be satisfactory.
Effective strategies are needed to taken towards three key
problems: 1) parallelized search; 2) irrelevant nodes prun-
ing; 3) reduction of duplicate query forwarding.

We propose our solution called Skyline Search Space
Partitioning (SSP) in this section. It delimits a skyline
search space to solve the second problem, and adaptively
partitions the search space to solve the first and the third
problems.
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4.1. Skyline Search Space Definition

We start search from the node whose local results are
guaranteed to be in the final skyline. We denote such a node
as SQ-Starter. It can be located by searching the most
dominating boundary point that dominates all other points
in the data space, such as point (0,0) on node 8 in Figure 1.

We now formalize the skyline search space. Practically,
we compute local skyline results on SQ-Starter and select
the most dominating point that has the largest dominating
region [11]. Let this point be pmd(a1, a2, . . . , ad). To avoid
waste network bandwidth, we use only pmd for pruning ir-
relevant nodes and refining the search space instead of us-
ing all intermediate skyline results as [23] does. Thereby
we define skyline search space as follows.

Definition 4.1 Skyline search space is the set of all data
points that are not dominated by pmd. It is the union of d
hyper-rectangle search ranges (SR), each of whose bound-
ary is limited only by one coordinate of pmd along one axis,
such as {[0, 1], . . . , [0, ai), . . . , [0, 1]}.
For the example query SQ1, the shadowed part in Figure
6 indicates its skyline search space, which is composed of
SR = {[0, a1), [0, 1]} and SR = {[0, 1], [0, a2)}.

Definition 4.2 A node is dominated and should be pruned,
i.f.f. the single ideal data point with the best value in each
dimension within its ranges, denoted as pbest, is dominated
by pmd.

Now we prove we can find the correct answers by visiting
only the non-dominated (unpruned) nodes inside the skyline
search space.

Lemma 4.1 All nodes outside the skyline search space are
dominated nodes.

Proof: Since the data space outside the skyline search space
like {(a1, 1], (a2, 1], . . . , (ad, 1])} has the worse values in
all dimensions than pmd, pbest of any node within this space
must be dominated by pmd. Hence, any node in this space
is dominated by pmd.

Lemma 4.2 Any dominated node cannot contain skyline
points.

Proof: Given any dominated node, any of its data points
must have at least one inferior attribute value compared to
pbest. Since pbest is dominated by pmd, any data point of the
node is dominated by pmd, and cannot be a skyline point.

Lemma 4.3 Any final skyline points cannot be dominated
by any points of the dominated nodes.

Proof: For the sake of brevity, let’s see SQ1 =
{Min,Min}. Suppose a skyline point ps(s1, s2) is dom-
inated by a point pd(v1, v2) on a certain dominated node,
then we have s1 ≥ v1, s2 ≥ v2. According to Definition
4.2, pd is dominated by pmd, v1 ≥ a1, v2 ≥ a2, thus we
have s1 ≥ a1, s2 ≥ a2, meaning ps is dominated by pmd

and cannot appear as a final skyline point. It contradicts
with the fact, so ps cannot be dominated by pd.

Based on the above lemmas, we draw the following con-
clusion:

Theorem 4.1 The non-dominated (unpruned) nodes in the
skyline search space return the complete skyline set and
only the skyline set.

4.2. Optimizing Skyline Search Space

Given a skyline search space constructed with hyper-
rectangle search ranges (SR) in Definition 4.1, we divide
it into separate search subspaces or subranges (subSR) for
parallel query forwarding paths. Nodes within each subSR
only forward query to the node whose region is covered by
or nearest to the unsolved part of subSR. As such, a node
is rarely revisited except for routing a subSR that cannot
directly reach a covered node.

As in computing the region number for a search target,
we partition an SR into subSRs based on the history ranges
stored in local split history. By assigning each subSR a
region number, we can compare its position with the regions
of the linked nodes to decide outward query forwarding.

Algorithm 2 depicts the procedure of partitioning the
search space and computing region number for the parti-
tioned subspaces. Similar to Algorithm 1, we scan the split
history sequentially (line 1), compute the next unknown bit
of the region number for SR (line 3), and partition SR into
two subSRs on each history split position not exceeding
SR (line 4–8). The computing stops once the current node
cannot partition SR further. This happens when the updated
SR falls out of a certain history range of the current node
(line 10–11).

As for the search space of SQ1, after subtracting the
range of SQ-Starter as shown in Figure 7(a), we refine
the left part SR into a single SR estimated as 01, for it falls
outside the history range of region 8 in the second time split.



Algorithm 2 partition(node n, range SR)
Define: subSRSet disjoint sub search range set of SR

1: for b from RNum(SR).length to RNum(n).length
do

2: if (SR ⊆ HistoryRange(n)[b]) then
3: RNum(SR)[b]← RNum(n)[b]
4: if (HistoryRange(n)[b] is lower part) then
5: UpperBound(SR)[b]← SplitPos(n)[b]
6: else
7: LowerBound(SR)[b]← SplitPos(n)[b]
8: Add SR’s buddy subSR to subSRSet
9: else

10: RNum(SR)[b]← 1− RNum(n)[b]
11: break

The right part SR is partitioned into two parts on the first
time history split: the one overlapping region 1 and region
5 is assigned an estimated region number 1, and the one
overlapping region 4 is estimated as 001.

Now, let’s consider an SR whose boundary is limited by
the coordinate of pmd on dimension i. Let m be the number
of bits in the region number of the farthest region from SQ-
Starter that overlaps SR. Then the number of split history
entries for dimension i is around |m/d|. So the number of
the partitioned subSR is |m/d|, and the known number of
bits in the region number of subSR decreases d each time
when a subSR falls out of the history range of SQ-Starter.
Since the maximum number of hops to solve a subSR is the
number of bits in its region number, the maximum number
of hops to process a SR is the arithmetic progression of the
former, namely O(d+2d+. . .+|m/d|d) and asymptotically
O(m(1 + m/d)/2). In uniform load distribution, the query
range is always partitioned in halves, so the cost for process-
ing a subSR always reduces in halves. Since the average
routing path length to locate the farthest region that subSR
overlaps is O(logN), the average number of steps for pro-

cessing SR is O(logN + 1
2 logN + · · · + 1

2

logN/d
logN),

namely O(2(1− 1/ d
√

N)logN).

4.3. Skyline Query Algorithm

Based on the above, we present our skyline query algo-
rithm in Algorithm 3 which is for local processing at each
hop after SQ-Starter defines the skyline search space.

Each subSR is forwarded to a non-dominated neighbor,
child or adjacent node whose region is covered by subSR
(line 7–11 in Algorithm 3). If such a node is not found, the
subSR is forwarded to the farthest neighbor in the case it
succeeds (precedes) the rightmost (leftmost) neighbor (line
13–14), or just passed to the adjacent node (line 16). Sky-
line search at each of the next hops (line 21) is parallelized.

Algorithm 3 search skyline(node n, query SQ,
search range SR)
Define: RRT(n) right routing table of node n
Define: RChild(n) right child of node n
Define: RAdj(n) right adjacent of n
Define: subSRSet disjoint search range set of SQ
Define: Dominated(m) if node m is dominated by pmd

1: if (Range(n)
⋂

SR 
= ∅) then
2: Compute local skyline not dominated by pmd and re-

port to SQ-Starter
3: SR← Range(SR)− Range(n)
4: subSRSet← partition(n, SR)
5: for all sub-range subSR in subSRSet do
6: if (LowerBound(subSR) > UpperBound(n))

then
7: m← NodeWhoseRegionCoveredBy

(Region(subSR)) in RRT(n)
8: if ((m not exist or Dominated(m)) and

(RChild(n) not processed subSR) and
(Region(subSR) ⊇ Region(RChild(n))))

then
9: m← RChild(n)

10: if ((m not exist || Dominated(m)) and
(RAdj(n) not processed subSR) and
(Region(subSR) ⊇ Region(RAdj(n)))) then

11: m← Radj(n)
12: if (m not exist || Dominated(m)) then
13: if (Region(subRQ) �

Region(FarthestNodeInRRT(n))) then
14: m← FarthestNodeInRRT(n)
15: else
16: m← RAdj(n)
17: Map m to subSR in subSRSet
18: else
19: // A similar process executes towards the left
20: for all (m, subSR) in subSRSet do
21: search skyline(m,SQ, subSR)

To answer SQ1, in the first step (Figure 7(a)), we pro-
mote subSR estimated as 001 to node 4 that can fully re-
solve it, pass subSR 01 to the covering right neighbor node
10 (line 9), and also send subSR 1 to the rightmost neighbor
node 10 for further forwarding (line 14). In the second step
shown in Figure 7(b), node 10 refines subSR 01 to subSR
0100 by local data (line 3) and partition(line 4), then pro-
motes it to the left adjacent node 2 that can fully resolve it,
and passes subSR 1 to the right adjacent node 6 (line 16).
Figure 7(c) illustrates the skyline search space after local
processing of node 2. The only remaining subSR 1 is then
forwarded to the covering right neighbor node 5 (line 9),
which solves the part 101 and sends the updated subSR to
its left adjacent node 1. From Figure 7(d), we can see node
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1 is the last hop for processing subSR 1. Figure 7 and Fig-
ure 8 demonstrate the process of search space refining and
query forwarding respectively.

Theorem 4.2 SSP answers a skyline query in O((1 +
2d(1− 1/ d

√
N))logN) steps for uniform load distribution,

and O((1 + (m + d)/2)m) steps in the worst case.

Proof: This proof is straightforward given the routing hops
of locating SQ-Starter and processing an SR. Locating
SQ-Starter takes O(logN) hops for uniform load distribu-
tion, O(m) in the worst case; processing each SR requires
O(2(1− 1/ d

√
N)logN) steps for uniform load distribution,

O(m(1+m/d)/2) steps in the worst case. By adding these
costs together, we get O((1 + 2d(1 − 1/ d

√
N))logN) for

uniform load distribution and O((1+(m+d)/2)m) for the
worst case.

5. Query Load Balancing

To balance query load, the following two steps are un-
dertaken. First, data space is partitioned based on query
load, and node join/departure are redesigned for balancing
load. Second, a novel mechanism is proposed for sampling
and dynamically balancing load during query processing.
As the first step has been presented in Section 3.4, we shall

only describe the second step in this section. We start with
the definition of query load.

Definition 5.1 Query load of a node is the sum of the num-
ber of skyline retrieving towards its local data records, and
the number of messages that are routed by the node but do
not lead to a local query.

The load balancing process during query processing works
as follows. First, each node checks whether there is an im-
balance. If yes, data migration process is established to bal-
ance the load.

Query loads are either periodically gathered by each
node from the neighbor nodes in its routing tables and from
adjacent nodes or with query load changing notification
from these nodes. The imbalance is determined by the dif-
ference δ of local load and sampled query load. If δ is larger
than a predefined threshold σ, an imbalance is detected 1.
However, load sampled from the linked nodes may not re-
flect the global load distribution. To compensate, we start
random sampling when the first step does not detect imbal-
ance and yet local load is heavier than the average of the
gathered loads. Our random sampling strategy is similar
to [2]. A number of logN nodes that are not linked to are
sampled by sending probes that are attached a small length
limit of routing hops (logN ), and following an existing link
randomly at each hop. The hop where the probe terminates
sends back its load and the load data it has gathered directly.

To balance the query load, a leaf node finds a lightly
loaded leaf node to drop and forces it to rejoin as one of
its children. A non-leaf node attempts to share load with
adjacent nodes [12].

6. Experiment Evaluation

We evaluate our skyline search approach SSP by com-
paring it with the distributed skyline query algorithm DSL
[23] in terms of network size, dimensionality, cardinality
and query load balance. The performance measures are the
number of involved nodes, the number of skyline search
messages and the query load distribution. We conduct sim-
ulation experiments on a Linux box with Intel Xeon 3.0GHz
processor and 2GB of RAM. The response time is tested in
real deployment on a cluster consisting of 20 nodes, each
of which has an Intel Xeon 3.0GHz processor and 4GB of
RAM. We use three kinds of datasets: one is a real dataset of
NBA players’ season statistics from 1949 to 2003 contain-
ing 19,000 records downloaded from [10] that resembles
a correlated data distribution; the other two are synthetic
independent and synthetic anti-correlated datasets with a
maximal data size of 1,638,400. For the synthetic datasets,
we show only one set of results in cases where both exhibit
similar performance.

1The imbalance ratio is computed according to [7]



Table 1. Experimental settings
Parameter Domain Default
Number of peers 27, . . . , 210, . . . , 214 210

Dimensionality 2, 3, 4, 5 2
Cardinality (210, . . . , 214)× 100 214 × 100
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Figure 9. Effects of network size on indepen-
dent dataset

The experimental settings are summarized in Table 1.
Each experiment is repeated 10 times and the average is
taken. Each test issues 1000 skyline queries and the aver-
age cost is taken. Each query prefers smaller or larger value
randomly in each interested dimension. It starts from a ran-
dom node and asks for the answers in the whole data space.

6.1. Effects of Network Size

We first study the effects of network size using both in-
dependent and anti-correlated datasets. Figure 9 illustrates
the results on the independent dataset. When the number
of peers increases from 27 to 214, the number of involved
nodes and search messages for SSP go up rather slowly, out-
performing DSL in an increasing order of magnitude. For
the anti-correlated dataset, Figure 10 demonstrates that the
costs for both SSP and DSL follow approximately a linear
curve, yet the involved nodes for SSP are only half of the in-
volved nodes for DSL, and the search messages for SSP are
between one quarter and half of the messages for DSL. The
reduced number of involved nodes and search messages for
SSP are due to our approaches of delimiting skyline search
space and forwarding a query within the partitioned search
subspaces.
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Figure 10. Effects of network size on anti-
correlated dataset

6.2. Effects of Dimensionality

We next investigate the effects of dimensionality by fix-
ing the number of peers and the cardinality while varying
the dimensionality from 2 to 5 [16]. In Figures 11, DSL
presents a drastic increase in the number of involved nodes.
It visits more than three quarters of nodes for a dimensional-
ity larger than 3, and incurs more than 10000 messages in 5
dimensions. Recall that the routing path length on CAN re-
duces when increasing the dimensionality of the space, yet
it seems DSL does not benefit from larger dimensions. In
contrast, the performance of SSP remains steady and is far
better than DSL in larger dimensions owing to its effective
controlling and partitioning of skyline search space.

6.3. Effects of Data Size

In this experiment, we would like to study the effects of
data size. We fix the other parameters and change the total
cardinality from 102400 to 1638400, in which case the av-
erage data size per node increases from 100 to 1600. Figure
12 witnesses that both SSP and DSL are not very sensitive
to data size, but SSP is more stable than DSL in terms of
both involved nodes and search messages. We see the costs
taken by SSP decline in the larger data size. This is because
the average load per node is more likely to be distributed
uniformly when increasing data size without changing the
number of queries, in which case it is possible to get the
skyline answers by visiting fewer nodes.

6.4. Real Data Results

We now test the two methods on the real dataset dis-
tributed in a small network of 128 peers. For this dataset,
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Figure 11. Effects of dimensionality on anti-
correlated dataset
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Figure 12. Effects of anti-correlated data size

we identify 6 attributes, such as playoff, gained points, as-
sists, etc. The conditions of all skyline queries are set the
same according to the real meanings of these attributes. The
comparison results are summarized in Table 2, in which the
bandwidth is measured by the number of points transmit-
ted in a query following the definition in [23]. SSP costs
much less than DSL in average bandwidth per node, for we
only transmit pmd for pruning instead of using all skyline
points. The large portion of involved nodes are due to the
large dimensionality specified in skyline query and frequent
invocation of the query load balancing process which aims
to assuage the high load skew caused by large amounts of
the same skyline queries.

Table 2. Real data results
Metrics SSP DSL
avg. involved nodes 84 110
avg. search msgs 272 2491
avg. bandwidth per node 13 204
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Figure 13. Effects of load balancing on inde-
pendent dataset

6.5. Query Load Balancing

To evaluate the different effects of load balanced par-
titioning and the dynamic balancing discussed in Section
5, we compare SSP with both mechanisms enabled (SSP-
DLB) to SSP with dynamic balancing disabled and to DSL
on default settings. We only demonstrate results on the in-
dependent dataset because query load is easier to be bal-
anced on an anti-correlated dataset. As Figure 13 shows,
query load in DSL has a larger variance than in SSP or SSP-
DLB. Moreover, some of its nodes hold a very small num-
ber of data points and has no query visiting, which suggests
data partitioning of CAN that implicitly assumes a uniform
data distribution is not appropriate for load balance. The
advantage of our dynamic balancing process is not clearly
shown, but its sorted load distribution has not changed as
much as in SSP, especially in the heavier load side in Figure
13(b).

6.6. Response Time

We evaluate the progressiveness and the response time of
our algorithm by distributing 1,638,400 independent data
points in real deployment. Figure 14(a) presents the re-
turning time of a three-dimensional skyline query that in-
cludes 154 skyline points. The first 46 results are reported at
around 0.3 seconds, and all answers are returned within 0.9
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Figure 14. Response time on independent
dataset

seconds. Figure 14 shows the total response time varying
with dimensionality, in which the response time generally
increases with the size of skyline. We can answer a two-
dimensional skyline query in a time as short as 0.19 seconds
and a five-dimensional skyline query with more than 2000
results in no more than 1.6 seconds.

7. Conclusion

In this paper, we have addressed the efficient process-
ing of traditional centralized skyline querying on P2P net-
works. Based on a tree structured network BATON [12], we
have proposed a skyline processing algorithm to partition
the skyline space adaptively to control query forwarding
behavior effectively. Consequently, we have been able to
significantly reduce the number of visited nodes and search
messages. We have also devised approaches for effective
query load balancing. The correctness and effectiveness of
our proposed algorithm were formally proved and validated
by experiments. As for future research, we will investigate
efficient approximate algorithm for high dimensional data
querying in the P2P settings.
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