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Abstract—The increase in the capacity of main memory
coupled with the decrease in cost has fueled the development of in-
memory database systems that manage data entirely in memory,
thereby eliminating the disk I/O bottleneck. However, as we shall
explain, in the Big Data era, maintaining all data in memory is
impossible, and even unnecessary. Ideally we would like to have
the high access speed of memory, with the large capacity and low
price of disk. This hinges on the ability to effectively utilize both
the main memory and disk.

In this paper, we analyze state-of-the-art approaches to
achieving this goal for in-memory databases, which is called
as “Anti-Caching” to distinguish it from traditional caching
mechanisms. We conduct extensive experiments to study the effect
of each fine-grained component of the entire process of “Anti-
Caching” on both performance and prediction accuracy. To avoid
the interference from other unrelated components of specific
systems, we implement these approaches on a uniform platform
to ensure a fair comparison. We also study the usability of each
approach, and how intrusive it is to the systems that intend to
incorporate it. Based on our findings, we propose some guidelines
on designing a good “Anti-Caching” approach, and sketch a
general and efficient approach, which can be utilized in most
in-memory database systems without much code modification.

I. INTRODUCTION

Data is invaluable in product prediction, scientific explo-
ration, business intelligence, and so on. However, the sheer
quantity and velocity of Big Data have caused problems in
data capturing, storage, maintenance, analysis, search, and
visualization. The management of a huge amount of data is
particularly challenging to the design of database architectures.
In addition, in many instances when dealing with Big Data,
speed is not an option but a must. For example, Facebook
makes an average of 130 internal requests sequentially for
generating the HTML for a page [1], thus making long-
latency data access unacceptable. Supporting ultra-low latency
service is therefore a requirement. Effective and smart decision
making is enabled with the utilization of Big Data, however,
on the condition that real-time analytics is possible. Otherwise,
profitable decisions could become stale and useless. Therefore,
efficient real-time data analytics is important and necessary for
modern database systems.

Distributed and NoSQL databases have been designed for
large scale data processing and high scalability [2], [3], while
the Map-Reduce framework provides a parallel and robust
solution to complex data computation [4], [5]. Synchronous
Pregel-like message-passing [6] or asynchronous GraphLab [7]
processing models have been utilized to tackle large graph

analysis, and stream processing systems [8], [9] have been
designed to deal with the high velocity of data generation.
Recently, in-memory database systems have gained traction as
a means to significantly boost the performance.

A. Towards In-memory Databases

The performance of disk-based databases, slowed down
by unpredictable and high access latency of disks, is no
longer acceptable in meeting the rigorous low-latency, real-
time demands of Big Data. The performance issue is fur-
ther exacerbated by the overhead (e.g., system calls, buffer
manager) hidden by the I/O flow. To meet the strict real-
time requirements for analyzing massive amount of data and
servicing requests within milliseconds, an in-memory database
that keeps data in the main memory all the time is a promising
alternative.

Jim Gray’s insight that “memory is the new disk, disk is
the new tape” is becoming true today – we are witnessing
a trend where memory will eventually replace disk and the
role of disk must inevitably become more archival in nature.
Memory capacity and bandwidth have been doubled every two
years, while its price has been dropping by a factor of 10
every five years. In the last decade, the availability of large
amounts of DRAM at plummeting cost helped to create new
breakthroughs, making it viable to build in-memory databases
where a significant part, if not the entirety, of the database fits
in the main memory.

In-memory databases have been studied as early as the
80s [10], [11], [12], [13]. Recent advances in hardware tech-
nology re-kindled the interest in implementing in-memory
databases as a means to provide faster data accesses and
real-time analytics [14], [15], [16], [17]. Most commercial
database vendors (e.g., SAP, Microsoft, Oracle) have begun
to introduce in-memory databases to support large-scale ap-
plications completely in memory [18], [19], [20], [21]. Nev-
ertheless, in-memory data management is still at its infancy
with many challenges [22], [23], [24], [25], and a completely
in-memory design is not only still prohibitively expensive, but
also unnecessary. Instead, it is important to have a mechanism
for in-memory databases that utilize both memory and disks
effectively. It is similar to the traditional caching process,
which is however the other way around: instead of fetching
data that is needed from disk into main memory, cold data
is evicted to disk, and fetched again only when needed. In
this case, main memory is treated as the main storage, while
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Fig. 1: Caching vs “Anti-Caching”

disk acts as a backup. We call it as “Anti-Caching”1, to
emphasize the opposite direction of data movement. The goal
of “Anti-Caching” is to enable in-memory databases to have
the “capacity as data, speed as memory and price as disk” [27],
[28], being a hybrid and alternative between strictly memory-
based and disk-based databases.

B. Contributions and Paper Organization

The major contributions of this paper are:

1) We investigate various “Anti-Caching” approaches
that are designed for use in both user-space and
kernel-space, and their tradeoffs in terms of both
performance and usability.

2) An experimental study is conducted to analyze the
components of the “Anti-Caching” process, in terms
of the overhead involved, eviction accuracy, I/O ef-
ficiency, CPU utilization and other customized opti-
mizations exclusively for certain scenarios.

3) We present some implications for designing an “Anti-
Caching” approach, and also sketch a general ap-
proach trying to combine the advantages of being in
user-space and kernel-space.

The remainder of this paper is structured as follows.
We give a discussion about the differences between caching
and “Anti-Caching” in Section II. In Section III, we present
state-of-the-art “Anti-Caching” approaches, and their basic
mechanisms. We conduct a thorough experimental analysis of
these approaches, with regards to the performance effect on the
systems in Section IV. Section V summarizes what we derive
from our experimental analysis, and presents some insights and
tradeoffs on designing an “Anti-Caching” approach. Based on
our findings, we sketch an easy-to-use general approach that
can be incorporated into most in-memory databases easily in
Section VI. Section VII concludes the paper.

II. CACHING VS “ANTI-CACHING”

In general, both caching and “Anti-Caching” are utilized
to deal with the gap between main memory and disk in terms
of speed and capacity. Caching is to cache the disk data in
memory to speed up the data access performance, while “Anti-
Caching” is to “anti-cache” the in-memory data onto disk to
extend its storage capacity, as depicted in Figure 1. At the
first glance, they share common goals and deal with the same
level of storages (i.e., main memory and disk), so that identical

1The term anti-caching was first used in [26], referring to the specific
technique used in H-Store. Here we extend the term to mean a general
mechanism that deals with data overflow for in-memory databases.

mechanisms can be applied to both, which, however, is not
true in practice. We summarize the key differences between
caching and “Anti-Caching” as follows.

• The fundamental assumptions about the memory size
are different. In the caching domain, the memory size
is much smaller than the total data size, while in the
“Anti-Caching” domain, the memory size is relatively
large, which means it can hold a significant portion
of the data. The distinctive assumptions make a dif-
ference in the system design, as with larger available
memory, we can have more flexibility to manage the
memory (e.g., we can sacrifice more memory overhead
for better performance; we can delay data eviction
because there is no tight memory bound).

• They are targeted for different types of systems. That
is, caching is for disk-based systems while “Anti-
Caching” is for in-memory systems, which is more
overhead-sensitive. This makes the presumed negligi-
ble overhead caused by caching (e.g., access tracking)
in disk-based systems a visible performance influence
factor for in-memory systems. Moreover, disk I/O
cannot become the system bottleneck again for in-
memory systems.

• The primary data location is different, i.e., disk for
caching but main memory for “Anti-Caching”, so that
in “Anti-Caching”, disk is treated as an extended tem-
porary storage for evicted data, not the primary host
for the whole data. Ideally, there is no need for data
format transformation in “Anti-Caching” because it is
better to keep the data in memory-optimized format
even on disk to fasten the loading and transforming
process [29], in contrast to the disk-optimized format
as traditional disk-based systems.

III. STATE-OF-THE-ART APPROACHES

In general, state-of-the-art “Anti-Caching” approaches can
be classified into three categories.

1) User-space: “Anti-Caching” performed in the user-
space is the most commonly used approach. This enables ad
hoc optimizations based on application semantics and fine-
grained operations. On the other hand, the need to cross
the OS boundary for I/O introduces additional overhead and
constraints.

2) Kernel-space: Virtual memory management (VMM),
which is available in most operating systems, can be regarded
as a simple and general solution for “Anti-Caching” since the
current generation of 64-bit OS (e.g., Linux, Windows 8.1)
supports up to 128 TB (247 bytes) of virtual address space,
which is sufficient for most database applications. However,
due to the lack of upper-layer application semantics, kernel-
space solutions often suffer from inaccurate eviction decisions.
Furthermore, the constraint of operating in units of pages when
swapping data incurs extra overhead.

3) Hybrid of user- and kernel-space: A hybrid approach
that combines the advantages from both semantics-aware
user-space and hardware-assisted kernel-space approaches is
promising. This can be done in either a user-centric or kernel-
centric way. Such an approach would exploit the application’s



semantics as well as the efficiency provided by the OS in
handling disk I/O, access tracking and book-keeping. It can
also act as a general approach for most systems, rather than
an ad hoc solution for a specific system.

In the following subsections, we will introduce some repre-
sentative approaches in each category, and their basic mecha-
nisms for “Anti-Caching”. We break down “Anti-Caching” pro-
cess into four major components, i.e., access pattern tracking,
eviction strategy, book-keeping and data swapping (see Table
I). In particular, access pattern tracking refers to the tracking of
data access behavior in order to guide eviction decisions (e.g.,
LRU chain). An eviction strategy decides which data should
be evicted under what conditions, based on the historical
access information (e.g., LRU, FIFO, user-defined hot/cold
classification). By book-keeping we mean the method(s) used
to keep track of the location of the data (e.g., page table),
especially that evicted to disk, while we call the process of
writing evicted data to and read from disk as “data swapping”
(e.g., page-level swapping, tuple-level direct reading/writing).

A. User-space Approaches

1) H-Store Anti-caching: H-Store [14], [23] is a distributed
row-based in-memory relational database targeted for high-
performance OLTP processing. Most of the heavy-weight com-
ponents like locking, buffer management, which are commonly
used in traditional disk-based databases, are removed. Anti-
caching technique [26] has been proposed to overcome the
restriction that all the data must fit in main memory. Basically,
cold data is able to be moved to disk based on the LRU policy.

With full access to the operations within H-Store, the anti-
caching component is able to track accesses in a fine-grained
manner using its tuple-level LRU. In particular, it maintains
an in-memory list of all tuples for each table in an LRU
order, allowing for access to the least-recently-used tuples
in real time. Both doubly-linked and singly-linked lists were
experimented in H-Store, with a tradeoff between memory
overhead and performance cost of maintaining the LRU order.
Nevertheless, the overhead of maintaining the LRU list in
the user-space is significant, but unavoidable, in terms of
both memory consumption and performance degradation. With
the fine-grained tracking mechanism, anti-caching is able to
precisely evict the least-recently-used tuples.

To reduce the overhead of evicting, tuples are aggregated
into groups of blocks which are then written out to disk in
a single sequential write. Data fetching is also conducted in
units of blocks, which, unfortunately, may waste a significant
amount of I/O as redundant tuples are also fetched.

To track the status of a tuple (i.e., in-memory or on disk),
an in-memory evicted table is used, and the index is updated
accordingly based on the evicted table. Furthermore, given its
targeted OLTP workload, some ad hoc optimizations can be
applied. An example of such optimizations is non-blocking
transactions, in which it simply aborts any transaction that
accesses evicted data, and then restarts it at a later point when
the data has been retrieved.

2) Siberia in Hekaton: Project Siberia [30], [31], [32] also
adopts an “Anti-Caching” approach for Hekaton [21], which
is a memory-optimized OLTP engine fully integrated into Mi-
crosoft SQL server. Hekaton is designed for high concurrency,

and utilizes lock-free data structures and an optimistic multi-
version concurrency control technique. Furthermore, Hekaton
tables and regular tables can be accessed at the same time,
thereby providing more flexibility to users.

Instead of maintaining an LRU list like H-Store, Siberia
performs offline classification of hot and cold data by logging
tuple accesses first, and then analyzing them offline to pre-
dict the top K hot tuples with the highest estimated access
frequency, using an efficient parallel classification algorithm
based on exponential smoothing [31]. The record access log-
ging method incurs less overhead than an LRU list in terms of
both memory and CPU. However, this offline method cannot
detect rapid access fluctuations, and is not able to constrain
memory usage below a given bound.

In addition, to relieve the memory overhead caused by the
evicted tuples, Siberia does not store information in memory
about the evicted tuples (e.g., keys in the index, evicted table)
other than the compact Bloom and range filters [32] that
are used to filter the access to disk. In fact, Siberia uses a
separate store with simple storage functionality (e.g., insert,
delete, retrieve) for cold tuples, which makes it necessary to
transactionally coordinate between hot and cold stores so as
to guarantee consistency [30]. Data in Hekaton is evicted to
or fetched from the cold store on a tuple basis. In particular,
eviction only occurs during data migration (from hot store to
cold store) after a new result of classification feeds into the
engine, while fetching can happen during migration (from cold
store to hot store), and also referencing a tuple in the cold store.
Only insert, update and migration can add tuples into the hot
store; read does not affect the hot store. This is based on the
assumption that the cold store is highly infrequently accessed.

3) Spark: Spark [16] features in-memory Map-Reduce data
analytics with lineage-based fault-tolerance [39]. It presents a
data abstraction – Resilient Distributed Dataset (RDD) – which
is a coarse-grained deterministic immutable data structure. The
ability of maintaining data in memory in a fault-tolerance man-
ner makes RDD suitable for many data analytics applications,
especially iterative jobs, since frequently-used data can be kept
in memory instead of being shuffled to disk at each iteration.

In addition, RDDs can also be configured to be partially in-
memory by allowing evictions at the level of partitions based
on approximate LRU. In particular, when a new RDD partition
is to be inserted into the memory store that lacks space, one
or more least-recently-inserted partitions will be evicted. The
partitions chosen to be evicted should not be within the same
RDD as the newly-inserted one, because it assumes that most
operations will run tasks over an entire RDD. These evicted
partitions are put into the disk store, and the in-memory hash
table is updated accordingly to reflect their storage status.
There is no access tracking in Spark since its LRU is based
on the insertion time, thus a simple linked-list would suffice.

4) Caching/Buffering: In traditional disk-based systems,
caching/buffering is an important technique to alleviate the
high-latency problem caused by disk storage. By keeping
some data in a memory pool, frequently-used data can be
retrieved from memory rather than from disk. In general, there
are two kinds of caching/buffering mechanisms, i.e., general
cache systems and ad hoc buffer management, which we shall
elaborate below.



TABLE I: Summary of “Anti-Caching” Approaches

Approaches Access Tracking Eviction Strategy Book-keeping Data Swapping

H-Store anti-caching [26] tuple-level tracking LRU evicted table and index block-level swapping

Hekaton Siberia [30], [31], [32] tuple-level access logging offline classification Bloom and range filter tuple-level migration

Spark [16] N/A LRU based on insertion time hash table block-level swapping

Cache systems [33], [34] tuple-level tracking LRU, approximate LRU, etc N/A N/A

Buffer management [35] page-level tracking LRU, MRU, CLOCK, etc hash table page-level swapping

OS Paging [36] h/w-assisted page-level tracking LRU, NRU, WSCLOCK, PRRA, etc page table page-level swapping

Efficient OS Paging [37] tuple-level access logging offline classification and OS Paging OS-dependent OS-dependent

Access observer in HyPer [38] h/w-assisted page-level tracking N/A N/A N/A

a) General cache systems: There are some general
cache systems with the key-value data model that can be
used as a middle layer between databases and application
servers, for caching frequently-used data in memory to reduce
data access latency [40], [41]. Two representative widely-used
cache systems are Memcached [33] and Redis [34].

Like H-store, access tracking and eviction in Memcached
are based on an LRU list [26], while Redis provides a set of
eviction strategies, from RANDOM to aging-based LRU. The
latter is an approximate LRU (ALRU) scheme that samples a
small number of keys, and evicting the one with the oldest
access time. So instead of maintaining a full LRU list, Redis
maintains an access time field (22 bits) for each tuple. In
addition, a user-defined TTL (time-to-live) can also be used
to control which tuple to evict and when to evict it. Due to the
cache functionality provided by Memcached and Redis, they
simply drop the evicted data rather than write it back to the
disk.

b) Ad hoc buffer management: Traditional disk-based
databases typically integrate buffer management into its data
accesses in order to reduce the costly disk I/O [35]. Data is
managed by the buffer manager in units of pages (also called
frames), and the same granularity also applies to data swap-
ping. Access indirection is used to track data access behavior,
where a logical page ID is translated to a frame ID (i.e.,
virtual address). A pinning and unpinning sequence is used
to request and release a page, and data access is only detected
by the initial page request (i.e., pinning) from higher-level
components. Thus, during the pinning and unpinning interval,
multiple access operations within that page, is treated as one
database page reference [35]. Different paging algorithms, such
as LRU, MRU, FIFO, CLOCK, can be used depending on the
implementations and configurations. For book-keeping, an in-
memory hash table is used to keep track of the status of a
page, and facilitate the translation between logical page ID and
physical frame ID. In addition, it is also possible to prefetch a
set of pages because databases can often predict the order in
which pages will be accessed.

B. Kernel-space Approaches

1) OS Paging: Paging is an important part of virtual
memory management (VMM) in most contemporary general-
purpose operating systems (e.g., UNIX, LINUX, WINDOWS).
It allows a program to process more data than the physically
available memory [36]. In theory, a process can assume that
it can use the entire available virtual address space (e.g., 264

bytes in 64-bit OS) 2 as if it was in memory. The OS will swap
in/out pages accordingly in a way that is totally transparent
to the upper-layer user programs. This provides a uniform
interface for users to manage their data, without complex
consideration of where data is physically. This is a general
approach that can be used by any system immediately with
little implementation work, since most systems are built on
top of the OS.

Just as its name implies, OS Paging tracks data access
in the granularity of pages. It relies heavily on hardware
(i.e., the memory management unit (MMU)) to record the
access rather than purely software solutions. Specifically, all
memory references must pass through the MMU, and get
translated from virtual address to physical address. In the
process, permissions are checked and appropriate flags (e.g.,
accessed, dirty) are set to indicate the access status for each
page. As this is the part of the MMU’s routine operations,
VMM can get this information almost for free. In addition,
these flags will be reset periodically by the OS based on its
paging algorithm, capturing the latest access status. Some OSes
also maintain custom flags (e.g., PG_referenced flag in
LINUX) to record even more access information.

Various general paging algorithms such as LRU, MRU,
CLOCK, NRU, WSCLOCK, can be used in OS Paging, but
typically only one is chosen for a specific OS. For example,
LINUX uses its customized PRRA (Page Frame Reclaiming
Algorithm), which maintains active and inactive doubly-linked
lists so as to perform LRU operations. The active list tends to
include the pages that have been accessed recently, while the
inactive list tends to include those that have not been accessed
for some time. The movements between active and inactive
lists are conducted periodically or on demand, and pages can
only be reclaimed from the inactive list [42].

To track the location of a page, the OS marks a swapped-
out page as “not present in memory” and record its disk
location in the Page Table (i.e., clear the Present flag in the
Page Table entry, and encodes the location of the swapped-
out page in the remaining bits). This keeps the additional
memory overhead to a minimum. Any access to a swapped-out
page triggers a page fault. This will be caught by the OS and
resolved by swapping in the required page.

In general, there are two methods that we can use in
order to utilize OS Paging. One natural way is to configure a
swap partition/file, which will enable OS Paging automatically
without any programming effort on the applications. The other

2In practice, the available virtual address space may be limited to 247 bytes
or less.



way is to use memory-mapped files. The latter maps a file on
disk onto a region in virtual memory space. File reads/writes
are then achieved by direct memory access as if all the data
was in memory, during which the OS will transparently page
in/out the necessary data. Memory-mapped file technique is
widely used in the database area. Popular examples include
MongoDB [43], MonetDB [44], and MDB [45].

C. Hybrid of User- and Kernel-space Approaches

In general, user-space approaches can take advantage of
application semantics to enable ad hoc optimizations and fine-
grained operations. In contrast, kernel-space approaches deal
better with I/O scheduling and can utilize hardware-assisted
mechanisms. We introduce two approaches that try to combine
the advantages from both user- and kernel-spaces.

1) Efficient OS Paging: In [37], a more efficient OS paging
based on separating hot and cold data was proposed. The hot
memory region is mlock-ed while the cold region is left
exposed to OS Paging. This also helps reduce the possibility
that victim data would be evicted/fetched redundantly because
it would be in the same page as the other data. Data accesses
are tracked using access logging, and then processed offline.
The offline classification of hot/cold data is based on the
exponential smoothing algorithm [31]. The book-keeping and
data swapping are then handled by the OS VMM without any
involvement from user applications.

2) Access observer: In [38], an access observation method
to assist their hot/cold data classification was proposed. It is
used to compact the data in memory thereby reducing memory
usage pressure, as well as to support memory-consumption-
friendly snapshotting. Specifically, there are two approaches
to observing the data access at the page-level. One approach
is to use the mprotect system call to prevent accesses to a
range of virtual memory pages. Whenever there is an access
to that region, a SIGSEGV signal is caught by a registered
signal handler that will record the access. Alternatively, a more
efficient way is to use hardware-assisted access tracking as the
OS VMM. User-space APIs can be provided to manage page
table directly from user-space. We will elaborate these two
approaches in Section IV.

D. Summary

In summary, existing approaches adopt different strategies
for each component of “Anti-Caching”, with different con-
straints and tradeoffs, in terms of memory and CPU overhead,
usability, generality, etc. Semantic information available to
user-space approaches in some systems enables ad hoc opti-
mizations and finer-grained access tracking and book-keeping.
On the other hand, kernel-space approaches have the advantage
of being hardware-assisted (e.g., page access tracking, virtual
address translation), having little overhead while being general
enough to be used in most systems. We will further investigate
different strategies for each component respectively in Sec-
tion IV, in order to see what really happens under the hood,
and obtain some implications on choosing different strategies
in designing a good “Anti-Caching” approach.

IV. UNDER THE HOOD: AN EXPERIMENTAL ANALYSIS

In this section, we shall empirically study the different pos-
sible strategies for each component in the “Anti-Caching” pro-
cess, namely, access tracking, eviction strategy, book-keeping
and data swapping, in terms of memory overhead, CPU utiliza-
tion, I/O efficiency, or hit rate. Not only will we compare the
existing approaches proposed in the literature, but we shall also
discuss new ideas, including some OS-related general solutions
that had not attracted much attention previously. Since the
traditional buffer pool management in disk-based databases has
been shown to have very poor performance [23], [26], we shall
ignore it in our study due to the space limitation.

Because of the diversity in focus and implementations,
we are unable to fairly compare the performance of the
entire systems. Instead, we will only focus on different “Anti-
Caching” approaches. In order to eliminate the interference
introduced by unrelated factors (e.g., the transaction manager,
implementation choices, product orientation, etc.), we have
implemented the various approaches on a uniform platform,
namely Memcached [33], a light-weight in-memory key-value
store with LRU eviction. We use the latest stable version 1.4.21
of Memcached in all the experiments described here.

We modified Memcached’s eviction behavior so that it
will put the evicted data onto disk rather than simply drop
the data as in the original Memcached. The implementations
of the different schemes were based on published papers,
and source code provided by the authors when available.
For the kernel-related approaches, we use Linux kernel 3.8.0
in the experiments. We shall detail our implementations and
configurations in respective Sections IV-B, IV-C, IV-D, IV-E.

A. Environment Setup and Workload

Our experiments are executed on a single x86 64 Ubuntu
machine running Linux 3.8.0 kernel. The system consists of
a dual-socket Intel Xeon E5-2603 Processor, 8GB of DDR3
RAM at 1066MHz and a commodity hard disk of 1TB. One
socket connects 4 cores, which share a 10M L3 Cache, and
each core has independent 32K L1 instruction cache, 32K L1
data cache and 256K L2 cache.

For all the experiments in this paper, we used the YCSB
Benchmark 0.1.4 with Zipfian distributions [46]. The YCSB
database in our experiments contains a single table with one
million tuples, each of which has 10 columns. Each column
consists of 100 bytes of randomly generated string data. We
vary the skew factor of the request distribution from 0.99 to
0.25, and also ratios between available memory and data from
3/4, 1/2 to 1/4, to experiment with different hot data ratios
and memory shortage scenarios. We generate enough workload
requests to avoid the possibility that only a small percentage
of tuples are accessed. We will only show the results for the
“Read-Only” workload due to the space limitation. The other
workloads exhibited similar results.

We remove most of the overhead from Memcached [33]
in the experiments in order to only show the impacts of the
“Anti-Caching” approach, and fine-tune each approach to get
its best result. For example, to remove the network influence
in the client-server architecture of Memcached, we executed
the YCSB benchmark directly inside the server, rather than



TABLE II: Memory Overhead for Access Tracking
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Fig. 2: CPU Overhead for Access Tracking

issue the requests through the network. In addition, we used
cgroup to restrict the available physical memory to use for the
benchmarked system so as to generate memory-constrained
scenarios. All the experiments were repeated for three times,
but we did not notice much variation in the results.

B. Access Tracking

By “access tracking”, we mean the methods used to de-
tect and record the data access behavior during the system
execution. This information is used for deciding which data
should be evicted. Fine-grained tracking may enable more
accurate decision in the eviction phase, but it comes at a cost
of higher memory and CPU overhead. In this subsection, we
will investigate access tracking in terms of these overheads.

The access tracking methods we investigated are:

• LRU/ALRU. This is an intrusive strategy that requires
modification of the applications. It generally involves
adding customized access tracking code for each data
access in the application. Here, we discuss two vari-
ants of LRU – exact LRU used by H-Store anti-
caching [26] and Memcached [33] (LRU), and approx-
imate LRU via aging used by Redis [34] (ALRU).

• Access trace logging. Instead of maintaining an in-
memory LRU list, this strategy logs each access be-
havior for offline analysis that classifies data as hot or
cold [30], [37]. The separation between normal exe-
cution and data classification reduces the interference
to the system performance.

• Accessed and dirty flags in page table. There are two
important flags in the page table entry that indicate
the access status of a virtual page. These flags are
utilized by the OS VMM for paging management.
The “accessed” flag is set whenever there is an access
operation on that page (read/write), while “dirty” flag
is set when the page has been written to. These flags
are set automatically by MMU whenever there is an
access, and cleared periodically by the OS or kernel-
assisted software so as to record the latest access
information within a time slice [47], [38].

• VMA protection. Another mechanism that can be used
to track the access behavior is to make use of virtual
memory area (VMA) protection to restrict access so
that when access does occur a segmentation fault
will be triggered and escalated to the user [38]. For
example, we can set the permission of an area to read-
only (via system call mprotect or mmap) 3, in order to
monitor write accesses. The available permission flags
include PROT_NONE (i.e., cannot be accessed at all),
PROT_READ (i.e., can be read), PROT_WRITE (i.e.,
can be modified), and PROT_EXEC (i.e., can be exe-
cuted). An invalid access will trigger a segmentation
fault, which can be caught by a registered page fault
handler.

We shall analyze these access tracking approaches in terms
of both memory and performance overhead, as it normally
happens on the critical path of system execution, whose
efficiency will definitely affect the overall performance.

1) Memory overhead: Table II shows the memory overhead
ratio for each method, where memory overhead ratio is defined
as follows:

Overheadratio =
Rextra

Rextra +Ruseful
(1)

Here, Rextra denotes the extra resource (i.e., memory or CPU)
used exclusively for “Anti-Caching” (i.e., extra memory used
for access tracking in this context), and Ruseful denotes the
resource used for useful work (i.e., memory used to store the
data in this context). We also use Equation 1 for the overhead
of other components in the subsequent analysis.

We assume that we are using a 64-bit Linux environment as
described in Section IV-A, i.e., the page size Sizepage is 4 KB,
a pointer is 8 bytes, a page table entry is 8 bytes, and a VMA
structure is 176 bytes. Furthermore, two pointers (i.e., 8 bytes)
4 are added in each tuple to act as the doubly-linked LRU list.
Just like Redis [34], 22 bits are used for the age field, and the
constant C is the size of the buffer used for logging. All the

3The size of a VMA area should be a multiple of the OS page size.
4We use 4-byte offset instead of 8-byte virtual address, as proposed by [26].
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Fig. 3: Hit Rate for Different Eviction Strategies

quantities are in units of bytes. The values shown for “Page
Table” and “VMA Protection” methods are the upper bounds,
as access tracking may not necessarily create an extra page
table entry/VMA structure. Such a structure may already exist
for address mapping in normal execution. For instance, the
VMA properties of neighbor address areas may be identical,
making duplicates unnecessary.

From Table II, we can make the following observations:

• Aging-based LRU (ALRU) consumes less memory
than exact LRU, especially for small tuple size. Trace
logging maintains a buffer of a fixed size, so that the
memory overhead is usually negligible.

• If the average tuple size is less than 4 KB for doubly-
linked LRU list, or 1 KB for ALRU, their memory
overheads are much higher than that of page-table-
based tracking. More importantly, page-table-based
tracking often comes for free, as it may be already
used for address translation.

• In general, VMA protection is not cheap in terms of
memory overhead if the permission change creates a
large number of distinct VMAs. Thus, if this method
is adopted, the granularity of VMA should be large
enough to offset its memory overhead. But for a tuple
size that is less than 180 bytes, it is still cheaper than
LRU list even if the granularity is the same as page
table (i.e., 4 KB). Furthermore, it is also probable that
multiple continuous VMAs share the same properties
(e.g., permissions, associated operations) and so a
single VMA structure can cover multiple areas.

2) CPU overhead: We also measured the CPU perfor-
mance penalty incurred by the access tracking process of the
different methods. In particular, we shall report the overhead
of instructions, Level 1 data cache (L1D) and instruction cache
(L1I) misses, and real time (delay) incurred. As the overhead
caused by page table update is experienced by any process
running on top of the OS, it is unavoidable for all the methods.
Hence, we will not consider that overhead here. We set the
timer update interval to be 1 microsecond as was used by
Redis [34], and the VMA flag reset interval as 1 second. The
results reported in Figure 2 show that:

• The VMA protection method incurs a high overhead
of more than 80%. Thus it is not a suitable solution
for normal access tracking.

• The aging-based LRU (ALRU) is quite light-weight
in terms of both instructions used and L1 data cache
misses incurred, but it accounts for 90% of L1 in-
struction cache misses. This is because, in order to
remove the overhead of obtaining the time (say, using
gettimeofday) for every access, the time is only
updated periodically. This is achieved by a timer
event/signal – involving a system call that would result
in a context switch (privilege mode), thus causing a
high instruction cache miss.

• LRU list and access logging both have relatively
low overheads that are nonetheless still significant.
Specifically, LRU list update is likely to cause a high
data cache miss rate, as the neighbor linked tuples are
not likely to reside in the same cache line.

C. Eviction Strategy

In this subsection, we shall analyze the different eviction
strategies, including tuple-level exact LRU (LRU) and aging-
based LRU (ALRU), offline classification of hot or cold data
(Logging) [31], Linux OS PFRA Paging mechanism (OS
Paging) [42], and Efficient OS Paging [37]. We tested the hit
rates of different strategies using the YCSB benchmark [46]
with different skew ratios.

1) Optimal hit rate: In order to put the hit rate values in
more perspective, we compare the values with an upper bound
– the optimal hit rate under the same memory constraint, but
with priori knowledge of all the data access traces. Firstly, we
give the formal definition of the optimal hit rate as follows.

Definition Given a memory constraint Cm = K(Objects) 5,
and a complete n access traces T = {Ot0 , Ot2 , . . . , Otn−1

},
where Oti means that at the ith access, object Oti is accessed,
the strategy with the largest hit rate is the optimal strategy, and
its hit rate is the optimal hit rate. Formally, a strategy can be
represented as a sequence of states S = {S0, S1, . . . , Sn−1},
where Si = {Oi0 , Oi1 , . . . , Oi(K−1)

}, denotes the current set of
objects in memory, and |{Oj |Oj ∈ Si andOj /∈ Si+1}| ≤ 1.
The latter means that only one object is fetched and evicted
at any one time if needed. So the optimal strategy can be
expressed as

Soptimal = argmax
S

∑
i∈{0,...,n−1} 1Oti

∈Si

n
,

5We use the number of objects as the unit of memory constraint to simply
the definition of the optimal hit rate.



TABLE III: Memory Overhead for Book-keeping

Methods Evicted Table with Index Bloom Filter Page Table VMA Protection

Memory Overhead Ratio
20

20 + Sizetuple

10/8

10/8 + Sizetuple

<
8

8 + Sizepage

<
176

176 + Sizevma

given the complete knowledge of T = {Ot0 , Ot2 , . . . , Otn−1
}.

The optimal hit rate is therefore

HRoptimal = max
S

∑
i∈{0,...,n−1} 1Oti

∈Si

n
.

2) Hit rate results: The loss in hit rate compared to the
optimal hit rate under different scenarios (i.e., different ratios
between memory size (M) and data size (D), different skew
factors) are shown in Figure 3, from which, we can see that:

• The kernel-based eviction approaches suffer from poor
eviction accuracy, which is mainly attributed by its
less knowledge of user data structure. Even with a re-
organization phase by users (i.e., Efficient OS Paging),
the hit rate is not improved much, especially when the
workload is less skewed and the available memory is
more constrained.

• Access-logging-based offline classification has a good
hit rate for all the scenarios, with a bit increase of
the loss in hit rate with decreased workload skews.
However, its disadvantage is that it cannot respond
to workload changes quickly because there is a large
latency from access logging, classification, to data
migration.

• LRU and aging-based LRU (ALRU) have a relatively
good hit rate. This is due to the fact that the eviction
decision is based on a fine-grained tuple-level access
tracking, and is adapted dynamically.

D. Book-keeping

“Anti-Caching” data layout can be abstracted as in-memory
data, on-disk data, and book-keeping meta data that shows
whether a tuple is in memory or on disk, which, however,
is another source of memory overhead. Extra operations are
also involved to update them on each data eviction so that
the storage status change for the tuples to be evicted can
be effected. The existing methods used for book-keeping are
summarized as follows:

• Index update with in-memory eviction table, as is used
by H-Store anti-caching [26].

• Separate stores for in-memory and on-disk data with
access filters, as is used by Hekaton Siberia [30].

• Page table present flag used by the OS VMM [42].

• VMA protection, which is similar to the methods used
in access tracking in Section IV-B. That is, we can
change the protection of a VMA to PROT_NONE,
causing accesses to this area to be trapped by a
registered handler. It then fetches the data from disk
according to a customized VMA table.

We shall only analyze the memory overhead in this section
since the book-keeping performance overhead highly depends

on the other components such as eviction strategy. Further-
more, it only happens when there is disk I/O, not in the
primary execution path that dominates execution. The overall
performance impact will be discussed in Section IV-F.

1) Memory overhead: The memory overhead ratios for the
different methods are shown in Table III. We used Equation 1
as the definition of this ratio except that Ruseful here refers to
the size of memory saved by evicting some data (i.e., the total
size of evicted data), and Rextra refers to the meta data used
for the book-keeping of the status of evicted data. We used a
memory-efficient representation for the evicted table and index,
i.e., 8 bytes for key, 4 bytes for offset-based pointer, and 8
bytes for disk address (4-byte block ID and 4-byte offset as
in [26]). Furthermore, we assumed a 1% false positive for the
Bloom filter, which requires about 10 bits per tuple in general
[48]. Table III yields the following insights:

• The book-keeping method using eviction table with
index has a higher memory overhead. In the worst
case, when the tuple size is small (e.g., 20 bytes), the
memory saved by evicting the data is totally consumed
by the book-keeping overhead.

• Access filter is a quite space-efficient method in gen-
eral, where the overhead can be as little as 10 bits
per tuple, however, at the price of extra cost penalty,
caused by false positive accesses to the disk.

• The above observations make the page table and VMA
protection methods more attractive since the same
structures are used for multiple purposes (i.e., access
tracking, book-keeping, and address translation).

E. Data Swapping

The efficiency of disk I/O plays an important role in the
performance of “Anti-Caching”, but we must not re-introduce
the I/O bottleneck. The following methods for data swapping
were evaluated:

• User-defined block-level swapping used in H-Store
anti-caching [26]. This strategy utilizes the block de-
vice efficiently as OS Paging, especially in a memory-
constrained environment without much free memory
for the file system cache. However, the latency may
be longer, and I/O traffic may be heavier as a single
tuple read can only be serviced by a full block read. It
wastes I/O since unnecessary data may be read back.

• Tuple-level migration used in Hekaton Siberia [30].
In particular, a tuple is the basic unit of swapping
between hot and cold store, where the cold store is
only required to provide basic storage functionality.

• Page-level swapping used in OS Paging [42]. As the
minimum unit of data I/O is a page, it takes advantage
of the block I/O property. Besides, a separate swap



 100

 1000

 10000

 0.25 0.5 0.75 0.99

T
h
ro

u
g
h
p
u
t 
[r

e
q
u
e
s
ts

/s
]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(a) Throughput (
M

D
=

3

4
)

 1

 100

 10000

 0.25 0.5 0.75 0.99

I/
O

 R
e
a
d
 R

e
q
u
e
s
t 
[r

e
a
d
s
/s

]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(b) I/O Read Requests (
M

D
=

3

4
)

 0.1

 1

 10

 100

 0.25 0.5 0.75 0.99

I/
O

 R
e
a
d
 W

a
it
 T

im
e
 [
m

s
]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(c) I/O Read Wait Time (
M

D
=

3

4
)

 10

 20

 30

 0.25 0.5 0.75 0.99

L
1
D

-m
is

s
 R

a
te

 [
%

]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(d) L1-Data Cache Miss (
M

D
=

3

4
)

 100

 1000

 10000

 0.25 0.5 0.75 0.99

T
h
ro

u
g
h
p
u
t 
[r

e
q
u
e
s
ts

/s
]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(e) Throughput (
M

D
=

1

2
)

 1

 100

 10000

 0.25 0.5 0.75 0.99

I/
O

 R
e
a
d
 R

e
q
u
e
s
t 
[r

e
a
d
s
/s

]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(f) I/O Read Requests (
M

D
=

1

2
)

 0.1

 1

 10

 100

 0.25 0.5 0.75 0.99

I/
O

 R
e
a
d
 W

a
it
 T

im
e
 [
m

s
]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(g) I/O Read Wait Time (
M

D
=

1

2
)

 10

 20

 30

 0.25 0.5 0.75 0.99

L
1
D

-m
is

s
 R

a
te

 [
%

]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(h) L1-Data Cache Miss (
M

D
=

1

2
)

 100

 1000

 10000

 0.25 0.5 0.75 0.99

T
h
ro

u
g
h
p
u
t 
[r

e
q
u
e
s
ts

/s
]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(i) Throughput (
M

D
=

1

4
)

 1

 100

 10000

 0.25 0.5 0.75 0.99

I/
O

 R
e
a
d
 R

e
q
u
e
s
t 
[r

e
a
d
s
/s

]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(j) I/O Read Requests (
M

D
=

1

4
)

 0.1

 1

 10

 100

 0.25 0.5 0.75 0.99

I/
O

 R
e
a
d
 W

a
it
 T

im
e
 [
m

s
]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(k) I/O Read Wait Time (
M

D
=

1

4
)

 10

 20

 30

 0.25 0.5 0.75 0.99

L
1
D

-m
is

s
 R

a
te

 [
%

]

Workload Skew

Logging
LRU

ALRU

Efficient OS Paging
OS Paging

UVMM

(l) L1-Data Cache Miss (
M

D
=

1

4
)

Fig. 4: CPU and I/O Performance

partition can also be utilized for data swapping, thus
bypassing the file system overhead.

We will analyze these three methods for data swapping in
terms of its I/O efficiency and CPU overhead using the YCSB
benchmark, with combination of their respective strategies for
other components in Section IV-F.

F. Performance – An Apple-to-Apple Comparison

In this section, we shall combine all the four components
together in order to investigate how they affect each other and
impact the overall performance (i.e., throughput). In order to
have a fair comparison, we translate the memory overhead to
a factor of the available memory that can be used, by provi-
sioning each approach with the same size of physical memory.
Therefore, approaches that have higher memory overheads will
have less memory to manage for its core data. By doing so,
memory overhead will have an impact on runtime performance.

Figure 4 shows the throughput, and also the CPU and I/O
performance for the approaches we investigated, namely, H-
Store anti-caching [26] (denoted as LRU), Redis aging-based
LRU [34] (denoted as ALRU), Hekaton Siberia [30] (denoted
as Logging), OS Paging [36], and Efficient OS Paging [37].
We also added our proposed approach in the figure, which will
be elaborated in Section VI.

From Figure 4, we can conclude the following findings:

• Surprisingly, when there is a shortage of memory,
the kernel-space approaches perform quite well, even
though its hit rate is worse than user-space ap-
proaches’ as shown in Figure 3. The main reason
is that applications handle I/Os worse than the OS,
which has a better I/O scheduler. Further, the user-
space approaches experience longer latency because
of the limited file system cache available. This can be
seen from the I/O read requests per second and their
average read latency.

• The LRU and aging-based LRU (ALRU) perform well
when the workload is more skewed and the available
memory is larger, as shown in Figure 4a and 4e,
while their performance degrades greatly when the
workload skew decreases and available memory is
reduced. The poor performance is mainly caused by
its higher memory overhead (resulting in less available
memory for core data) and the interference between
read and write I/O traffic caused by a larger I/O unit
(i.e., 1M block size in the experiments).

• Even though logging-based approach (i.e., offline clas-
sification) has the highest hit rate as shown in Figure 3,
it does not perform well in terms of throughput. This
can be attributed by its tuple-level swapping strategy,
causing higher I/O traffic and latency.



• Efficient OS Paging improves the default OS Paging
significantly, resulting in a higher throughput and
lower I/O traffic and latency, which is mainly con-
tributed by injecting more data distribution informa-
tion to OS Paging, enabling it make better eviction
decision.

• The disparity of L1 data cache miss rates for user-
space and kernel-space approaches is large, which
shows the advantage kernel-space approaches have in
terms of CPU utilization.

V. IMPLICATIONS ON DESIGNING A

GOOD “ANTI-CACHING” APPROACH

A. Discussion with regards to other considerations

In addition to performance, there are other aspects that are
also important to a system, which will be discussed bellow.

1) Generality/Usability: A general approach can be easily
used in a common way by most systems without exten-
sive modifications, while ad hoc approaches designed for
specific systems cannot be easily adapted to other systems,
thus involving a lot of repeated implementation. However, ad
hoc approaches are able to adopt some application-specific
optimizations, such as non-blocking transactions [26], and can
operate on a finer-grained level (e.g., tuple-level) with more
application semantics. In particular, OS Paging and caching are
general enough to be applied in most systems naturally, while
H-Store anti-caching [26] and Hekaton Siberia are designed
for specific systems, i.e., H-Store and Microsoft Hekaton.

2) Responsiveness: A memory or performance overhead
may have to be traded-off for a more responsive “Anti-
Caching” approach, such as LRU, OS Paging, while offline
approaches are normally based on the assumption that the
workload is not often changing, and there must be a relative
long delay for updating the classification result. Thus an
online approach is more attractive for applications with an
unpredicted workload ahead, but offline approaches usually
incur less memory overhead.

B. Implications

Our analysis of state-of-art “Anti-Caching” approaches
provides a set of insights on designing a good “Anti-Caching”
approach that can efficiently handle the Big Data problem.

• In general, kernel-space approaches can take ad-
vantage of hardware-assisted mechanisms, incur less
memory overhead, and embrace I/O efficiency. In
contrast, user-space approaches are usually equipped
with more semantic information, and finer operation
granularity, thus enabling a more accurate eviction
strategy.

• Hit rate is fundamental to determine a good “Anti-
Caching” approach, which is difficult to achieve by
only depending on the semantic-unaware access track-
ing methods (e.g., page table).

• I/O efficiency is of great importance, especially in a
memory-constrained environment without much file
system cache available. It can degrade the overall

performance to a great extent if the I/O is not utilized
efficiently.

• Higher memory overhead is detrimental to the perfor-
mance, as it will be finally translated into performance
degradation when the memory is not sufficient.

VI. TOWARDS A GENERAL APPROACH WITH EFFICIENT

UTILIZATION OF HARDWARE

Based on the insights we have obtained, we shall now
sketch a general user-space approach that not only has the
flexibility of user-space implementation, but also the efficiency
of OS VMM strategies, which we shall call as a user-space
virtual memory management (UVMM). An important design
goal of UVMM is to make it general enough to be easily
applied to most in-memory database systems without much
additional implementation work. We first describe the design
principles of UVMM and then present the implementation
details. Finally, we evaluate its performance.

A. Design Principles

As shown in Section IV and V, each component of “Anti-
Caching” can potentially become a bottleneck in an in-memory
database system. Rather than an ad hoc approach, having
investigated the issues involved, we shall now propose a
general yet efficient “Anti-Caching” approach based on the
following design principles:

1) No indirection: As shown in [23], [49], the indirection
of logical pointers (e.g., page ID and offset) used in traditional
buffer pool management is the source of significant overhead
– more than 30% of total execution time is spent on the extra
indirection layer. Therefore, we should use real pointers for
data access that utilize the hardware-assisted virtual address
translation directly.

2) Non-intrusiveness: A general solution that can be easily
applied without extensive modifications to the existing system
is highly desirable. To this end, we believe that an API-based
approach is most suitable. This will also enable backward
compatibility, or transparent upgrading of existing applications.

3) Flexibility: We should provide a flexible list of options
for applications that differ in their levels of intrusiveness. For
example, applications can use an extended version of malloc
with a preferred eviction strategy as an optional extension
parameter. We should also provide several other APIs (e.g.,
access logging) for the application to disclose more semantics
and hence improve the accuracy of the eviction. Without
information on the semantics, access tracking could only be
based upon the granularity of malloc-ed object, page and
VMA. In addition, the APIs are implemented in the user-space,
with a kernel module to assist privileged access to certain
resources (e.g., page table). This reduces the communication
need of applications while allowing them to take advantage of
hardware assistance.

4) Reduced CPU overhead for normal operations: The
“Anti-Caching”-related overhead should be minimized. To
track the access behavior, we propose the use of a combination
of page table information and optional user supplied access
logging. The update of access information from page table is
done in a fine-grained non-blocking manner so as to avoid
interference with normal execution.



5) Reduced memory overhead: In order to lower the mem-
ory overhead ratio, we propose keeping the meta data at the
page level. To avoid inaccurate replacement decisions caused
by coarse-grained knowledge of data access behavior, we
will also require additional fine-grained access distribution
information. Such information is acquired using optional user
logging and a customized kernel page table access module.

B. Implementation

We shall elaborate on our implementation of UVMM in
terms of the four aspects, namely, access tracking, eviction
strategy, book-keeping and data swapping. Due to space
limitation, we are only able to describe the implementation
techniques and strategies that we used at a fairly high level.

1) Access tracking: We implemented a combination of
access tracking methods, namely, VMA protection, page table,
malloc-injection and access logging, in order to make it flexible
enough to be used by upper-layer applications that may have
different concerns. Because of its high overhead, the VMA
protection tracking method (shown in Figure 2) is only used
when we have to fetch data from disk. With this strategy,
the overhead of a segmentation fault is easily offset by that
of a disk read, and the access tracking and book-keeping are
completed at the same time. In addition, malloc is also used
to indicate the access behavior at the granularity of malloc-
ed size. We can update our own access information on the
granularity of page by periodically querying the page table in a
fine-grained asynchronous way. Optionally, users can choose to
log data access at the granularity of tuples. This however does
not require the writing of data to a log file on disk. Instead,
it only switches some bits in the memory, which can be done
quite efficiently.

2) Eviction strategy: We implemented a variety of eviction
strategies for use in order to meet different requirements of
various workloads since no single eviction strategy is optimal
for all use cases. The eviction strategies available currently
include aging-based LRU, WSCLOCK, FIFO, RANDOM, and
optimized WSCLOCK with consideration of user-provided
access logging. In particular, for the optimized WSCLOCK
algorithm, we not only consider the accessed and dirty flags
as is the case for WSCLOCK, but also consider the distribution
of data access within one VMA. This improves the selection
accuracy of eviction candidates.

3) Book-keeping: We use the VMA protection method with
a larger protection area size for book-keeping in order to
reduce the memory overhead. Hardware virtualization [50]
is a potential technique for reducing the segmentation fault
overhead. It also allows for access to privileged resources
such as page table directly without the involvement of a
kernel module, making page-table-based book-keeping method
available in the user-space.

4) Data swapping: In our implementation, data swapping
is conducted in the unit of VMA. To reduce the possibility
of disk I/O wastage, we implemented a combination of fine-
grained access tracking methods described before to make
more accurate eviction decision and increase our hit rate. In
addition, we also used a fast compression technique – lz4 [51]
to further reduce the I/O traffic at the price of a little CPU
overhead. We believe this is a reasonable tradeoff. Besides,

asynchronous I/O is used to make I/O operations non-blocking,
removing the I/O bottleneck in the critical path. We are also
experimenting with a strategy where we first compress the data
and put it in a fixed memory region. Only when that region is
full do we perform the actual disk I/O.

C. Performance Results and Analysis

We evaluate the performance of UVMM against the other
approaches we investigated. The results are shown in Figure
3 and Figure 4 where our approach is labeled as “UVMM”.
From Figure 3, we can see that, with the more fine-grained
information we obtain through the general APIs (e.g., malloc,
access logging), the accuracy of our eviction strategy is im-
proved significantly, thus leading to a better throughput and
more efficient utilization of CPU and I/O (Figure 4).

Specifically, the reasons for the good performance can be
summarized as follows.

• The access tracking is light-weight and incurs only a
small overhead in execution.

• We have more semantics information provided by
the user applications, such as data object size and
fine-grained access distribution within a page, which
enables a better eviction strategy.

• The kernel-supported VMA protection mechanism
provides us an efficient book-keeping method without
much memory overhead.

• Compression significantly reduces I/O traffic (more
than 20%), and kernel-supported asynchronous I/O
takes advantage of the efficient kernel I/O scheduler.

VII. CONCLUSIONS

The “anti-caching” approach enables in-memory database
systems to handle big data. In this paper, we conducted an in-
depth study on the state-of-the-art “anti-caching” approaches
that are available in user- and kernel-spaces by consider-
ing both CPU and I/O performance, and their consequential
runtime system throughput. We found that user- and kernel-
space approaches exhibit strengths in different areas. More
application semantics information is available to user-space
approaches which also have finer operation granularity. This
enables a more accurate eviction strategy. Kernel-space ap-
proaches, on the other hand, can directly use hardware (CPU
and I/O) assistance, and are more likely to provide good
resource utilization. It is therefore promising to combine these
strengths, and we sketched a general user-space virtual mem-
ory management approach that efficiently utilizes hardware
through kernal support. Our experiments gave evidence of
the potential of such a holistic approach. We hope this study
will contribute towards the future realization of this combined
approach in actual in-memory database systems.
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