
Fine-Grained, Secure and Efficient Data Provenance on
Blockchain Systems

Pingcheng Ruan†, Gang Chen§, Tien Tuan Anh Dinh†, Qian Lin†, Beng Chin Ooi†, Meihui Zhang‡
†National University of Singapore §Zhejiang University ‡Beijing Institute of Technology
†{ruanpc, dinhtta, linqian, ooibc}@comp.nus.edu.sg §cg@zju.edu.cn ‡meihui_zhang@bit.edu.cn

ABSTRACT
The success of Bitcoin and other cryptocurrencies bring
enormous interest to blockchains. A blockchain system im-
plements a tamper-evident ledger for recording transactions
that modify some global states. The system captures entire
evolution history of the states. The management of that
history, also known as data provenance or lineage, has been
studied extensively in database systems. However, query-
ing data history in existing blockchains can only be done
by replaying all transactions. This approach is applicable
to large-scale, offline analysis, but is not suitable for online
transaction processing.
We present LineageChain, a fine-grained, secure and effi-

cient provenance system for blockchains. LineageChain ex-
poses provenance information to smart contracts via sim-
ple and elegant interfaces, thereby enabling a new class of
blockchain applications whose execution logics depend on
provenance information at runtime. LineageChain captures
provenance during contract execution, and efficiently stores
it in a Merkle tree. LineageChain provides a novel skip
list index designed for supporting efficient provenance query
processing. We have implemented LineageChain on top
of Hyperledger and a blockchain-optimized storage system
called ForkBase. Our extensive evaluation of LineageChain
demonstrates its benefits to the new class of blockchain ap-
plications, its efficient query, and its small storage over-
head.

PVLDB Reference Format:
Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin,
Beng Chin Ooi, Meihui Zhang. Fine-Grained, Secure and Effi-
cient Data Provenance on Blockchain Systems. PVLDB, 12(9):
xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/3329772.3329775

1. INTRODUCTION
Blockchains are capturing attention from both academia

and industry. A blockchain is a chain of blocks, in which
each block contains many transactions and is linked with

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 9
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3329772.3329775

the previous block via a hash pointer. It was firstly in-
troduced in Bitcoin [27], where Satoshi Nakamoto employs
it to batch cryptocurrency transactions. Often referred to
as decentralized ledger, the chain ensures integrity of the
complete transaction history. It is replicated over a peer-to-
peer (P2P) network, and a distributed consensus protocol,
namely Proof-of-Work (PoW), is used to ensure that honest
nodes in the network have the same ledger. More recent
blockchains, for instance Ethereum [1] and Hyperledger [2],
extend the original design to support applications beyond
cryptocurrencies. In particular, they add smart contracts
which encode arbitrary, Turing-complete computation on
top of the blockchain. A smart contract has its states stored
on the blockchain, and the states are modified via transac-
tions that invoke the contract.
Blockchains are disrupting many industries, including fi-

nance [34, 29], supply chain [24, 35], and healthcare [4].
These industries are exploiting two distinct advantages
of blockchains over traditional data management systems.
First, a blockchain is decentralized, which allows mutually
distrusting parties to manage the data together instead of
trusting a single party. Second, the blockchain provides
integrity protection (tamper evidence) to all transactions
recorded in the ledger. In other words, the complete trans-
action history is secure.
The management of data history, or data provenance, has

been extensively studied in databases, and many systems
have been designed to support provenance [13, 14, 8, 30,
5, 36]. In the context of blockchain, there is explicit, but
only coarse-grained support for data provenance. In par-
ticular, the blockchain can be seen as having some states
(with known initial values), and every transaction moves
the system to new states. The evolution history of the
states (or provenance) can be securely and completely re-
constructed by replaying all transactions. This reconstruc-
tion can be done during offline analysis. During contract
execution (or runtime), however, no provenance informa-
tion is safely available to smart contracts. In other words,
smart contracts cannot access historical blockchain states in
a tamper-evident manner. The lack of secure, fine-grained,
runtime access to provenance therefore restricts the expres-
siveness of the business logic the contract can encode.
Consider an example smart contract shown in Figure 1,

which contains a method for transferring a number of tokens
from one user to another. Suppose user A wants to send
tokens to B based on the latter’s historical balance in recent
months. For example, A only sends token if B’s average
balance per day is more than t. It is not currently possible to

contract Token {
method Transfer(sender, recipient, amount) {

bal1 = gState[sender];
bal2 = gState[recipient];
if (amount < bal1) {

gState[sender] = bal1 - amount;
gState[recipient] = bal2 + amount;

} } }

Figure 1: A smart contract that manages for token
management.

write a contract method for this operation. To work around
this, A needs to first compute the historical balance of B
by querying and replaying all on-chain transactions, then
based on the result issues the Transfer transaction. Besides
performance overhead incurred from multiple interactions
with the blockchain, this approach is not safe: it fails to
achieve transaction serializability. In particular, suppose A
issues the Transfer transaction tx based on its computation
of B’s historical balance. But before tx is received by the
blockchain, another transaction is committed such that B’s
average balance becomes t′ < t. Consequently, when tx
is later committed, it will have been based on stale state,
and therefore fails to meet the intended business logic. In
blockchains with native currencies, serializability violation
can be exploited for Transaction-Ordering attacks that cause
substantial financial loss to the users [25].
In this paper, we design and implement a fine-grained, se-

cure and efficient provenance system for blockchains, called
LineageChain. In particular, we aim to enable a new class
of smart contracts that can access provenance information
at runtime. Although our goal is similar to that of exist-
ing works in adding provenance to databases [5, 35, 31], we
face three unique challenges due to the nature of blockchain.
First, there is a lack of data operators whose semantics cap-
ture provenance in the form of input-output dependency.
More specifically, for general data management workloads
(i.e., non-cryptocurrency), current blockchains expose only
generic operators, for example, put and get of key-value
tuples. These operators do not have input-output depen-
dency. In contrast, relational databases operators such as
map, join, union, are defined as relations between input and
output, which clearly capture their dependencies. To over-
come this lack of provenance-friendly operators, we instru-
ment blockchain runtime to record read-write dependency
of all the states used in any contract invocation, which is
then passed to a user-defined method that specifies which
dependency to be persisted.
The second challenge is that blockchains assume an adver-

sarial environment, therefore any captured provenance must
be made tamper evident. To address this, we store prove-
nance in a Merkle tree data structure that also allows for
efficient verification. The final challenge is to ensure that
provenance queries are fast, because a large execution over-
head is undesirable due to the Verifier’s Dilemma [26]. To
address this challenge, we design a novel skip list index that
is optimized for provenance queries. The index incurs small
storage overhead, and its performance is independent of the
number of blocks in the blockchain.
In summary, we make the following contributions:
• We introduce a system, called LineageChain that
efficiently captures fine-grained provenance for
blockchains. It stores provenance securely, and

exposes simple access interface to smart contracts.
• We design a novel index optimized for querying
blockchain provenance. The index incurs small stor-
age overhead, and its performance is independent of
the blockchain size. It is adapted from the skip list
but we completely remove the randomness to fit for
deterministic blockchains.
• We implement LineageChain for Hyperledger [2].
Our implementation builds on top of ForkBase, a
blockchain-optimized storage [37]. We conduct exten-
sive evaluation of LineageChain. The results demon-
strate its benefits to provenance-dependent applica-
tions, and its efficient query and small storage over-
head.

LineageChain is a component of our Hyperledger++ sys-
tem [3], for which we improve Hyperledger’s execution and
storage layer for the secure runtime provenance support.
Elsewhere, we have addressed the consensus bottleneck by
applying sharding efficiently and exploiting trusted hard-
ware to scale out system horizontally, to substantially im-
prove the system throughput [15]. We have also improved
the storage efficiency by designing a tamper-evident stor-
age engine that supports efficient forking called Forkbase.
We are currently incorporating smart contract verification
to enhance the correctness of smart contracts.
The remainder of the paper is organized as follows. Sec-

tion 2 provides background on blockchains. Section 3 de-
scribes our design for capturing provenance, and the inter-
face exposed to smart contracts. Section 4 discusses how
we store provenance, and Section 5 describes our new index.
Section 6 presents our implementation. Section 7 reports
the performance of LineageChain. Section 8 discusses re-
lated work, and Section 9 concludes this work.

2. BACKGROUND AND OVERVIEW
In this section, we present relevant background on

blockchain systems [18, 7], and design choices that affect
index structure requirements. Following which, we present
an overview of LineageChain.

2.1 Blockchain Systems
A blockchain system consists of multiple nodes that do not

trust each other. Current blockchains can be broadly clas-
sified as permissionless or permissioned. In the former, any
node can join or leave the network. In the latter, member-
ship is strictly controlled, and a node must be authenticated
and granted permission to join the network.
Consensus. Except for a few permissioned blockchains
with high auditability, most blockchains assume the Byzan-
tine failure model, in which faulty nodes behave arbitrarily.
Under this hostile environment. They use a Byzantine Fault
Tolerance (BFT) consensus protocol to ensure that honest
nodes agree on the same states. Examples of BFT protocols
include Proof-of-work (PoW) which is used in Bitcoin [27],
and PBFT [11] which is used in Hyperledger. Classic BFT
protocols, such as PBFT, guarantee that honest nodes have
the identical chain of blocks. PoW and its variants, on the
other hand, allow for inconsistency because the chain can
have forks. These protocols handle forks by deterministi-
cally selecting one branch over the other. For example, in
PoW the longest branch is selected.

Data model. Different blockchains adopt different data
models for their states. Bitcoin’ states are unspent coins
modeled as Unspent Transaction Outputs (UTXOs), which
consists of outputs of transactions that have not been used
as inputs to another transaction. The UTXO model lends
itself to simple transaction verification, because nodes only
need to check that the transaction output has not been used
in the past. More recent blockchains, namely Ethereum and
Hyperledger, support general states that can be modified ar-
bitrarily by smart contracts. They adopt an account-based
data model, in which each account has its own local states
stored on the blockchain. A smart contract transaction can
write arbitrary data to the storage. This flexible data model
comes at the cost of integrity protection and verification of
the account states. In this paper, we focus on the account-
based data model.
Block structure. A block in the blockchain stores the
transactions and the global states. The block header con-
tains the following fields.
• PreviousBlockHash: reference to the previous block
in the chain.
• Nonce: used for checking validity of the block. In PoW
consensus, Nonce is the solution to the PoW puzzle.
• TransactionDigest: used for integrity protection of
the list of transactions in the block.
• StateDigest: used for integrity protection of the
global states after executing the block transactions.

Both TransactionDigest and StateDigest are Merkle-tree
roots. They allow for efficient block transfer, in which the
block headers and block content can be decoupled and trans-
ferred separately. In addition, they enable efficient verifica-
tion of transactions and states.

Algorithm 1: Block verification in blockchain
Input: A block Blk received from the network.
Input: The global state gState, which maps state

identifiers to their values.
Output: True if the block is valid, False otherwise.
// Step 1: Verify Nonce (PoW only).

1 if checkNonce(Blk.Header.Nonce) then
2 return False;
// Step 2: Verify transactions.

3 txnDigest = computeDigest(Blk.Transactions);
4 if txnDigest != Blk.Header.TransactionDigest then
5 return False;
// Step 3: Tentatively execute transactions.

6 oldState = gState;
7 allUpdates = [];
8 for txn in Blk.Header.Transactions do

// Buffer the changes
9 updates = execute(txn);

10 allUpdates.Append(update);
11 gState.apply(allUpdates);

// Step 4: Verify new state.
12 stateDigest = computeDigest(state);
13 if stateDigest != Blk.Header.StateDigest then

// Rollback
14 gState = oldState;
15 return False;
16 else
17 return True;

Block verification. Algorithm 1 illustrates how a node
uses the block header to verify if a block it receives from
the network is valid. If the block is valid, it is appended to
the chain. When PoW is used for consensus, the node first
checks if Nonce is the correct solution to the PoW puzzle.
This step is skipped if a deterministic consensus protocol,
such as PBFT, is used. Next, it checks if the list of transac-
tions has not been tampered with, by computing and veri-
fying TransactionDigest from the list. It then tentatively
re-executes the included transactions. During execution, the
states are accessed via some index structures. After the ex-
ecution, the node checks if the resulting states match with
StateDigest. If they do, the block is considered valid and
the new states are committed to the storage. Otherwise, the
states are rolled back to those before execution. We note
that Algorithm 1 takes as input an object gState that repre-
sents the global states. If the blockchain does not have forks,
e.g., Hyperledger, this object is the latest states. However,
when there are forks, e.g., in Ethereum, this object may
refer to the global states at a point in the past.

2.2 State Organization
The most important feature of blockchain is the guarantee

of data integrity, which implies that the global states must
be tamper evident. The block verification algorithm above
is crucial for the security of blockchain. We note that the al-
gorithm requires access to all history snapshots of the states,
as well as the ability to update the states in batch. These
requirements present new challenges in designing an index
structure for organizing blockchain states. In particular, tra-
ditional database indices such as B+ tree cannot be used.
We now elaborate on the requirements for a blockchain in-
dex, and explain how they are met in Ethereum and Hyper-
ledger. LineageChain builds on existing blockchain indices
to ensure security for the captured provenance.
Tamper evidence. A user may want to read some states
without downloading and executing all the transactions.
Thus, the index structure must be able to generate an in-
tegrity proof for any state. In addition, the index must
provide a unique digest for the global states, so that nodes
can quickly check if the post-execution states are identical
across the network.
Incremental update. The size of global states in a typical
blockchain application is large, but one block only updates
a small part of the states. For example, some states may
be updated at every block, whereas other may be updated
much more infrequently. Because the index must be updated
at every block, it must be efficient at handling incremental
updates.
Snapshot. A snapshot of the index, as well as of the global
states, must be made at every block. This is crucial to realize
the immutability property of blockchain which allows users
to read any historical states. It is also important for block
verification. As explained earlier, when a new block is re-
ceived that creates a fork, an old snapshot of the state must
be used as input for verification. Even when the blockchain
allows no forks, snapshots enable roll-back when the received
block is found to be invalid after execution (step 4 in Algo-
rithm 1).
Existing blockchains use indices that are based on Merkle

tree. In particular, Ethereum implements Merkle Patricia
Trie (MPT), and Hyperledger implements Merkle Bucket

L M NL-1
1

Block
Txn1 Txn2Contract

Deployment

gState[Addr1]=100
gState[Addr2]=100

gState[Addr1]=90
gState[Addr2]=110

gState[Addr1]=70
gState[Addr2]=130

Figure 2: The example ledger with the correspond-
ing gState between the block interval

Tree (MBT). In a Merkle tree, content of the parent node
is recursively defined by those of the child nodes. The root
node uniquely identifies the content of all the leaf nodes.
A proof of integrity can be efficiently constructed without
reading the entire tree. Therefore, the Merkle tree meets
the first requirement. This structure is also suitable for in-
cremental updates (second requirement), because only the
nodes affected by the update need to be changed. To support
efficient snapshots, an update in the Merkle tree recursively
creates new nodes in the path affected by the change. The
new root then serves as index of the new snapshot, and is
then included in the block header.

2.3 LineageChain Overview
Given a smart contract on an existing blockchain, Lin-

eageChain enriches it with fine-grained, secure and efficient
provenance as follows. First, the contract can implement a
helper method to define the exact provenance information
to be captured at every contract invocation. By default,
all read-write dependencies of all the states are recorded.
Second, new methods can be added that make use of prove-
nance at runtime. As far as a contract developer is con-
cerned, these are the only two changes from the existing,
non-provenance blockchain. The captured information is
then stored in an enhanced blockchain storage that ensures
efficient tracking and tamper evidence of provenance. On
top of this storage, we build a skip list index to support
fast provenance queries. These changes to the blockchain
storage are invisible to the contract developer.

3. FINE-GRAINED PROVENANCE
In this section, we describe our approach to capture prove-

nance during smart contract execution. We present APIs
that allow the contract to query provenance at runtime.

Running example. Throughout this section, we use as
running example the token smart contract shown in Fig-
ure 1. Figure 2 depicts how the global states are modi-
fied by the contract. In particular, the contract is deployed
at block Lth in the blockchain. Two addresses Addr1 and
Addr2 are initialized with 100 tokens. Two transactions
Txn1 and Txn2 that transfer tokens between the two ad-
dresses are committed at block M and N respectively. The
value of Addr1 is 100 from block R to block M − 1, 90 from
block M to N − 1, and 70 from block N . The global state
gState is essentially a map of addresses to their values.

3.1 Capturing Provenance
Blockchains support only a small set of data operators

for general workloads, namely read and write. These op-
erators are not provenance friendly, in the sense that they

contract Token {
method Transfer(...){...} // as above
method prov_helper(name, reads, writes) {

if name == "Transfer" {
for (id,value) in writes {

if (reads[id] < value) {
recipient = id;

} else {sender = id; }
}
// dependency list with a
// single element.
dep = [sender];
return {recipient:dep};

}
...

}
}

Figure 3: The provenance helper method for Token
contract. It defines dependency between the sender
identifier and recipient identifier. This method is
invoke after every invocation of the Token contract.

do not capture any data association (input-output depen-
dency). In contrast, relational databases or big data sys-
tems have many provenance-friendly operators, such as map,
reduce and join, whose semantics meaningfully capture the
association. For instance, the output of join is clearly de-
rived from (or is dependent on) the input data.
In LineageChain, every contract method can be made

provenance-friendly via a helper method. More specifi-
cally, during transaction execution, LineageChain collects
the identifiers and values of the accessed states, i.e., ones
used in read and write operations. The results are a read
set reads and write set writes. For Txn1, reads = {Addr1 :
100,Addr2 : 100}, and writes = {Addr1 : 90,Addr2 : 110}.
After the execution finishes, these sets are passed to a user-
defined method prov_helper, together with the name of the
contract method. prov_helper has the following signature:

method prov_helper(name: string,
reads: map(string, byte[]),
writes: map(string, byte[]))

returns map(string, string[]);

It returns a set of dependencies based on the input read
and write sets. Figure 3 shows implementation of the helper
method for the Token contract. It first computes the iden-
tifier of the sender and recipient from the read and write
sets. Specifically, the identifier whose value in writes is
lower than that in reads is the sender, and the opposite is
true for the recipient. It then returns a dependency set of
a single element: the recipient-sender dependency. In our
example, for Txn1, this method returns {Addr2 : [Addr1]}
LineageChain ensures that prov_helper is invoked im-

mediately after every successfully contract execution. If the
method is left empty, LineageChain uses all identifiers in
the read set as dependency of each identifier in the write
set. Interested readers may observe that the vanilla Hyper-
ledger already computes for the read/write set during the
endorsement phase. Orthogonal to ours, they are internally
used for the concurrency control to achieve one-copy serial-
izability. Instead, we allow contract developers to capture
for their application-level provenance.

3.2 Smart Contract APIs

Current smart contracts can only safely access the latest
blockchain state. In Hyperledger, for example, the get(k)
operation returns the last value of k that is written or being
batched. In Ethereum, on the other hand, when a smart
contract reads a value of k at block b, the system considers
the snapshot of states at block b−1 as the latest states. Al-
though there may exist a block b′ > b on a different branch,
the smart contract always treats what returned from the
storage layer as the latest state.
The main limitation of the current APIs is that the smart

contract cannot tamper-evidently read previous values of a
state. Instead, the contract has to explicit track historical
versions, for example by maintaining a list of versions for
every state. This approach is costly both in terms of storage
and computation. LineageChain addresses this limitation
with three additional smart contract APIs.
• Hist(stateID, [blockNum]): returns the tuple (val,
blkStart, txnID) where val is the value of stateID
at block blockNum. If blockNum is not specified, the
latest block is used. txID is the transaction that sets
stateID to val, and blkStart is the block number at
which txID is executed.
• Backward(stateID, blkNum): returns a list of tu-
ples (depStateID, depBlkNum) where depStateID is
the dependency state of stateID at block blkNum.
depBlkNum is the block number at which the value of
depStateID is set. In our example, Backward(Addr2,
N) returns (Addr1, M).
• Forward(stateID, blkNum): similar to the Backward
API, but returns the states of which stateID is a de-
pendency. For example, Forward(Addr1, L) returnss
(Addr2, M).

Figure 4 demonstrates how the above APIs are used to
express smart contract logics that are currently impossible
in the secure manner. (The vanilla Hyperledger optionally
provides a historyDB for the historical query. But imple-
mented from the flat storage, it does not provide the tamper-
evidence guarantee, which is our major contribution.) We
add two additional methods to the original contract, both of
which use the new APIs. The Refund method examines an
account’s average balance in the recent month and makes
the refund accordingly. The Blacklist method marks an
address as blacklisted if one of its last 5 transactions is with
a blacklisted address.

4. SECURE PROVENANCE STORAGE
In this section, we discuss how LineageChain enhances

existing blockchain storage layer to provide efficient track-
ing and tamper evidence for the captured provenance. Our
key insight is to reorganize the flat leaf nodes in the orig-
inal Merkle tree into a Merkle DAG. We first describe the
Merkle DAG structure, then discuss its properties. Finally,
we explain how to exploit the blockchain execution model
to support forward provenance tracking.

4.1 Merkle DAG
Let k be the unique identifier of a blockchain state, whose

evolution history is expected to be tracked. Let v be the
unique version number that identifies the state in its evo-
lution history. When the state at version v is updated, the
new version v′ is strictly greater than v. In LineageChain,
we directly use the block number as its version v. Let sk,v

contract Token {
...
method Refund(addr) {

blk := last block in the ledger
first_blk := first block in this month
sum = count = 0;
while (first_blk < blk) {

val, startBlk, txnID = Hist(addr, blk);
blk = startBlk - 1;
sum += val;
count += 1;

}
avg = sum / count;
refund_amount := refund amount based on avg
gState[addr] += refund_amount;

}

method Blacklist(addr) {
blk := last block in the ledger
blacklisted = false;
iterate 5 times {

val, startBlk, txnID = Hist(addr, blk);
for (depAddr, depBlk)

in (Backward(addr, startBlk)
or Forward(addr, startBlk)) {

if depAddr in gState["blacklist"] {
gState["blacklist"].append(addr);
return;

}
}
blk = startBlk - 1;

}
}

}

Figure 4: Smart contract with provenance-
dependent methods.

denote the value of the state with identifier k at version v.
We drop the subscripts if the meaning of k and v are not
important. For any k 6= k′ and v 6= v′, sk,v and sk′,v′ repre-
sent the values of two different states at different versions.
sbk represents the state value with identifier k at its latest
version before block b. In our example, for k = Addr1 and
v =M , sk,v = 90.

Definition 1. A transaction, identified by tid which is
strictly increasing, reads a set of input states Si

tid and up-
dates a set of output states So

tid. A valid transaction satisfies
the following properties:

∀sk1,v1 , sk2,v2 ∈ S
o
tid. k1 6= k2 ∧ v1 = v2 (1)

∀sk1,v1 ∈ S
i
tid, sk2,v2 ∈ S

o
tid. v1 < v2 (2)

∀sk,v ∈ Si
tid, sk,v′ ∈ Si

tid′ . tid < tid′ ⇒ v ≤ v′. (3)

tid 6= tid′ ⇒ So
tid ∩ So

tid′ = ∅ (4)

Property (1) means that the versions of all output states of
a transaction are identical, because they are updated by the
same transaction in the same block. Property (2) implies the
version of any input state is strictly lower than that of the
output version. This makes sense because the blockchain es-
tablishes a total order over the transactions, and because the
input states can only be updated in previous transactions.
Property (3) specifies that, for all the states with the same
identifier, the input of later transactions can never have an
earlier version. This ensures the input state of any trans-
action must be up-to-date during execution time. Finally,
Property (4) means that every state update is unique.

sk1,v1 sk1,v2 sk1,v3

sk2,v1 sk2,v4

sk3,v2 sk3,v4

tid1 tid3

tid4

tid4

tid2

Merkle
Tree

Block b-1 Block b

tid1
tid2

tid3
tid4

DigestDigest
Root Hash

…...

Figure 5: A Merkle DAG for storing provenance.
sk2,v4 and sk3,v4 updated by the same transaction
(tid4), but their dependencies are different. b con-
tains two transactions, tid3 and tid4. Its latest states
include sk1,v3 , sk2,v4 , sk3,v4 , from which a Merkle tree
is built.

Definition 2. The dependency of state s is a subset of
the input states of the transaction that outputs s. More
specifically:

dep(s) ⊂ Si
tid where s ∈ So

tid.

We note that dep, which is returned by prov_helper
method, is only a subset of the read set.

Definition 3. The entry Esk,v of the state sk,v is a tu-
ple containing the current version, the state value, and the
hashes of the entries of its dependent state. More specifi-
cally:

Esk,v = 〈v, sk,v, {hash(Es′)|s′ ∈ dep(sk,v)}〉

An entry uniquely identifies a state. In LineageChain, we
associate each entry with its corresponding hash.

Definition 4. The set of latest states at block b, denoted
as Slatest,b is defined as:

Slatest,b =
⋃
k

{sbk}

Let Ub be the updated states in block b. We can compute
Slatest,b by recursively combining Ub with Slatest,b−1 \ Ub.

Definition 5. χb is the root of a Merkle tree built on the
map Sb where

Sb = {k : hash(Esb
k
)|∀sbk ∈ Slatest,b}.

LineageChain stores χb as the state digest in the block
header.

4.2 Discussion
Our new Merkle DAG can be easily integrated to existing

blockchain index structures. In particular, existing Merkle
index such as MPT stores state values directly at the leaves,
whereas the Merkle DAG in LineageChain stores the entry
hashes of the latest state versions at the leaves. By adding
one more level of indirection, we maintain the three proper-
ties of the index (tamper evidence, incremental update and
snapshot), while enhancing it with the ability to traverse the
DAG to extract fine-grained provenance information.

sk1,v1 sk1,v3

sk2,v2

sk0,v2 sk0,v4

sk2,v4

Figure 6: Forward tracking support. After sk1,v1 is
updated, there can only be sk0,v2 and sk2,v2 that are
dependent on sk1,v1 . Future states can only depend
on sk1,v3. Forward pointers of sk1,v1 are stored in the
entry of sk1,v3 .

Recall that the state entry hash captures the entire evolu-
tion history of the state. Since this hash is protected by the
Merkle index for tamper evidence, so is the state history.
In other words, we add integrity protection for provenance
without any extra cost to the index structure. For exam-
ple, suppose a client wants to read a specific version of a
state, it first reads the state entry hash at the latest block.
This read operation can be verified against tampering, as
in existing blockchains. Next, the client traverses the DAG
from this hash to read the required version. Because the
DAG is tamper evident, the integrity of the read version is
guaranteed.

4.3 Support for Forward Tracking
One problem of the above DAG model is that it does not

support forward tracking, because the hash pointers only
reference backward dependencies. When a state is updated,
these backward dependencies are permanently established,
so that they belong to the immutable derivation history of
the state. However, the state can be read by future trans-
action, therefore its forward dependencies cannot be deter-
mined at the time of update.
Our key insight here is that only forward dependencies

of the latest state are mutable. Once the state is updated,
due to the execution model of blockchain smart contract,
in which the latest state is always read, forward dependen-
cies of the previous state version becomes permanent. As a
result, they can be included into the derivation history. Fig-
ure 6 illustrates an example, in which forward dependencies
of sk1,v1 becomes fixed when the state is updated to sk1,v3 .
This is because when the transaction that outputs sk0,v4 is
executed, it reads sk1,v3 instead of sk1,v1 .
In LineageChain, for each state sk,v at its latest version,

we buffer a list of forward pointers to the entries whose de-
pendencies include sk,v. We refer to this list as Fsk,v , which
is defined more precisely as follows:

Fsk,v = {hash(Es′)|sk,v ∈ dep(s′)}

When the state is updated to sk,v′ for v′ > v, we store Fsk,v

at the entry of sk,v′ .

5. EFFICIENT PROVENANCE QUERIES
The Merkle DAG structure supports efficient access to the

latest state version, since the state index at block b contains
pointers to all the latest versions at this block. To read the
latest version of s, one simply reads χb, follows the index
to the entry for s, and then reads the state value from the
entry. However, querying an arbitrary version in the DAG
is inefficient, because one has to start at the DAG head

struct Node {
Version v;
Value val;
List<Version> pre_versions;
List<Node*> pre_nodes;

}
Figure 7: A Node structure that captures a state
sk,v with value val

1 3 5 10L0:

1 3 5 10L1:

1 5 10L2:

1 10L3:
0 7 8 15

0 34 7 8 11

(a)

1 3 5 10 12 16L0:
1 3 5 10 12 16L1:
1 5 10 12 16L2:
1 10 16L3:

1 16L4:
0 7 8 15 16 23

0 15 16
1 16L5:
0 31

31

(b)
Figure 8: (a) A DASL containing versions 1, 3, 5
and 10. The base b is 2. The intervals for L2 and
L3 are shown in blue lines. (b) The new DASL after
appending version 12 and 16. L4 is created when
appending version 16. L5 is created, then discarded.

and traverse a long the edges towards the requested ver-
sion. Supporting fast version queries is important when the
user wants to examine the state history only from a specific
version (for auditing purposes, for example). It is also im-
portant for provenance-dependent smart contracts because
such queries directly affect contract execution time.
In this section, we describe a novel index that facilitates

fast version queries. The index is designed for permissioned
blockchains. We discuss its efficiency and how to extend it
to permisionless blockchains.

5.1 Deterministic Append-Only Skip List
We propose to build an index on top of a state DAG to

enable fast version queries. The index has a skip list struc-
ture, which we call Deterministic Append-only Skip List (or
DASL). It is designed for blockchains, exploiting the fact
that the blockchain is append-only, and randomness is not
well supported [10]. More specifically, a DASL has two dis-
tinct properties compared to a normal skip list. First, it is
append-only. The index keys of the appended items, which
are versions in our case, are strictly increasing. Second,
it is deterministic, that is, the index structure is uniquely
determined by the values of the appended items, unlike a
stochastic skip list. For ease of explanation, we assume that
version numbers are positive integers.

Definition 6. Let Vk = 〈v0, v1, ...〉 be the sequence of
version numbers of states with identifier k, in which vi < vj
for all i < j. A DASL index for k consists of N linked
lists L0, L1, .., LN−1. Let vi−1

j and vij be the versions in the
(j − 1)th and jth node of list Li. Let b be the base number,
a system-wide parameter. The content of Li is constructed
as follows:
1) v0 ∈ Li

2) Given vij−1, vij is the smallest version in Vk such that:⌊
vij−1

bi

⌋
<

⌊
vij
bi

⌋
(5)

Figure 7 shows how DASL is stored with the state in a
data structure called Node. This structure (also referred to

Algorithm 2: DASL Append
Input: version v and last node last
Output: previous versions and nodes

1 level=0; // list level
2 pre_versions = [];
3 pre_nodes = [];
4 finish = false ;
5 cur = last ;
6 while not finish do
7 l = cur->pre_versions.size() ;
8 if l > 0 then
9 for j=level; j<l; ++j do

10 if cur->version / bj < v / bj then
11 pre_versions.append(cur->version);
12 pre_nodes.append(cur);
13 else
14 finish = true;
15 break;
16 if not finish then
17 cur = cur->pre_versions[l-1] ;
18 level = l

19 else
/* We have reached the last level */

20 finish = true;
21 while cur->version / blevel < v / blevel do
22 ++level;
23 pre_versions.append(cur->version);
24 pre_nodes.append(cur);
25 return pre_version, pre_nodes;

as node) consists of the state version and value. A node
belongs to multiple lists (or levels), hence it maintains a
list of pointers to some version numbers, and another list of
pointers to other nodes. Both lists are of size N , and the ith

entry of a list points to the previous version (or the previous
node) of this node in level Li. For the same key, the version
number uniquely identifies the node, hence we use version
numbers to refer to the corresponding nodes.
We can view a list as consisting of continuous, non-

overlapping intervals of certain sizes. In particular, the jth

interval of Li represents the range Ri
j = [jbi, (j+1)bi). Only

the smallest version in Vk that falls in this range is included
in the list. Figure 8(a) gives an example of a DASL structure
with b = 2. It can be seen that when the version numbers
are sparsely distributed, the lists at lower levels are identi-
cal. In this case, b can be increased to create larger intervals
which can reduce the overlapping among lower-level lists.
A DASL and a skip list share two properties. First, if a

version number appears in Li, it also appears in Lj where
j < i. Second, with b = 2, suppose the last level that a ver-
sion appears in is i, then this version’s preceding neighbour
in Li appears in Lj where j > i. Given these properties,
a query for a version in the DASL is executed in the same
way as in the skip list. More specifically, the query traverses
a high-level list as much as possible, starting from the last
version in the last list. It moves to a lower level only if the
preceding version in the current list is strictly smaller than
the requested version. In DASL, the query for version vq
returns the largest version v ∈ Vk such that v ≤ vq (the
inequality occurs when vq does not exist). This result rep-
resents the value of the state which is visible at time of vq.

We now describe how a new node is appended to DASL.
The challenge is to determine the lists that should include
the new node. Algorithm 2 details the steps that find the
lists, and subsequently the previous versions, of the new
node. The key idea is to start from the last node in L0, then
keep increasing the list level until the current node and the
new node belong to the same interval (line 9 - 18). Figure
8(b) shows the result of appending a node with version 12
to the original DASL. The algorithm starts at node 10 and
moves up to list L1 and L2. It stops at L3 because in this
level node 10 and 12 belong to the same interval, i.e., [8, 16).
Thus, the new node is appended to list L0 to L2. When the
algorithm reaches the last level and is still able to append, it
creates a new level where node 0 is the first entry and repeats
the process (line 21 - 24). In Figure 8(b), when appending
version 16, all existing lists can be used. The algorithm then
creates L4 with node 1 and appends the node 16 to it. It
also creates level L5, but then discards it because node 16
will not be appended since it belongs to same interval of
[0, 32) with node 1.

5.2 Discussion
Integrating to Merkle DAG The DASL is integrated to
the Merkle DAG as follows. The node structure (Figure 7) is
stored in the state entry (Definition 3). The node pointers
are implemented entry hashes. The Merkle tree structure
remains unchanged.

Speed-storage tradeoff As a skip list variant, DASL
shares the same lineage space complexity and logarithmic
query time complexity. Suppose there are v∗ number of ver-
sions and the base of DASL is b. The maximum number of
required pointers is b(v∗−1)

b−1
. (There are at most dlogb v∗e

levels and the i-th level takes at most d v
∗

bi
e − 1 pointers.)

Suppose the queried version is vq and the query distance
d = v∗ − vq, the maximum number of hops in such query
is capped at 2bdlogb de. (A query traversal from the end
will undergo two stages, one stage towards lower levels and
the other stage back towards upper levels. In each stage,
the traversal will take at most b hops on the same list before
moving to the next level. And there are at most dlogb de lev-
els to traverse.) Hence, b controls the tradeoff between the
space overhead and query delay. One benefit of this prop-
erty is that DASL queries favor more recent versions, i.e. d
are small, which is useful for smart contracts that work use
recent rather than old versions. Another benefit is that the
performance of such recent-version queries does not change
as the state history grows.

Extending to permissionless blockchains. We note
that DASL incurs storage overhead. The version query also
incurs some computation cost, even though it is more effi-
cient with DASL than without it. These costs may be small
enough such that they do not affect the performance of a
permissioned blockchain, as we demonstrate in Section 7.
However, they need to be carefully managed in a permi-
sionless blockchain where any overhead directly translates
to monetary cost to the miners. In particular, any addi-
tional cost to the miner triggers the Verifier Dilemma [26]
and compromises the incentive mechanism of the blockchain.
A malicious user could issue a transaction that references

a very old version. Reading earlier versions is more expen-
sive, because there are more hops involved. This overhead
is born by all nodes in the network, since every node in the

Storage Layer

ForkBase

 DAG Model with DASL Index

Execution Layer

Provenance

Consensus Layer (Unchanged)

Application

Provenance Helper
Method Specification

Provenance
Query Handler

Original
Handler

Execution Engine
Provenane

Engine
Accessed States

Figure 9: LineageChain’s software stack. The
original storage layer is replaced with the imple-
mentation that supports fine-grained provenance.
The original execution layer is instrumented with a
provenance capture engine. The application layer
contains the new helper method and provenance
query APIs. The consensus layer is unchanged.

network has to execute the same transaction. Current public
blockchains prevent such denial-of-service attack by explic-
itly charging a fee for each operation in the transaction. In
Ethereum, the transaction owner pays for the resource con-
sumption in gas. A transaction that writes more data or
consumes more CPUs has to pay more gas. Thus, rational
users are deterred from running too complex transactions
on the blockchain.
As DASL consumes resources, its costs must be explicitly

accounted for in permissionless blockchains. More specifi-
cally, during deployment, the contract owner specifies which
states require DASL support. Alternatively, DASL support
can be automatically inferred from the contract’s source
code. The deployment fee should reflect this extra storage
cost for DASL. If the fee is too high, the owner can lower it
by increasing b. During contract execution, the execution
engine must charge the cost of DASL queries to the trans-
action fee. In particular, a query that requires more hops
to find the requested version incurs a higher transaction fee.
Users may empirically estimate the hops (as well as the cost)
based on the above-derived theoretical upper bound.

6. IMPLEMENTATION
In this section, we present our implementation of Lin-

eageChain based on Hyperledger. We implement Lin-
eageChain both on Hyperledger v0.6 and v1.3. Although
the two blockchains follow different designs, they share the
same four logical layers: storage, execution, consensus and
application layer [19]. Figure 9 depicts these layers and high-
lights the changes we make to the original Hyperledger’s
stack. In particular, we completely replace Hyperledger’s
storage layer with our implementation of the Merkle DAG
and DASL index. This new storage is built on top of Fork-
Base [37], a state-of-the-art blockchain storage system with
support for version tracking. We instrument the original ex-
ecution engine to record read and write sets during contract
execution. At the application layer we add a new helper
method and three provenance APIs. The execution engine

Algorithm 3: Provenance update and digest Computa-
tion

1 fb.Map<id,vid> latest;
2 String branch = "default";
// Buffered forward pointers

3 Map<id, List<vid» forward;
Input: id, version, value of the updated state
Input: ids of the dependent states, dep_ids

4 Function Update(id, version, value, dep_ids):
/* Backward pointers */

5 List<vid> back_vids;
6 for dep_id in dep_ids do
7 back_vid = latest[dep_id];
8 back_vids.push_back(back_vid);

/* Forward pointers */
9 forward_vids = forward[id];

10
/* Retrieve pointer to last DASL node */

11 last_vid = latest[id];
/* Refer DASL Append in Algorithm 2 */

12 pre_versions, pre_vids = DaslAppend(version,
last_vid);

13 node = new DaslNode{version, pre_versions,
pre_vids} ;

14 meta = Serialize(back_vids, forward_vids, node) ;
15

/* Store the updated value */
16 new_vid = fb.Put(id, branch, value, meta);
17

/* Update forward pointers */
18 for dep_id in dep_ids do
19 forward[dep_id].push_back(new_vid);
20 forward[id].Clear();
21 latest[id] = new_vid;
22

Output: The state digest for the committed block
23 Function ComputeDigest():
24 latest_vid = fb.Put("state", branch, latest, nil);
25 return latest_vid;

is modified to invoke the helper method after every success-
ful contract execution.

6.1 Storage Layer Implementation
Instead of implementing the storage layer from scratch,

we leverage ForkBase for its support of version tracking. We
exploit three properties of ForkBase in LineageChain. The
first is the fork semantics, with which the application can
specify a branch for the update. Given a branch, ForkBase
provides access to the latest value. The second property is
tamper evidence, in which every update returns a tamper-
evident identifier vid which captures the entire evolution
history of the updated value. A data object in ForkBase
is uniquely identified by the key and vid. In LineageChain,
vid is used as the entry hash in the DAG, and as the pointer
in DASL. The third property is the rich set of built-in data
types including map, list and set.
Algorithm 3 details our implementation for updating

states and computing the global state digest when a block
is being committed. The update function is invoked with
a new state and a list of dependencies. We first prepare
the list of backward pointers by retrieving the latest vids of

the dependent states (line 5-8). Next, we build the pointers
for the DASL index, then retrieve the forward pointers of
the previous state (line 9). The metadata from these steps
are serialized and stored together with the updated value
in ForkBase (line 14-16). The result is a new vid for the
update, which is appended to the list of forward pointers
of every dependent state (line 18-20). vid is now the latest
version (line 21).
The global states are stored in a map object in ForkBase.

To compute the global state digest, we simply update the
map object with the new vids computed for this block. The
update operation of the map object, which is built as a
Merkle tree in ForkBase, returns a digest latest_vid which
is then included to the block header. This digest provides
tamper evidence for the evolution histories of all the states
up to the current block.

6.2 Application and Execution Layer Imple-
mentation

In Hyperledger, users write their smart contracts by im-
plementing the Chaincode interface. Given a chaincode, the
execution engine triggers the Init and Invoke method dur-
ing deployment and invocation respectively. Both methods
take as input an instance of ChaincodeStubInterface which
supplies relevant context, such as access to the ledger states,
to the smart contract.
We add the helper method, called ProvHelper, to the

Chaincode interface. This method’s signature, and how to
write user-defined provenance rules with it, are explained in
Section 3. The execution engine intercepts PutState and
GetStates during execution to record the read set and the
write set. It invokes ProvHelper when the execution fin-
ishes, passing it the ChaincodeStubInterface, the name of
the method, and the recorded read and write sets. The three
new provenance APIs, namely Hist, Backward and Forward,
are added to ChaincodeStubInterface and therefore are ac-
cessible to all contract methods.

7. PERFORMANCE EVALUATION

7.1 Baselines and Experimental Setup
We evaluate LineageChain against two baselines. In the

first baseline, called Hyperledger+, we directly store prove-
nance information to Hyperledger’s original storage, i.e.,
RocksDB, and relies on RocksDB’s internal index to sup-
port provenance query. In the second baseline, called
LineageChain–, we use ForkBase for the storage of state
versions. This baseline does not support multi-state depen-
dency, nor does it have DASL index. We use this to evaluate
the storage overhead for the index and for tracking multi-
state dependency, and performance benefits of the index.
We perform three sets of experiments. First, we eval-

uate the performance of LineageChain for provenance-
dependent blockchain applications. We compare it against
the approach that queries provenance offline before issuing
blockchain transactions. Second, we evaluate the perfor-
mance of provenance queries in LineageChain on a single
machine. For single-state version queries, we use the YCSB
benchmark provided in BLOCKBENCH [19] to populate the
blockchain states with key-value tuples. We then measure
the latencies of two queries: one that retrieves a state at
a specific block, and one that iterates over the state his-
tory. For multi-state dependency tracking, we implement a

contract for a supply chain application In this application, a
phone is assembled from intermediary components which are
made from other components or raw material. The supply
chain creates a DAG representing the derivation history of a
phone. The maximum depth of the DAG is 6. We generate
synthetic data for this contract, and examine the latency of
the operation that uses Backtrack to retrieve dependencies
of a given phone.
In the third set of experiments, we evaluate the prove-

nance impact on the overall performance of the blockchain
in the distributed setting. To this end, we run the Small-
bank benchmark in BLOCKBENCH on multiple nodes. We
measure the overall throughput, and analyze the cost break-
down to understand the overhead of provenance support.
Our experiments are conducted on a local clusters of 16

nodes. Each node is equipped with E5-1650 3.5GHz CPU,
32GB RAM, and 2TB hard disk. The nodes are connected
via 1Gbps Ethernet. The results reported are based on Hy-
perledger v0.6, unless stated otherwise.

7.2 Experimental Results

Provenance-dependent applications
We implement a simple provenance-dependent blockchain
application by modifying the YCSB benchmark in BLOCK-
BENCH such that the update operation depends on his-
torical values. With LineageChain, the contract has direct
access to the provenance information, and the client remains
the same as in the original YCSB. Without LineageChain,
the client is modified such that it reads B latest blocks be-
fore issuing transactions. B represents how far behind the
client is to the latest states.
We run the experiments using the LineageChain imple-

mentation on Hyperledger v1.3, with 16 nodes and 1 client.
Figure 10(a) shows transaction latency with varying B. It
can be seen that with LineageChain, the latency remains
almost constant because the client does not have to fetch
any block for the provenance query. In contrast, without
LineageChain, the latency increases linearly with B. This
demonstrates the performance benefit of having access to
provenance information at runtime.

Provenance queries
We first create 500 key-value tuples and then continuously
issue update transactions until there are more 10k blocks
in the ledger. Each block contains 500 transactions. We
then execute a query for the values of a key at different
block numbers. Figure 11(a) illustrates the query latency
with increasing block distance from the last block. It can be
seen that when the distance is small, LineageChain– has the
lowest latency. LineageChain– does not have DASL index,
hence for this query it performs linear scan from the latest
version. Therefore, it is fast when the requested version is
very recent because the number of read is small. However,
its performance degrades quickly as the distance increases.
In particular, when the block distance reaches 128, the query
is 4× slower than LineageChain. We observe that the query
latency in Hyperledger+ is independent of the block dis-
tance. It is because the query uses RocksDB index directly.
LineageChain outperforms both LineageChain– and Hyper-
ledger+. Due to DASL, the query latency in LineageChain

1 10 20 30 40 50
of fetched block

5000

10000

m
s

Transaction latency
with LineageChain w/o LineageChain

(a)

1 2 3 4 5 6
Search level

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
s

Breadth first search
LineageChain
Hyperledger+

(b)
Figure 10: Performance of (a) a provenance-
dependent blockchain application and (b) BFS
Traversal latency

is low when the block distance is small. When the block dis-
tance increases, the latency in LineageChain increases only
logarithmically, as opposed to linearly in LineageChain–.
We repeat the experiment above while fixing the block

distance to 64 and varying the total number of blocks. Fig-
ure 11(b) shows the results for the version query when the
number of block increases. It can be seen that the query
latency in both LineageChain and Hyperledger+ remains
roughly the same. In other words, the performance of ver-
sion queries in these systems are independent of the block
numbers, which is due to the DAG data model that tracks
state versions. LineageChain outperforms Hyperledger+
thanks to the index that reduces the number of hops needed
to be read. An interesting observation is that the latency
of Hyperledger+ fluctuates significantly. We attribute this
fluctuation to RocksDB’s log-structure-merge tree index, in
which the requested version may reside at different levels of
the tree when the total number of block increases.
Next, we measure the latency for the operation that scan

the entire version history of a given key. Figure 11(c) shows
the scan latency with increasing number of blocks. For Hy-
perledger+, we first construct the key range and rely on
RocksDB iterator for the scanning. LineageChain– and Lin-
eageChain both use ForkBase iterator, therefore they have
the same performance. As the number of block increases,
the version history becomes longer which accounts for the
linear increase in latency in both systems. However, Lin-
eageChain outperforms Hyperledger+ by a constant factor.
We attribute this difference to ForkBase’s optimizations for
version tracking.
Finally, we evaluate the query performance with multi-

state dependency. We populate the blockchain states with
raw materials and issue transactions that create new phones.
We perform a breadth-first search to retrieve all the depen-
dencies of a phone. For this experiment, we only compare
Hyperledger+ and LineageChain, because LineageChain–
does not support multi-state dependencies. Figure 10(b)

21 23 25 27

Block distance
0.00

0.05

0.10

0.15

0.20

m
s

Version query
Hyperledger+
LineageChain-

LineageChain

(a)

210 211 212 213 214

of blocks
0.02

0.04

0.06

0.08

m
s

Version query (distance=64)
Hyperledger+
LineageChain-

LineageChain

(b)

2 4 6 8 10
of blocks (x1000)

0.0

2.5

5.0

7.5

10.0

12.5

m
s

Version scan
Hyperledger+ LineageChain

(c)
Figure 11: Latency of the version query on YCSB with increasing block distance (a) and increasing number
of blocks (b). Latency of the version scan with increasing block number (c).

1 4 8 12 16
of nodes

0

500

1000

1500

2000

m
s

Latency

1 4 8 12 16
of nodes

0

50

100

150

tp
s

Throughput
Hyperledger+ LineageChain- LineageChain

Figure 12: Performance under Smallbank workload.

shows the performance with varying search depths, in
which the latency of both Hyperledger+ and LineageChain
grow exponentially with increasing depths. However, Lin-
eageChain outperforms the baseline. It is because the in-
dex in LineageChain directly captures the dependencies,
whereas each backtrack operation in Hyperledger+ requires
traversing on RocksDB index. As the number of queries
increases with the search level, their performance gap accu-
mulates.

LineageChain overhead
We run the Smallbank benchmark with a single client and
increasing number of nodes. The client uses 16 threads and
issues 16 transactions per second. We examine the over-
head of provenance support on the overall performance of
the blockchain.
Figure 12 shows the transaction latency and overall

throughput. We do not observe significant differences be-
tween LineageChain and the other baselines. In particular,
the transaction latency is around 1.2s, and the throughput
decreases from roughly 118tps to 108tps.
We break down the block latency into three components:

consensus latency (the block proposal phase), execution la-
tency (when transactions are executed), and commit latency
(when the states are committed to the storage). Figure 13
shows the detailed breakdown when the number of nodes
is 8, 12 and 16. It can be seen that the execution phase

H+ L- L
8 nodes

0

50

100

150

m
s

H+ L- L
12 nodes

H+ L- L
16 nodes

Commit Execute Consensus

Figure 13: Latency breakdown. H+, L-, L stands
for Hyperledger+, LineageChain– and LineageChain
respectively.

accounts for a majority of the cost. There is no significant
difference in block execution time of Hyperledger+ and Lin-
eageChain. Hence, the overhead of the provenance capture
engine is negligible.
The block commit latency in LineageChain– and Lin-

eageChain are 2× higher than that of Hyperledger+. It is
due to ForkBase’s computation to update its internal data
structures during commit. However, the block commit phase
accounts for less than 20% of the total block latency. We
further note that the transaction latency is in order of sec-
onds, whereas a block latency is in in order of hundreds of
milliseconds. Thus, any extra overhead incurred by prove-
nance support does not result in any visible differences in
the user-perceived performance of the blockchain.
Next, we examine the breakdown in storage cost of Lin-

eageChain. Figure 14 shows the storage breakdown with
varying number of blocks. The block size is fixed at 500
transactions per block. Figure 14 shows the breakdown with
varying block sizes, while fixing the number of blocks at
1000. It can be seen that the storage size grows linearly
with the number of blocks and block sizes. We observe
that the block content accounts for the majority the storage
cost. In contrast, the extra provenance and DASL index
account for only 2− 4% of the total space consumption. In
LineageChain, the DASL pointers are implemented as 20-
byte vid strings. A new state will at most add D + log(N)
new pointers where N is the number of previous versions
and D is the number of dependent states. When compared
with kilobyte-sized blocks, the storage consumption of these
pointers is not significant. As a result, the storage overhead
of DASL is small.
Finally, we evaluate LineageChain overhead on Hyper-

ledger v1.3. This version of Hyperledger uses a different

0 2 4 6 8
of blocks (x100)

0

50

100

150

200
M

B

0 1 2 3 4 5 6
of transactions in a block

0

50

100

150

200

M
B

5

0

5

Pe
rc

en
ta

ge
(%

)

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

en
ta

ge
(%

)Storage cost

Block
Historical State

Dependency & Index
Meta Field Ratio

Figure 14: Storage cost breakdown.

270 300 330 360 390 420 450
Client rate (tps)

0
1000
2000
3000
4000

m
s

Latency

270 300 330 360 390 420 450
Client rate (tps)

200

300

400

tp
s

Throughput
Hyperledger Hyperledger+ LineageChain- LineageChain

Figure 15: Performance on Hyperledger v1.3

consensus protocol and more simplified data model than
v0.6. We use 16 nodes and vary the offer load by increasing
the client’s transaction rate. Figure 15 shows the perfor-
mance overhead. At saturation, LineageChain– and Lin-
eageChain add less than 200ms in latency, compared to the
original Hyperledger that has no provenance support. In
contrast, Hyperledger+ adds more than 1s. LineageChain–
and LineageChain reach similar throughput as the original
Hyperledger, which is around 350tps. Hyperledger+ peaks
at around 330tps. These results demonstrate that Lin-
eageChain’s overhead over the original Hyperledger is small.

8. RELATED WORK
Data Provenance Data provenance has been studied

extensively in database systems. Support for provenance
has been added to a wide range of systems, from relational
databases [13, 14, 8], collaborative data sharing systems [23,
33], to big data platforms [30, 5, 36]. However, these sys-
tems have different requirements on provenance and there-
fore face different challenges. As a result, their provenance
solutions are ad-hoc and do not generalize well. In relational
databases, Peter Buneman et al. [9] propose an approach
for query provenance, in which they identify two types of
provenance for databases: "why" and "where" provenance.
In Hadoop and other MapReduce systems, data derivation

graphs are established based on the data flow from map-
pers to reducers [21]. Titian [22] instruments Spark’s orig-
inal RDDs to capture data transformation. Other works
exploit provenance in specific application domains, such as
networks [12], language processing [17] and interactive work-
flow applications [31]. They focus on improving provenance
storage and query efficiency.
Our work shares the same spirit as the above. We add

provenance capabilities to blockchains, which enables a new
class of blockchain applications. We design a new data
model and index that are optimized for blockchains. Our
system addresses the unique challenges raised by the decen-
tralization nature of blockchains.
Blockchain Most research in blockchain systems focuses

on security of permissionless blockchains. One open chal-
lenge is to improve incentive compatibility. A protocol is
incentive compatible if honest participants get rewards pro-
portional to its contributions to the network. Bitcoin, for
example, is not incentive compatible [20, 32, 28]. Another
challenge is to improve smart contracts security. Recent
vulnerabilities in Ethereum that resulted in substantial fi-
nancial loss has prompted many efforts in finding bugs and
securing smart contracts with programming language tech-
niques [6, 16, 25]. As a data management system, blockchain
has poor performance. BLOCKBENCH [19] compares sev-
eral blockchains with in-memory databases and shows orders
of magnitude difference in transaction throughput.
Our work aims to enrich blockchain capabilities by in-

troducing provenance. It is orthogonal to those above that
aim to improve security and performance of the consensus
protocol. The most closely related work to ours is Fork-
Base [37]. In fact, current LineageChain implementation
is built on top of ForkBase to leverage its version tracking
capability. However, our novelties over ForkBase include
multi-state dependency tracking, efficient index, and rich
APIs for accessing provenance at runtime. Another similar
recent work is VChain [38], where researchers achieve the in-
tegrity of boolean range queries over the historical data on
blockchain databases. But different from ours, they are op-
timizing for the offline analytical query. Instead, we extend
the provenance support to blockchain online transactions.

9. CONCLUSIONS
In this paper, we presented LineageChain, a fine-grained,

secure and efficient provenance system for blockchains. The
system efficiently captures provenance information during
runtime and stores it in a secure storage. It exposes sim-
ple APIs to smart contracts, which enables a new class of
provenance-dependent blockchain applications. Provenance
queries are efficient in LineageChain, thanks to a novel skip
list index. We implemented LineageChain on top of Hyper-
ledger and benchmarked it against several baselines. The re-
sults show the benefits of LineageChain in supporting rich,
provenance-dependent applications. They demonstrate that
provenance queries are efficient, and that the system incurs
small storage overhead.

10. ACKNOWLEDGMENTS
This research is supported by Singapore Ministry of Edu-

cation Academic Research Fund Tier 3 under MOE’s official
grant number MOE2017-T3-1-007.

11. REFERENCES
[1] Ethereum. https://www.ethereum.org.
[2] Hyperledger. https://www.hyperledger.org.
[3] Hyperledger++. https://www.comp.nus.edu.sg/

~dbsystem/hyperledger++/index.html.
[4] Medilot. https://medilot.com.
[5] S. Akoush, R. Sohan, and A. Hopper. Hadoopprov:

Towards provenance as a first class citizen in
mapreduce. In TaPP, 2013.

[6] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of
attacks on ethereum smart contracts (sok). In
Principles of Security and Trust, pages 164–186.
Springer, 2017.

[7] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi,
P. McCorry, S. Meiklejohn, and G. Danezis.
Consensus in the age of blockchain.
https://arxiv.org/abs/1711.03936, 2018.

[8] P. Buneman, A. Chapman, and J. Cheney. Provenance
management in curated databases. In Proceedings of
the 2006 ACM SIGMOD international conference on
Management of data, pages 539–550. ACM, 2006.

[9] P. Buneman, S. Khanna, and T. Wang-Chiew. Why
and where: A characterization of data provenance. In
International conference on database theory, pages
316–330. Springer, 2001.

[10] C. Cachin, S. Schubert, and M. Vukolić.
Non-determinism in byzantine fault-tolerant
replication. arXiv preprint arXiv:1603.07351, 2016.

[11] M. Castro, B. Liskov, et al. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173–186, 1999.

[12] C. Chen, H. T. Lehri, L. Kuan Loh, A. Alur, L. Jia,
B. T. Loo, and W. Zhou. Distributed provenance
compression. In Proceedings of the 2017 ACM
International Conference on Management of Data,
pages 203–218. ACM, 2017.

[13] J. Cheney, L. Chiticariu, W.-C. Tan, et al. Provenance
in databases: Why, how, and where. Foundations and
Trends R© in Databases, 1(4):379–474, 2009.

[14] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya.
Dbnotes: a post-it system for relational databases
based on provenance. In Proceedings of the 2005 ACM
SIGMOD international conference on Management of
data, pages 942–944. ACM, 2005.

[15] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang,
Q. Lin, and B. C. Ooi. Towards scaling blockchain
systems via sharding. arXiv preprint
arXiv:1804.00399, 2018.

[16] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and
E. Shi. Step by step towards creating a safe smart
contract: Lessons and insights from a cryptocurrency
lab. In International Conference on Financial
Cryptography and Data Security, pages 79–94.
Springer, 2016.

[17] D. Deutch, N. Frost, and A. Gilad. Provenance for
natural language queries. Proceedings of the VLDB
Endowment, 10(5):577–588, 2017.

[18] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi,
and J. Wang. Untangling blockchain: A data
processing view of blockchain systems. IEEE
Transactions on Knowledge and Data Engineering,
30(7):1366–1385, 2018.

[19] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi,

and K.-L. Tan. Blockbench: A framework for
analyzing private blockchains. In Proceedings of the
2017 ACM International Conference on Management
of Data, pages 1085–1100. ACM, 2017.

[20] I. Eyal and E. G. Sirer. Majority is not enough:
Bitcoin mining is vulnerable. Communications of the
ACM, 61(7):95–102, 2018.

[21] R. Ikeda, H. Park, and J. Widom. Provenance for
generalized map and reduce workflows. 2011.

[22] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar,
S. Yoo, M. Kim, T. Millstein, and T. Condie. Titian:
Data provenance support in spark. Proceedings of the
VLDB Endowment, 9(3):216–227, 2015.

[23] Z. G. Ives, T. J. Green, G. Karvounarakis, N. E.
Taylor, V. Tannen, P. P. Talukdar, M. Jacob, and
F. Pereira. The orchestra collaborative data sharing
system. ACM Sigmod Record, 37(3):26–32, 2008.

[24] K. Korpela, J. Hallikas, and T. Dahlberg. Digital
supply chain transformation toward blockchain
integration. In proceedings of the 50th Hawaii
international conference on system sciences, 2017.

[25] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and
A. Hobor. Making smart contracts smarter. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages
254–269. ACM, 2016.

[26] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena.
Demystifying incentives in the consensus computer. In
CCS, 2015.

[27] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. https://bitcoin.org/bitcoin.pdf, 2009.

[28] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn
mining: Generalizing selfish mining and combining
with an eclipse attack. In Security and Privacy
(EuroS&P), 2016 IEEE European Symposium on,
pages 305–320. IEEE, 2016.

[29] Q. K. Nguyen. Blockchain-a financial technology for
future sustainable development. In 2016 3rd
International Conference on Green Technology and
Sustainable Development (GTSD), pages 51–54. IEEE,
2016.

[30] H. Park, R. Ikeda, and J. Widom. Ramp: A system
for capturing and tracing provenance in mapreduce
workflows. 2011.

[31] F. Psallidas and E. Wu. Smoke: Fine-grained lineage
at interactive speed. Proceedings of the VLDB
Endowment, 11(6):719–732, 2018.

[32] A. Sapirshtein, Y. Sompolinsky, and A. Zohar.
Optimal selfish mining strategies in bitcoin. In
International Conference on Financial Cryptography
and Data Security, pages 515–532. Springer, 2016.

[33] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of
data provenance in e-science. ACM Sigmod Record,
34(3):31–36, 2005.

[34] A. Tapscott and D. Tapscott. How blockchain is
changing finance. Harvard Business Review, 1(9),
2017.

[35] F. Tian. An agri-food supply chain traceability system
for china based on rfid & blockchain technology. In
Service Systems and Service Management (ICSSSM),
2016 13th International Conference on, pages 1–6.
IEEE, 2016.

[36] J. Wang, D. Crawl, S. Purawat, M. Nguyen, and
I. Altintas. Big data provenance: Challenges, state of
the art and opportunities. In Big Data (Big Data),
2015 IEEE International Conference on, pages
2509–2516. IEEE, 2015.

[37] S. Wang, T. T. A. Dinh, Q. Lin, Z. Xie, M. Zhang,
Q. Cai, G. Chen, B. C. Ooi, and P. Ruan. Forkbase:

An efficient storage engine for blockchain and forkable
applications. Proc. VLDB Endow., 11(10):1137–1150,
June 2018.

[38] C. Xu, C. Zhang, and J. Xu. vchain: Enabling
verifiable boolean range queries over blockchain
databases. arXiv preprint arXiv:1812.02386, 2018.

