
Towards a Non-2PC Transaction Management in
Distributed Database Systems

Qian Lin† Pengfei Chang§ Gang Chen§ Beng Chin Ooi† Kian-Lee Tan† Zhengkui Wang†¶
∗

†National University of Singapore §Zhejiang University ¶Singapore Institute of Technology

†{linqian, ooibc, tankl, wangzhengkui}@comp.nus.edu.sg §{changpeng3336, cg}@cs.zju.edu.cn

ABSTRACT

Shared-nothing architecture has been widely used in dis-
tributed databases to achieve good scalability. While it of-
fers superior performance for local transactions, the over-
head of processing distributed transactions can degrade the
system performance significantly. The key contributor to the
degradation is the expensive two-phase commit (2PC) proto-
col used to ensure atomic commitment of distributed trans-
actions. In this paper, we propose a transaction manage-
ment scheme called LEAP to avoid the 2PC protocol within
distributed transaction processing. Instead of processing a
distributed transaction across multiple nodes, LEAP con-
verts the distributed transaction into a local transaction.
This benefits the processing locality and facilitates adaptive
data repartitioning when there is a change in data access
pattern. Based on LEAP, we develop an online transaction
processing (OLTP) system, L-Store, and compare it with
the state-of-the-art distributed in-memory OLTP system,
H-Store, which relies on the 2PC protocol for distributed
transaction processing, and HL-Store, a H-Store that has
been modified to make use of LEAP. Results of an extensive
experimental evaluation show that our LEAP-based engines
are superior over H-Store by a wide margin, especially for
workloads that exhibit locality-based data accesses.

1. INTRODUCTION
The past decade has witnessed an increasing interest in

adopting shared-nothing database technology to handle fast
growing business data. By horizontally partitioning data
across different physical machines, shared-nothing systems
are highly scalable for non-transactional and analytical work-
loads which are “embarrassingly partitionable”. For OLTP
workloads, shared-nothing systems conventionally depend
on the 2PC protocol for preserving the atomicity and se-
rializability of distributed transactions [31]. Although these
systems offer superior performance for local transactions
(i.e., transactions whose data are hosted on a single node),

∗This work was done while Zhengkui was at NUS.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMOD ’16, June 26–July 1, 2016, San Francisco, CA, USA.

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3531-7/16/06.

DOI: http://dx.doi.org/10.1145/2882903.2882923

overhead of processing distributed transactions (i.e., trans-
actions whose data are spread over multiple nodes) can de-
grade the system performance significantly [10, 26, 30]. The
key contributor to the degradation is the 2PC protocol [20,
26, 3, 29]. To commit a distributed transaction, the 2PC pro-
tocol requires multiple network round-trips between all par-
ticipant machines which typically take a much longer time
than the local transaction processing. As such, much work
has been done to address this bottleneck [10, 30]. On the
one hand, systems such as Calvin [30] seek to improve the
scalability of distributed transaction processing by trading
latency for a higher throughput [30]. On the other hand,
fine-grained partitioning of the data can be performed offline
to reduce the number of distributed transactions [10]. These
techniques can reduce but cannot eliminate distributed trans-
actions completely and hence the expensive distributed com-
mit procedure must still be performed.

In this paper, we propose LEAP (Localizing Executions
via Aggressive Placement of data) as a solution towards non-
2PC distributed transaction processing in a shared-nothing
architecture, particularly in our epiC system [19]. LEAP
converts a distributed transaction into a local transaction to
eliminate the expensive distributed commit procedure. To
localize the execution of a distributed transaction, LEAP ag-
gressively places all cross-node data needed for the transac-
tion on a single node (i.e., the node issuing the transaction).
By doing so, the transaction executor would physically hold
all the data it uses during the transaction execution and
can easily commit or abort the transaction without worry-
ing about the distributed consensus as in the 2PC protocol.
We design LEAP in anticipation of the wide availability of
modern fast networks (e.g., 10 Gigabit Ethernet, InfiniBand)
to provide latency and bandwidth guarantees.

LEAP is motivated by the following key observations. First,
OLTP queries typically involve only a small number of data
records [5, 14, 25]. Therefore, the number of records to
migrate is small. Second, depending on applications, the
data record size may be comparable with the size of a “sub-
transaction”. This means it is no more expensive to migrate
records to the processing node than sending sub-transactions
to multiple nodes for processing. Third, data access in real-
world distributed transactions typically exhibits some form
of locality. For example, if a person accesses his/her domes-
tic account when traveling overseas, it is likely that he/she
will repeatedly access the data in this account via a series
of transactions issued from his/her place of travel.

LEAP always maintains a single copy of each data record.
Each distributed server manages two meta-data structures:

http://dx.doi.org/10.1145/2882903.2882923

data table and owner table. The data table stores the ap-
plication’s records in memory, and the owner table is a key-
value store where each pair associates a record in the data
table (identified by its primary key) with its access owner
(i.e., a transaction server serving read/write requests for
that record). At any time, each data record only has a
single access owner. The owner table is partitioned among
all transaction servers using standard distributed key-value
store techniques. To process a transaction, a processing
node S first searches its local storage and checks whether
the data is in the local storage. If yes, the transaction is
a local transaction and thus can be performed immediately.
Otherwise, the transaction is a distributed transaction, and
S will then send requests to the owners of those records and
ask them to yield data ownership. When S collects all the
required data ownership, it processes the transaction locally.

The contributions of this paper are threefold:

• We propose LEAP, a transaction management scheme
that localizes any distributed transaction processing to
a single node. LEAP facilities efficient distributed trans-
action processing by eliminating the need of costly dis-
tributed commit protocol and inter-node intermediate re-
sults exchange during transaction processing.

• Based on LEAP, we propose a practical OLTP engine de-
signed for a shared-nothing database architecture. Specifi-
cally, we provide the detailed techniques of enabling LEAP
by using a ownership transfer scheme and ensuring con-
currency control by employing a lock-based mechanism.

• We conduct extensive experiments to evaluate our LEAP-
based systems against a 2PC-based system, H-Store, on
a cluster of 64 machines. Results show that LEAP-based
transaction processing outperforms that of 2PC-based ap-
proach in terms of throughput, latency and scalability.

The rest of the paper is organized as follows: Section 2
introduces distributed transaction processing using the 2PC
protocol. In Section 3, we present our proposed LEAP pro-
tocol. In Section 4, we provide the system design of the
LEAP-based OLTP engine. Section 5 presents results of an
experimental study. We discuss related works in Section 6
and conclude in Section 7.

2. PRELIMINARIES
Transactions in a shared-nothing database are classified

into two types: local transactions, which only access data
within a single node, and distributed transactions, which ac-
cess data spanning multiple nodes. Local transactions are
efficient to process while distributed transactions are expen-
sive due to the cost of the 2PC protocol typically used to
enforce atomicity.

Figure 1 shows an example of 2PC-based transaction pro-
cessing. This example will also be used to illustrate our pro-
posed strategy in the next section. In Figure 1, the database
has two partitions served by two nodes S1 and S2. A trans-
action T submitted at S1 will access data records r1 and
r2 stored in two partitions. Here, S1 (the node where T is
submitted) serves as the coordinator and S2 as a participant.
Then, a two-step strategy is employed to execute T .

(Step 1) Task Distribution: The coordinator first di-
vides the transaction into multiple sub-transactions, each of
which is sent to one participant for execution. In our exam-
ple, T is divided into T1 and T2 where T1 is executed at the
coordinator and T2 is executed at the participant. There-

Coordinator Participant

1) Send sub txn

execution execution

Prepare 2) Query to commit

Prepare / Abort3) Vote Yes/No

Commit / Abort 4) Send commit/abort

Commit / Abort5) Acknowledgment

End

S
te
p
1

S
te
p
2

Figure 1: Distributed transaction processing with
2PC. The underlined operations need to force-write
related log entries to stable storage.

fore, in this step, the coordinator sends a message contain-
ing the sub-transaction T2 to the participant for execution
(message 1 in Figure 1).

(Step 2) Atomic Commit: When the transaction is
ready to commit, it enters into the commit step consisting
of the voting phase and the completion phase. In the voting
phase, the coordinator polls all participants for their readi-
ness to commit (message 2 in Figure 1), and waits for their
responses. Meanwhile, after receiving the request, each par-
ticipant replies with its vote (Yes or No) to the coordinator
(message 3 in Figure 1). Before voting positively, the par-
ticipant prepares to commit by persisting changes to stable
storage. Otherwise, the participant aborts immediately. In
the completion phase, the coordinator collects all the votes.
If all the votes are Yes, the coordinator decides to commit
and sends a global commit message to all the participants.
Otherwise, it sends an abort message to all the participants
(message 4 in Figure 1). Each participant acts accordingly
based on the decision it receives and the acknowledgement
message is sent to the coordinator.

The 2PC protocol is simple but introduces significant de-
lay due to the communication costs and uncertainty. During
the execution, all communications between the coordinator
and the participants are achieved by inter-node messages.
In our running example, each participant incurs at least
four messages. Note that the protocol can still function
correctly without the acknowledgement message (message 5
in Figure 1) which is used to enable servers to delete stale
coordinator information. Furthermore, participants may be
blocked for a long time when failures occur. This happens
when the coordinator and at least one participant fail af-
ter all non-failed nodes voted Yes; these nodes have no clue
about the global decision – it could be a commit decision
(if the failed nodes have voted Yes) or an abort decision (if
the failed nodes have not voted or voted No). Moreover, for
complex multistep transactions, the 2PC-based processing
may have to exchange intermediate results among the coor-
dinator and the participants, which would incur additional
inter-node message passing.

3. DISTRIBUTED TRANSACTION

PROCESSING: THE LEAP WAY
In this section, we present LEAP for distributed transac-

tion processing. We first give an overview of LEAP, and
then describe the data structure and protocol to realize it.

Coordinator Participant

Open txn 1) Request

execution

Commit / Abort

End

Prepare2) Response / Abort

Figure 2: An overview of LEAP for distributed
transaction processing.

3.1 The Big Picture
The main goal of LEAP is to eliminate the expensive

2PC protocol. What LEAP does is to do away with 2PC
completely by turning all distributed transactions into local
transactions. To achieve this, LEAP aggressively migrates
data requested by a distributed transaction to a single node
at runtime. In other words, the system dynamically places
data at the nodes where the transactions need them.

LEAP employs the concept of an owner of a record.

Definition 1 (Owner). Given a data record r, the owner
of r is the single server node S where r is placed. Moreover,
S is granted exclusive access to r.

By definition, except for the owner, no other servers can
access the data record and, at any given time, each record is
assigned to a unique owner. Therefore, if a node S1 wants to
access a record r owned by another node S2, it has to issue
a request to S2 for ownership transfer. When S2 gives up
its ownership of r, it sends r to S1; only then can S1 access
r, which turns out to be a local access.

Under LEAP, a distributed transaction is processed as fol-
lows: the coordinator (where the transaction is submitted)
aggressively requests from the participants for the data to
be migrated to its site; once these data are placed at the
coordinator site, it executes the transaction locally. To illus-
trate this idea, we refer the reader to the previous running
example again. In Figure 1, data are partitioned into two
partitions that are placed at two nodes, S1 and S2, which
own records r1 and r2 respectively. To execute the trans-
action T which accesses r1 and r2, as shown in Figure 2,
the coordinator S1 triggers a migration process to S2 by re-
questing to be the owner of r2 (i.e, message 1 in Figure 2).
Once S2 receives the request, it decides whether the trans-
fer can be carried out. If the migration can be performed,
S2 transfers the ownership of r2 to S1, by transmitting to
S1 a ownership transfer granted message (i.e., message 2 in
Figure 2) along with the requested data (i.e., r2). At this
point, S1 owns all data requested by T and processes T lo-
cally. When T commits, it commits locally without interfer-
ing other distributed nodes. Comparing with 2PC, LEAP
uses fewer messages (two in this example) to execute the
transaction and thus reduces the processing latency.

At first sight, it seems that LEAP’s aggressive dynamic
data placement approach is costly. However, this strategy
is practical and feasible due to three reasons. First, OLTP
queries only touch a small number of data records. There-
fore, the cost of transferring data is comparable to the com-
munication overhead under 2PC (In 2PC, we need to trans-
fer sub-transactions as well as the intermediate results). Sec-
ond, advances in networking technologies such as 10 Giga-
bit Ethernet and InfiniBand continually reduces the time

Owner Table Data Table Owner Table Data Table

(a) Initial database.

Owner Table Data Table Owner Table Data Table

(b) After ownership transfer.

Figure 3: Example of ownership transfer.

required for data transmission. Third, subsequent transac-
tions in the same node that access the same records can
avoid remote accesses. Therefore, it is worthwhile to trade
a little bit more data transmission for fewer inter-node mes-
sages.

The LEAP design and the analytical model assume mod-
ern network infrastructure which offers sufficient bandwidth
and low-latency communication. Such fast networks are
widely available in most local area networks (LANs).

3.2 Managing Ownership and Data Placement
The first challenge to realize LEAP is to ensure that the

ownership and data placement can be effectively managed.
For example, how can we find the location of a record if it
is being moved frequently? Towards this end, we decouple
the meta-data (on ownership) from the data, and employ
two types of tables: an owner table which maintains owner
information and a data table which stores the actual data
records. For each record, represented as a key-value pair
r = (k, v), we store two pieces of information in the afore-
mentioned two tables: 1) a data owner record ro = (k, o)
where o is the identifier (e.g., IP address) of the owner of r

in the owner table, and 2) a data record rd = (k, v) in the
data table. The owner table is partitioned across all nodes
using any standard data partitioning techniques (e.g., hash
or range) on k. The data table is also partitioned across
the nodes; however, a data record rd is stored at its owner’s
local data table.

Initially, a record r’s owner is assigned to the node that
hosts the owner record ro, namely rd is stored along with
ro. Subsequently, whenever ownership transfer occurs, the
data record rd will be moved to its new owner’s local data
table. The owner record ro, on the other hand, is never
moved; instead, it remains at the node where the record
was initially placed. The owner record ro is essentially used
for tracking the current owner of r.

Figure 3.a shows the initial storage layout of a cluster,
where the data and its corresponding owner information are
stored in the same node in S1 or S2. Figure 3.b shows the
updated storage layout after some ownership transfers. For
instance, after record 〈k3, v3〉 is migrated from S1 to S2,
the owner information still remains in S1 with an updated
owner information. Similarly, transferring record 〈k6, v6〉 to
S1 results in the new owner information in S2.

To minimize storage utilization, there is actually no need
to physically store the owner information when the records

and the owner information collocate. Only when a record is
transferred to other nodes do we need to maintain its owner
information in the owner table. In other words, by default
the owner of one record is the node that holds its owner
information. For example, under this optimized scheme, all
entries in the owner tables of both S1 and S2 are eliminated
in Figure 3.a, and only entries of 〈k3, S2〉 and 〈k6, S1〉 remain
in the owner tables of S1 and S2 respectively in Figure 3.b.
Furthermore, a good partitioning strategy of the keys may
reduce the size of the owner table, as most records may
remain in the node where they were initially placed.

3.3 Ownership Transfer
Our proposed LEAP scheme exploits an ownership trans-

fer protocol. To introduce the ownership transfer protocol,
we first provide the following definitions.

Definition 2 (Requester). A node is referred to as the
requester, if the node requests data that are owned by other
nodes.

Definition 3 (Partitioner). A node is referred to as the
partitioner of a record r, if the node holds the ownership
information of r.

Recall that given a transaction T , if the node is the owner
of all the data that T requires, the transaction can be di-
rectly executed by the node without incurring any owner-
ship transfer. Ownership transfer only happens when the
node needs to request the data owned by other nodes. To
transfer ownership from other nodes, the requester runs a
ownership transfer protocol which conceptually consists of
the following 4 steps.

• Owner Request: The partitioner figures out who the cur-
rent owner of the requesting record is by performing a
standard key-value lookup over the owner table.

• Transfer Request: After finding the current owner of the
record, the ownership transfer request is sent to the owner
to request for ownership transfer to the requester.

• Response: Once the owner receives the ownership transfer
request, it checks the status of the requesting data. When
the ownership cannot be granted to the requester (e.g.,
due to contention1), the owner sends a reject message to
the requester. Otherwise, the owner sends a response mes-
sage to the requester along with the requested data. Once
the data is sent to the requester, it automatically becomes
invalidated at the old owner’s node that will be garbage
collected in the future.

• Inform: After receiving the data, the requester informs
the partitioner to update the ownership with respect to
the ownership transfer. Note that during the above three
steps, the ownership is not updated in the partitioner.
Only when the ownership is transferred successfully and
the inform message is received, then will the partitioner
update the ownership accordingly. This guarantees the
ownership consistency in terms of node failure during the
ownership transfer. Moreover, the requester will also in-
form the partitioner about the failure of ownership trans-
fer if either the owner request or the transfer request is

1Contention happens when multiple transactions request the
same record and cannot be granted together. To prevent
deadlock, one of the transactions has to abort. More details
will be discussed in Section 4.1.2.

Requester

& Partitioner

Owner

Requester

Partitioner

& Owner

inform
Requester

Partitioner

response
Owner

inform

(a) RP-O. (b) R-PO. (c) R-P-O.

Figure 4: Ownership transfer cases.

rejected (e.g., due to concurrency control); and the parti-
tioner will retain the ownership. Therefore, the ownership
of data is maintained in a consistent state.

Before a message is transmitted, it is logged locally at
the sender site. When failure happens, any message loss
is handled by resending the message after a predetermined
timeout period. Note that the response step is the only step
that may lead to data loss. To address this issue, we allow
the original owner to maintain a backup of the invalidated
data for a longer timeout until deletion. Therefore, when the
response message is lost, the original owner can recover the
data. Appendix D provides more details on how message
loss is handled in LEAP.

The above four steps compose the general processing pro-
cedure for handling one ownership transfer. For ownership
transfer, there are three different situations depending on
who the requester, partitioner and owner are. Figure 4 il-
lustrates these three situations, namely RP-O, R-PO and
R-P-O. They may incur different overheads with respect to
the number of remote messages generated. RP-O is when
the requester is the same as the partitioner. In this case, the
owner request step and the inform step are efficiently con-
ducted within the requester itself, and the other two steps
can be achieved by using two inter-node messages. R-PO
arises when the partitioner remains the same as the owner
but is different from the requester. In this case, each of the
owner request, response and inform steps needs one inter-
node message. In R-P-O, when the requester, partitioner
and owner are three different nodes, each step utilizes one
inter-node message.

Recall that once the requester obtains the ownership of
the data, it automatically becomes the owner of the data.
The owner will own and keep the data locally as long as
the ownership is not transferred to others. This ensures the
data can serve multiple instances of the same transactions
at the owner node and avoids frequent data transfer.

For ease of discussion, we first consider data access via
primary key. How to support data access via non-primary
keys in the ownership transfer of LEAP is discussed in Ap-
pendix B.

3.4 Comparison with 2PC
Benefiting from the modern high speed network technol-

ogy, the latency of network transmission becomes nearly in-
distinguishable for transferring small data (e.g., a tuple or
an SQL statement). Given the fact that network I/O still
remains orders of magnitude slower than main memory oper-
ation, the number of sequential messages passed mainly de-
termines the cost of distributed in-memory transaction pro-
cessing. As can be seen from Figure 1 and Figure 4, LEAP
shows its superiority over 2PC in terms of the number of
sequential messages passed.

3.4.1 Theoretical Analysis

To better appreciate LEAP-based transaction processing,
we further provide a theoretical analysis with regards to the
latency expectation of each individual transaction to evalu-
ate the transaction processing efficiency of the two different
techniques. Here, the latency consists of two components:
transaction processing and transaction commit. We ignore
the cost of sending query statement in the initial stage since
its cost is the same for both LEAP and 2PC. Appendix C
summarizes the notations used throughout the analysis.

To simplify the analysis and focus on the comparison be-
tween LEAP and 2PC, we make the following assumptions:
• (A1) Time for local processing is negligible compared

with the distributed data communication. In other words,
the cost of distributed data communication dominates the
overall performance.

• (A2) The cost of sending an SQL query is the same as the
cost of sending one tuple. This assumption generally holds
due to the fast networking enabled by modern network
infrastructure.

• (A3) Each OLTP transaction only accesses a small sub-
set of the entire database, and does not perform full table
scans or large distributed joins [25]. Specifically, we as-
sume each transaction performs n data accesses whose
footprints (e.g., keys of the tuples) are given in the trans-
action statement. In particular, for a LEAP transaction,
all its data accesses can be processed in parallel since all
its required tuples are known upfront, and thus the ex-
pected latency of one data access reflects the expected
latency of all the n data accesses within the transaction.
Consider a partition-based database. We define data ac-

cess to be local if the data being accessed was initially as-
signed to the node that the transaction is currently running
on. Otherwise, data access is defined to be remote. Note
that though LEAP would migrate data during transaction
processing, the above definitions always refer to the initial
state of database partitioning. Moreover, we further define
whether a remote data access is with locality. Suppose node
S1 requests data r from node S2. This remote data access
is referred to be with locality if r will be only accessed by
transactions in S1 in the near future. In contrast, it is re-
ferred to be without locality if r will be frequently requested
by nodes other than S1.

First, we consider the LEAP-based transaction processing.
Let P (R) be the probability of data access being remote
and P (L|R) be the probability of remote data access with
locality. Then the probabilities of different types of data
access are calculated as follows:
• Pl = 1 − P (R): probability of local data access.

• Prl = P (R) · P (L|R): probability of remote data access
with locality.

• Prnl = P (R) ·
(

1 − P (L|R)
)

: probability of remote data
access without locality.
Accordingly, we analyze the cost estimation of each type of

data access. For local data access, based on assumption A1,
the cost only includes accessing the data that are previously
transferred to other nodes via remote data access without
locality. Thus, the cost of the local data access can be cal-
culated as

tl = α · X · P (R) ·
(

1 − P (L|R)
)

where α is the average number of sequential messages passed

within a protocol round-trip and X of one-time network com-
munication is used for all kinds of message passing based on
assumption A2. For LEAP, α can be 2, 3 or 4 according to
the ownership transfer cases as shown in Figure 4.

Similarly, the same estimation for remote data access with
locality is as follows:

trl = α · X · P (R) ·
(

1 − P (L|R)
)

This is because the accessed data is expected to become
locally available as long as they have been migrated to the
requesting node.

Finally, for remote data access without locality, the data
are expected to be at the remote node. Although there is
a chance that the accessed data may have been transferred
to the requesting node through some prior data accesses, we
ignore such a chance as it is expected to be rare. Thus, the
cost for this type of data access is as follows:

trnl = α · X

Since LEAP converts every distributed transaction into
a local transaction, transaction commit can be performed
locally and with negligible cost. Therefore, under assump-
tion A3, we can derive the latency expectation of LEAP-
based transaction processing as the sum of different types
of data access with their corresponding probabilities, i.e.,

TLEAP = tl · Pl + trl · Prl + trnl · Prnl

= α · X · P (R) · P (L|R) ·
(

2 − P (R) · P (L|R)
) (1)

where P (L|R) = 1 − P (L|R) represents the probability of
remote data access not preserving locality.

Next, we consider the 2PC-based transaction processing.
Recall that 2PC is only needed when one transaction in-
volves data access from more than one node. With assump-
tion A1, we only need to deal with the case where the trans-
action processing involves multiple nodes. With n data ac-
cesses, the probability of a transaction being distributed is

Pdt = 1 −
(

1 − P (R)
)n

Furthermore, since 2PC-based distributed transaction pro-
cessing may involve multiple threads residing in different
nodes, a multistep transaction may need to exchange inter-
mediate result among the distributed threads. Suppose i

steps in a multistep transaction requiring intermediate re-
sult transfer, each of which involves at least one message
passing. Therefore, we can derive the latency expectation
of 2PC-based transaction processing as

T2P C = β · X · Pdt + i · X · Pdt

= (β + i) · X ·
[

1 −
(

1 − P (R)
)n

] (2)

where β is the number of sequential messages passed within
the 2PC procedure. As shown in Figure 1, β equals to 5 in
a normal 2PC protocol2.

The above analysis on latency expectation provides three
insights for LEAP/2PC-based transaction processing. First,
without considering the locality of remote data access (e.g.,

P (L|R) = 0), TLEAP grows with P (R) ·
(

2−P (R)
)

, whereas

T2P C grows with 1 −
(

1 − P (R)
)n

. This implies the supe-
riority of LEAP over 2PC becomes significant when remote

2For simplicity, the log-writing cost is omitted in the cost.

data access increases (as illustrated in Appendix F). Sec-
ond, remote data access with locality would benefit TLEAP ,
whereas it does not affect T2P C . Third, 2PC-based process-
ing becomes more expensive when transactions involve inter-
mediate result transfer, whereas the LEAP-based one does
not suffer from such an issue.

4. LEAP-BASED OLTP ENGINE
In this section, we introduce the design of L-Store, a

LEAP-based OLTP engine. Figure 5 shows the architecture
of L-Store which consists of N nodes and one distributed
in-memory storage. There are four main functional compo-
nents in each node as follows.

• Application Layer: This layer provides the interface to
interact with the client applications.

• Storage Engine: L-Store employs an in-memory storage.
To facilitate efficient data access, lightweight indexes (e.g.,
hash index) are utilized to facilitate speedy retrieval of the
data tables, the owner tables and the locks.

• Transaction Engine: This engine handles transaction
execution. It adopts multi-threading to process transac-
tions in order to increase the degree of parallelism. It
interacts with the storage engine to fetch/write the data
and the node management component to detect the data
locks and send the ownership transfer request.

• Node Management: This layer manages the entire node
including controlling the locks and running the LEAP pro-
tocol. It also serves as the agent for inter-node communi-
cation. Its implementation applies the Actor model [17]
to interact with the messages for ownership transfer.

Based on the above architecture, we further present the
key designs on concurrency control, transaction isolation,
and fault tolerance.

4.1 Concurrency Control
Concurrency control ensures that database transactions

can be performed concurrently without violating data in-
tegrity. In this section, we introduce a lock-based distributed
concurrency control scheme in the system. Evaluating L-
Store with other concurrency control techniques such as
multiversion-based protocols is left as a future work.

In each node of L-Store, the concurrency control is achieved
by maintaining two data structures: data lock and owner dis-
patcher. The data lock is designed to control the ongoing
data access. Considering each OLTP transaction typically
accesses only a few tuples and is unlikely to clash with other
concurrent transactions, the lock granularity is applied to
tuples. The data lock scheme uses read-write lock mech-
anism [33]. The owner dispatcher is designed to handle
concurrent ownership transfer requests of the same tuple
from different nodes. When these concurrent requests are
sent to the partitioner, the owner dispatcher in the parti-
tioner would decide which one to process first according to
the deadlock prevention strategy. The main property of the
owner dispatcher is to guarantee that only one request is
forwarded to the data owner to complete the data transfer.

4.1.1 Life Cycle of a Transaction

Now, we introduce the life cycle of one transaction execu-
tion in L-Store. To guarantee serial equivalence and high-
level transaction isolation, we employ the strict two-phase

NodeNode

Application Layer

Txn

Engine

Storage Engine

Node

Mgnt

Application Layer

Txn

Engine

Storage Engine

Node

Mgnt
...

Distributed In Memory Storage

Figure 5: Architecture of L-Store.

locking scheme (S2PL) [31] which guarantees serializability
and recoverability of transaction processing. In S2PL, a
transaction holds on to all granted locks until it commits
or aborts. Transaction execution proceeds in the following
phases.

• Begin: In the initial phase, the transaction executor thread
will initialize the transaction and analyze the execution
plan (e.g., local/distributed transaction, number of inter-
mediate steps, data required in the first step, etc).

• Data Preparation: Next, the transaction executor will
check whether the required data is locally available. This
is performed by checking the local in-memory storage. If
the data is stored in the local memory, it indicates the
current node is the owner and the transaction can be exe-
cuted with the local data. The executor will then send the
data request to the lock manager to lock the data for use.
However, if any of the requesting data is not available lo-
cally, the executor thread will send an ownership transfer
request to the corresponding partitioner to remotely grab
the data.

During this phase, if the executor receives one abort
signal due to conflict through either ownership transfer
protocol or deadlock prevention mechanism, the transac-
tion will directly enter the abort phase.

• Execution: In this phase, a transaction can access or up-
date any data item from the local store. It is sometimes
impossible to predict at the start of a transaction which
objects will be used. This is generally the case in inter-
active applications. Therefore, under such a scenario, the
transaction may re-enter the previous phase to get the
data in the middle of the transaction execution. When
this phase finishes, it will enter the commit phase.

• End: a.) Commit: The transaction enters the commit
phase when the whole transaction has completed success-
fully. All the data updates are applied in the local memory.
In addition, the write-ahead logging technique is applied
to write the transaction log into the distributed persistent
storage. Once the log is written successfully, the transac-
tion is considered to be completed and a commit flag is
set to the transaction log in the end. Meanwhile, all the
locked data are released.

b.) Abort: On conflict, the transaction is rolled back
to cancel all the updates during the transaction execution.
Meanwhile, all the locked data is released.

The commit and abort strategies provide the atomic

transaction execution where either all operations in one
transaction are committed or aborted.

4.1.2 Deadlock Prevention

Deadlock happens when two or more competing processes

...

Partitioner
owner dispatcher

...

Requester

data lock

...

Owner

data lock

5) next

3) response

4
)
in
fo
rm

Figure 6: Ownership transfer with contention.

(i.e., transactions or ownership transfer requests in L-Store)
are waiting for each other to finish, and thus neither ever
does. To tackle this problem, we adopt a timestamp-based
deadlock prevention technique [31] to manage requests for
resources so that at least one process is always able to get
all the resources it needs. In L-Store, each transaction is
assigned a globally unique timestamp according to the time
it arrives at the execution node (see Appendix J for imple-
mentation details). Based on the transaction timestamps,
the deadlock prevention is implemented using the Wait-Die

policy to handle conflicts. The intuitive idea is to set the
priority of the transactions. An older transaction with a
smaller timestamp is endowed with higher priority than a
younger one. In the Wait-Die policy, higher-priority trans-
action waits for the data held by a lower-priority transaction,
whereas lower-priority transaction aborts immediately if the
data is held by a higher-priority transaction. To simplify the
presentation, we define a Wait-Die based conflict handling
operation that will be used in the rest of this section.

Suppose transaction T1 is holding the lock of record K

and transaction T2 requests to access K. Under the Wait-
Die policy, the conflict handling function CH between T1

and T2 is defined as follows.

CH(T1, T2) =

{

T1 waits if T1.t < T2.t

T1 aborts if T1.t > T2.t
(3)

where t is the timestamp of transaction.
Moreover, every aborted transaction is restarted with its

initial timestamp so that starvation is avoided.

4.1.3 Handling Concurrent Requests

In L-Store, concurrent requests may arise in two situations.
First, transactions within a node concurrently access the lo-
cal data. Second, transactions concurrently access data that
require ownership transfer. The second case also includes
the situation where multiple nodes concurrently request the
ownership of the same data.

The first category of the concurrent request can be easily
handled by traditional centralized lock-based concurrency
control mechanisms like the Wait-Die policy. L-Store differs
from other lock-based distributed systems in handling the
second category of concurrent requests.

For ease of presentation, we first assume that there is one
transaction in the requester that needs a remote record. We
will generalize to the case where multiple transactions at a
node may request for remote records later. We will use the
following running example in our discussion.

Requester Side: Suppose transaction T1 in node S1 re-
quires one record K that is currently held in node S3 as
shown in Figure 6. Before S1 sends the ownership transfer
request, it first builds a new “request” lock item in the data
lock to indicate that one ownership transfer request of K

from S1 has been sent. The difference between this request
lock and other data lock is that this locked key does not
have data in the local storage yet. For deadlock prevention,
the timestamp of the request transaction is also attached to
the message (i.e., S1(T1.t)).

Partitioner Side: In the partitioner side, there could
be multiple ownership transfer requests sent from different
nodes at the same time (i.e., S1(T1.t) from S1 and Si(Tx.t)
from Si). One of the main design principles is to process
the request sequentially. In other words, at any time, only
one request is sent to the owner and the others have to
wait until the previous one finishes and sends out the inform
message to the partitioner. This is to avoid the overheads of
re-sending requests: if multiple requests are all sent to the
owner, only one of them will be granted ownership while the
rest have to resend again (since there is a new owner).

To prevent deadlock, the Wait-Die policy is also applied
here to handle the conflict among different requests using
Equation 3. To reduce the abort rate, another design princi-
ple is to choose the request attached with the biggest times-
tamp to process first. Assume T1.t > Tx.t and then S1(T1.t)
will be processed first. Here, the one that is being processed
is analogous to holding one process “lock”. And all the rest
(e.g., Si(Tx.t)) have to wait in the waiting queue.

In addition, before the partitioner S2 receives the inform
message acknowledging the completion of S1(T1.t), all the
new emerging requests for the same K apply the Wait-Die
handling check by comparing with T1.t to determine whether
it can wait in the queue or has to abort. After receiving the
inform message, the owner dispatcher would pick another
requests with the biggest timestamp from the waiting queue
to process until all the requests have been processed.

Owner Side: After receiving the ownership transfer re-
quest of K, S3 handles the request in a manner similar to
a local transaction applying for an exclusive lock. First, it
checks whether K is currently locked by another local trans-
action. If not, the data is directly granted to the request by
sending one response message with the data to S1. Other-
wise, it enters the next step to determine whether the request
can wait or abort. Assume Ty is locking K when S1(T1.t) ar-
rives. This step compares the timestamp of the transaction
holding the lock and the timestamp attached in the request
using the conflict handling function CH(Ty, S1(T1.t)) as de-
fined in Equation 3. If the decision is abort, then the owner
does not allow S1(T1.t) to wait but reject the request via
sending one abort response message to S1.

Generalization: Now, we are ready to see how to handle
the situation where multiple transactions at the requester
accessing the same remote data. For instance, when trans-
actions T1 and T2 both request K in S1, a straightforward
approach is to send multiple ownership transfer requests to
the partitioner. However, this would incur high ownership
transfer overhead, as the system has to handle two requests
from the same node. To tackle this issue, our approach is
to only send one request for the multiple transactions. The
approach is similar to what is employed in the owner dis-
patcher, where the transaction with the biggest timestamp
is chosen to process the request and the rest have to wait in
a waiting queue. For instance, if T1.t > T2.t, T1 is chosen
to send the request and T2 has to wait. Similarly, if a new
transaction (e.g., Tz) emerging in S1 requires K as well, it
has to do the deadlock prevention using the CH(T1, Tz) to
determine whether Tz should wait or abort.

Based on the message received from S3, S1 would take
an appropriate action accordingly. When the message is an
abort message, S1 would abort the transaction T1 and pick
another transaction (i.e., T2) with the biggest timestamp
from the waiting queue to resend the ownership transfer re-
quest. Otherwise, the “request” lock is converted into a
normal data lock to serve the local transaction. In this case,
the data has been granted and can serve all the waiting
transactions in the queue.

4.2 Fault Tolerance
L-Store is designed to run over large-scale clusters, and

provides fault tolerance guarantee. As L-Store employs an
in-memory storage, data stored in memory may be lost when
data node crashes. To tackle this challenge, we adopt data
logging and checkpointing techniques for data durability as
what has been widely used in database literature [32].

Conceptually, L-Store only has “local” transactions exe-
cution in the sense that all transactions hold all the data in
the same place. This enables the transaction processing to
be logged efficiently. Unlike other shared-nothing databases
that require multiple log writes during the 2PC as shown
in Figure 1, L-Store only writes the update data log once
at the commit phase for each transaction. Two important
factors ensure the correctness of this logging mechanism.
First, there is no need for distributed synchronization during
the commit phase, as all the data and updates are in local
storage. Second, partial update of the transaction during
any node crash is not visible to transactions at other nodes,
which ensures that no rollback operation is needed during
failure recovery.

For checkpointing, adopting the distributed storage in L-
Store simplifies the mechanism. The system makes periodic
checkpoint to the distributed storage. When node crash
happens, the latest version of the checkpoint and the data
logs are utilized to perform the recovery together.

We employ Zookeeper [18] to detect node crashes and
coordinate the recovery. When one node Si crashes, how
to handle the failed message delivery has been discussed in
Section 3.3. Now, we present the recover mechanism of han-
dling another two types of data. The first type is the data
that is currently owned by Si. The other type is the owner
table that traces which nodes own the data initially from Si.

Recovering owned data. When Si crashes, the data
in Si are lost from the volatile storage. These data can be
recovered by using the latest checkpoint and the transaction
logs. The logs are replayed from the latest checkpoint to
recreate the state of the node prior to the crash.

Recovering owner table. When Si crashes, the owner
table is lost as well. In order to recover the owner table,
Zookeeper sends a request to every node to write the data
that belong to Si into the distributed storage. When a new
node is ready to replace the failed Si, it would retrieve all
these data from the distributed storage on demand, in which
case the new node becomes the owner for those data and
starts to build its own owner table again.

For more details on how the LEAP design handles data
loss, interested readers may refer to Appendix D.

5. PERFORMANCE EVALUATION
In this section, we present results of an experimental study

to investigate the effectiveness of LEAP. We implement the
LEAP-based OLTP engine in Java as a stand-alone system,

namely L-Store, and compare it with the state-of-the-art
distributed in-memory OLTP system, H-Store [21], whose
distributed transaction processing relies on 2PC. L-Store
supports multi-threaded processing for database partitions
where the number of threads being used is independent of
the number of partitions deployed. In contrast, H-Store ap-
plies single-threaded processing for each partition [21, 20,
26]. Towards fair comparison, we additionally integrate the
core of L-Store into H-Store to replace its 2PC-based transac-
tion processing while retaining the single-threaded process-
ing for each partition. We term this modified H-Store as
HL-Store. The comparison between HL-Store and H-Store
aims to verify the benefits of the proposed LEAP strategy
under the same degree of parallelism in transaction process-
ing. The comparison between L-Store and H-Store further
shows the superiority of LEAP-based transaction processing
when a larger number of threads is exploited to optimize the
system resource utilization.

5.1 Experimental Setup
Environment. Our experiments are conducted on an in-

house cluster with 64 nodes. Each node consists of an Intel
Xeon X3430 @ 2.4 GHz CPU running Centos 5.11 with 8 GB
memory. The cluster is connected using 10 Gigabit Ethernet.
By default, we use 16 nodes to run the experiments.

Workloads. Two benchmarks are used throughout the
experiments: TPC-C and YCSB.

The TPC-C benchmark [1] is an industry-standard bench-
mark for evaluating the performance of OLTP systems. It
consists of nine tables and five stored procedures that simu-
late a warehouse-centric parts-supply application. The speci-
fication of TPC-C benchmark [1] defines the workload as five
stored procedures. In particular, the NewOrder and Payment

transactions (comprising 88% of the total workload as de-
fined in the specification) contain remote data access to the
CUSTOMER and STOCK tables, and the remaining types of trans-
actions interact with local data only. Thus, to focus on
the study of distributed transactions, we only generate the
NewOrder and Payment transactions with uniform distribu-
tion in the experiments. Meanwhile, we control the percent-
age and access pattern of remote data access in these two
types of transactions for evaluation purposes.

The Yahoo! Cloud Serving Benchmark (YCSB) [8] was
initially designed for testing key-value data stores. It con-
sists of a single table and two key-value operations (read-
/update). The table is partitioned based on the primary
key. We extend the benchmark to add support for multistep
transaction that is configurable for the number of interme-
diate results exchange among nodes. This is implemented
by batching several key-value operations into steps and en-
forcing that the search keys of each step (except the first
step) are derived from the result of the prior step. Each
step involves data access to one arbitrarily chosen remote
partition.

Metrics. The throughput is measured by counting the
number of committed transactions within a time unit. The
latency is measured by capturing the time span between
transaction initialization and commit, which includes all the
retrials of a transaction.

Settings. For the TPC-C benchmark, we deploy one
warehouse per partition, and the total number of warehouses
is proportional to the number of nodes used in the experi-
ments. Figure 7 shows the impact of performance of H-Store

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

M
a

x
.

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

s
/s

e
c
)

of Threads Per Node

1% Remote
5% Remote

10% Remote
30% Remote

Figure 7: Impact of the num-
ber of threads used in H-Store.

 0

 50

 100

 150

 200

2 4 8 16 32 48

M
a

x
.

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

s
/s

e
c
)

of Threads Per Node

1% Remote
5% Remote

10% Remote
30% Remote

(a) Throughput.

 0

 5

 10

 15

 20

2 4 8 16 32 48

A
v
e

ra
g

e
 B

a
n

d
w

id
th

 (
M

b
p

s
)

of Threads Per Node

1% Remote
5% Remote

10% Remote
30% Remote

(b) Bandwidth.

Figure 8: Impact of the number of threads used in L-Store.

by varying the number of partitions deployed on a 4-node
cluster. We show results for 1%, 5%, 10% and 30% remote
data access. Recall that the single-threaded execution model
in H-Store implies the number of threads per node for trans-
action processing equal to the number of partitions deployed
in that node. From the results, we can see that with 4 cores
in each node, H-Store achieves best performance by using
one partition per core and allowing one core to do the sys-
tem coordination, which is consistent with the setting from
[21, 26]. Therefore, in our experiments, we deploy three par-
titions in each node for H-Store to perform optimally. Ac-
cordingly, we also deploy three partitions per node for both
L-Store and HL-Store3.

For pure performance evaluation on transaction process-
ing and transaction commit, we remove the settings of ad-
mission control, user initiated abort, transaction sleeping
and timeout in the experimental workloads. Moreover, for
all three systems (L-Store, HL-Store and H-Store), whether
a partition is local or remote is based on the node it resides
in rather than its assigned core. We strictly enforce the re-
mote data access to be inter-node with respect to the initial
state of database partitioning (since LEAP would migrate
data during transaction processing).

5.2 Impact of Multi-Threaded Processing
As L-Store supports multi-threaded transaction process-

ing, this set of experiments aim to study how the usage of
threads affects the system throughput and bandwidth.

Throughput. Figure 8.a provides the maximum through-
put of L-Store for the TPC-C workload with 1%, 5%, 10%
and 30% of remote data access when we vary the num-
ber of threads per node from 2 to 48 with the number of
partitions per node unchanged. From the result, we can
see that the throughput initially increases with increasing
number of threads (from 4 to 32) but decreases or remains
stable beyond 32 threads. For any thread running a dis-
tributed transaction, it is suspended during ownership trans-
fer. Thus using more threads for more concurrent execution
would reduce CPU idle time so that computation resources
can be better utilized towards higher throughput. However,
deploying too many threads would incur significant over-
head of thread scheduling. Moreover, higher concurrency
would bring in higher contention of data, which could lead to
more transaction abort due to deadlock prevention. Trans-
action abort not only wastes the CPU cycles spent on partial
processing but also consumes extra CPU cycles to perform
transaction rollback. Hence, setting the number of threads
to an appropriate range could balance the trade-off between
efficiency and effectiveness of computation resource usage.

3HL-Store is therefore set with three threads per node for
transaction processing.

Based on the result shown in Figure 8.a, we set 32 threads
per node as the default setting of L-Store for the rest of the
experiments.

Bandwidth Usage. To study the communication cost
incurred by inter-node message passing in L-Store, we fur-
ther examine the bandwidth usage under different number
of threads. Note that the cost of ownership transfer domi-
nates the overall bandwidth. We gather three insights from
the result given by Figure 8.b. First, higher percentage of
remote data access results in higher bandwidth usage. This
is expected as more remote data accesses incur more owner-
ship transfers. Second, the bandwidth usage shows a similar
curve as the throughput with respect to varying number of
threads. This is because the bandwidth usage is basically
proportional to the number of remote data accesses within
a time unit, which is implicitly constrained by the system
throughput. Third, the network traffic generated by the
ownership transfer is small and acceptable. The result in
Figure 8.b indicates that even with 32 threads, the band-
width usage for running the workload with 30% remote data
access is around 17 Mbps. With modern network infrastruc-
ture such as 10 Gigabit Ethernet, the bandwidth usage in
L-Store is not likely to become a bottleneck even in a large-
scale system setting.

5.3 Impact of Distributed Transactions
Next, we study the impact of distributed transactions by

observing the maximum throughput and mean latency when
the percentage of remote data access varies from 0% to 100%
(without preserving locality of data access) for the TPC-C
workload. Figure 9.b and Figure 9.c show that L-Store and
HL-Store have comparative throughput and latency with H-
Store when all transactions are local, i.e., 0% remote data
access4. On the other hand, with increasing percentage of
remote data access, the throughput for all three systems
decreases while the latency increases. This is expected as
executing local transactions is much faster than process-
ing distributed transactions. However, we observe that L-
Store and HL-Store outperform H-Store by a wide margin
once distributed transactions are involved. For instance, L-
Store (resp. HL-Store) exhibits 2.5x to 20x (resp. 1.2x to
6x) speedup over H-Store when the percentage of remote
data access varies from 1% to 50% as shown in Figure 9.b.
As analyzed in Section 3.4.1, the performance of 2PC-based
transaction processing is sensitive to the proportion of dis-
tributed transactions in the workload. Figure 9.a indicates
that the percentage of distributed transactions grows rapidly
with the increment of remote data access. For example, 1%
remote data access results in about 10% distributed trans-

4Appendix G provides additional evaluation on the perfor-
mance of local transaction processing.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e
 o

f
D

is
tr

ib
u
te

d
 T

ra
n
s
a
c
ti
o
n
s
 (

%
)

Percentage of Remote Data Access (%)

(a) Distributed transactions.

 0

 50

 100

 150

 200

 250

 300

0 1 2 3 4 5 6 7 8 9

M
a
x
.
T

h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Percentage of Remote Data Access (%)

L-Store

H
L
-Store

H-Store

 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 60 70 80 90 100
M

a
x
.
T

h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Percentage of Remote Data Access (%)

L-Store

H
L
-Store

H-Store

(b) Throughput.

 0

 20

 40

 60

 80

 100

 120

 140

0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Percentage of Remote Data Access (%)

L-Store

H
L
-Store

H-Store

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Percentage of Remote Data Access (%)

L-Store

H
L
-Store

H-Store

(c) Latency.

Figure 9: Impact of the percentage of remote data access.

Table 1: Transaction abort and trials in L-Store.

Remote Abort Rate 1 Trial 2 Trials ≥ 3 Trials
1% 3.43% 96.89% 2.95% 0.16%
5% 3.71% 96.52% 3.34% 0.14%

10% 3.49% 96.74% 3.15% 0.11%
30% 2.68% 97.62% 2.33% 0.05%

actions, 10% remote data access results in about 63% dis-
tributed transactions, and 50% of remote data access results
in nearly 100% distributed transactions. The rapid increase
in the number of distributed transactions greatly raises the
latency of H-Store (as shown in Figure 9.c) and consequently
leads to the dramatic decrease of its throughput (as shown
in Figure 9.b). This is caused by the frequent invocation
of the expensive 2PC protocol in H-Store for committing
distributed transactions. On the contrary, we observe that
the throughput of L-Store and HL-Store decreases at a much
slower rate as the percentage of remote data access increases.
This confirms that LEAP enables L-Store and HL-Store to
handle distributed transaction processing much more effi-
ciently than H-Store.

The throughput gap between L-Store and HL-Store is due
to the CPU utilization. When the maximum throughput is
reached, both L-Store and H-Store utilize CPU at nearly
100%, whereas HL-Store utilizes CPU at around 30%. This
result is consistent with Figure 8.a where the LEAP-based
processing suffers from blocking due to the usage of locks.
On the other hand, HL-Store provides lower latency than
L-Store. This is because the processing in HL-Store does
not require thread scheduling.

We further evaluate the concurrency control of the LEAP-
based engine. Taking L-Store as the example, Table 1 shows
the transaction abort rate and the distribution of different
number of transaction trials for transactions to successfully
commit. The results are collected after the system is satu-
rated, i.e., running with the maximum throughput. As can
be seen, the abort rate is lower than 4% in all the test in-
stances. The aborts are caused by the Wait-Die policy in
resolving data contention (i.e., deadlock prevention and own-
ership transfer failure). Moreover, every issued transaction
gets committed eventually. For all the committed transac-
tions, over 96% successfully commit without any prior abort,

and around 3% get to commit in their second trial of execu-
tion. The maximum number of transaction trials observed in
the experiments is 6. These results clearly show that LEAP
is effective in not only having low abort rates, but the num-
ber of retrials for aborted transactions is also acceptable.

5.4 Impact of Locality of Remote Data Access
Using the TPC-C workload containing remote data ac-

cesses, we further study how the locality of these remote
data accesses affect the performance. Recall that a remote
data access is considered to be with locality if the data be-
ing requested at the remote partition are exclusively acces-
sible to the requesting node, and a remote data access is
considered to be without locality if the data is accessed ran-
domly over the global database. This set of experiments
are conducted using the TPC-C workload with 10% remote
data access. Figure 10 provides the throughput and latency
of L-Store, HL-Store and H-Store as we vary the locality
level from 0% to 90%. The locality level is simulated as the
probability of remote data access being with locality during
transaction generation.

As can be seen from the results, LEAP-based systems (i.e.,
L-Store and HL-Store) outperform 2PC-based system (i.e.,
H-Store) by a big margin when the locality level is high. This
is expected as LEAP enables the migrated data to be reac-
cessed by subsequent transactions in the same node without
additional remote requests. Consequently, the percentage of
remote data access is significantly reduced. High locality of
remote data access benefits high possibility of trivially turn-
ing a remote data access into a local data access without
issuing any remote request once the data is available in the
requesting node due to prior migration. On the other hand,
while the performance of LEAP-based processing (i.e., in L-
Store and HL-Store) increases with the increment of locality
of remote data access, the change of locality is agnostic to
the 2PC-based processing (i.e., in H-Store). This is because,
in the 2PC-based processing, remote data access would al-
ways remain remote as the data would not be automatically
repartitioned.

For micro evaluation on ownership transfer of LEAP, in-
terested readers may refer to Appendix E.

 20

 40

 60

 80

 100

 120

0 10 20 30 40 50 60 70 80 90

M
a
x
.
T

h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Locality Level of Remote Data Access (%)

L-Store

H
L
-Store

H-Store

(a) Throughput.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 10 20 30 40 50 60 70 80 90

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Locality Level of Remote Data Access (%)

L-Store H
L
-Store H-Store

(b) Latency.

Figure 10: Impact of the locality level of remote data access.

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p
 o

v
e
r

H
-S

to
re

of Intermediate Steps Per Transaction

L-Store

H
L
-Store

Figure 11: Impact of the number of
intermediate results.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40 45 50 55
 0

 50

 100

 150

 200

L
a
te

n
c
y
 (

m
s
)

T
h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Latency Throughput

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30 35 40 45 50 55

B
a
n
d
w

id
th

 (
M

b
p
s
)

Elapsed Time (second)

Figure 12: Automatic data repartitioning.

 10

 15

 20

 25

 30

 35

 360 390 420 450 480 510 540

L
a
te

n
c
y
 (

m
s
)

Elapsed Time (minute)

Figure 13: Impact of access pattern.

5.5 Impact of Intermediate Result Transfer
Next, we study the performance impact of intermediate

result transfer within the distributed transaction process-
ing. This set of experiments are conducted by running our
extended YCSB workload with 10% remote data accesses.
Figure 11 shows the speedup of L-Store and HL-Store over
H-Store, when we vary the number of steps involving inter-
mediate result transfer within each transaction. Each step
involves one remote data access and one tuple of intermedi-
ate result. From the result, we can see that as the amount of
intermediate result transfer increases, the LEAP-based pro-
cessing exhibits increment of speedup over the 2PC-based
processing. For instance, the speedup of L-Store (resp. HL-
Store) over H-Store increases from 3.2x (resp. 1.2x) to 5.1x
(resp. 1.9x) when the number of intermediate result steps
varies from 1 to 8. The performance degradation of the 2PC-
based processing is caused by the increased inter-node com-
munication for intermediate result transfer. On the other
hand, since LEAP always gathers the required data of a
transaction for processing within a single thread, it natu-
rally avoids the transfer of intermediate results within the
transaction. This further confirms the superiority of LEAP-
based distributed transaction processing.

5.6 Impact of Access Pattern
As LEAP exploits data migration to convert distributed

transactions into local transactions, a side-effect of data mi-
gration in LEAP is to automatically repartition the database
with respect to the workload. We conduct an experimental
study to verify the effectiveness of database auto-repartition-
ing within the LEAP-based transaction processing. Figure 12
illustrates the real-time latency, throughput and bandwidth
usage changes when HL-Store runs the TPC-C workload
with initially 10% remote data access and 100% locality of
remote data access. Transaction generator feeds in 16,000

transactions per second. At the beginning, the latency is
relatively high due to the frequent ownership transfer. This
makes sense because the distributed transactions are aggres-
sively migrating data from remote partitions to local parti-
tions. As expected, as time goes by, the bandwidth usage
drops dramatically and reduces to almost zero in the end.
This confirms that all the remote data have been migrated to
the same node with respect to the locality of remote data ac-
cess. As a consequence, subsequent transactions contain no
remote data access and thus the system retains high through-
put and low latency.

Besides the locality of remote data access, the pattern of
data access will also impact the system performance. Fig-
ure 13 shows the real-time latency along L-Store’s long-time
execution with periodic alternation of three data access pat-
terns: each remote data access is limited to (1) one, (2) two
and (3) all stated partitions respectively. Each access pat-
tern lasts for 30 minutes. The result is a segment sample of a
3-hour run. As can be seen, LEAP can adapt to the changes
of data access pattern towards good performance. This re-
sults from the fact that data contention increases from (1)
to (3). In case (1), each data ownership is mainly accessible
from two nodes, while it may be accessed by three nodes
(resp. all nodes in the cluster) in case (2) (resp. case (3)).
When the number of nodes requesting the same data in-
creases, the contention increases accordingly and thus incurs
more overhead of ownership transfer.

5.7 Scalability
Finally, we evaluate the scalability of L-Store, HL-Store

and H-Store when the size of the cluster changes. Figure 14.a
shows the throughput changes for running the TPC-C work-
load with 10% remote data access as the number of nodes
varies from 4 to 64. The results illustrate that L-Store scales
much better than H-Store. For instance, the throughput
of H-Store with 64 nodes is only 8 times faster than the

 0

 50

 100

 150

 200

 250

 300

4 8 16 32 48 64

M
a

x
.

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

s
/s

e
c
)

of Nodes

L-Store

H
L
-Store

H-Store

(a) Over nodes.

 0

 100

 200

 300

 400

 500

 600

4 6 8 10 12 14 16 18 20 22 24 26

M
a

x
.

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

s
/s

e
c
)

of Warehouses Per Node (L-Store)

1% Remote
5% Remote

10% Remote
30% Remote

(b) Over database sizes.

Figure 14: Scalability.

one with 4 nodes. On the other hand, we observe that the
throughput of L-Store grows almost linearly when the num-
ber of nodes increases from 4 to 32. Although HL-Store
manifests similar scalability as H-Store, HL-Store greatly
underutilizes the CPU resources due to its restricted usage
of threads (recalling that both HL-Store and H-Store allo-
cate a single thread for each partition). On the other hand,
both L-Store and H-Store fully utilize the CPU resources
when reaching the maximum throughput.

Furthermore, we evaluate the system scalability with in-
creasing size of database. To this end, we still use the TPC-
C workload as above but raise the database size beyond 3
warehouses per node. The experiments are run on a 64-node
cluster by varying the amount of warehouses deployed. We
first test H-Store and find that it cannot scale beyond 320
warehouses (i.e., 5 warehouses per node). This is consistent
with the result as shown in Figure 7. Next, we test L-Store
by augmenting the database size until the system reaches
its limit of in-memory processing. The results are shown in
Figure 14.b, with the percentage of remote data access set to
1%, 5%, 10% and 30%. As can be seen, with 512 GB mem-
ory capacity of the cluster, L-Store can scale out up to 1536
warehouses (i.e., 24 warehouses per node) whose data vol-
ume is around 450 GB in total. This confirms that L-Store
is highly scalable when the cluster memory is sufficient.

6. RELATED WORK
There has been much interest in developing scalable dis-

tributed databases. One class of systems achieves good scal-
ability by removing the transactional support, such as Dy-
namo [13] and Cassandra [23]. Another batch of systems
only provides limited transactional support. For example,
Bigtable [7] supports single-row transactional updates, and
Megastore [4] offers transaction access over a small subset
of a database. These systems provide linear outward scala-
bility by sacrificing the complete transactional support.

H-Store [21] and its commercial successor VoltDB [27]
are distributed main-memory systems that support ACID
properties through data partitioning and replication. While
these systems process local transactions efficiently, their per-
formance degenerates with increasing number of distributed
transactions due to usage of the expensive 2PC protocol.

Calvin [30] is a transaction scheduling and data replica-
tion layer that uses a deterministic ordering guarantee to re-
duce the contention costs associated with distributed trans-
actions. Calvin does not use any distributed commit proto-
cols; instead, it employs a deterministic locking mechanism
that executes (sub)transactions in the same order across all
nodes. However, this results in high transaction delay as
the transactions can only be executed after agreeing on a
transaction execution order.

L-Store is similar in spirit to G-Store [11]. Both systems
transfer all the keys forming a group to a single node in
order to allow efficient multi-key access. However, G-Store
is specially designed for web application (e.g., online gaming)
rather than OLTP workload. It requires the group to collect
all the keys before the execution, which does not work in
OLTP workload as the keys may not be known in advance.
In G-Store, transactions are limited to one group and the
techniques are tailored for long-lived transactions, while L-
Store is designed to OLTP workload where transactions are
short-lived.

Our work is also related to the research on data migra-
tion and database partitioning. Zephyr [15] performs live
migration in a shared-nothing transactional database. It
aims to reduce the system downtime while migrating ten-
ants between hosts. Pavlo et al. [26] proposed an automatic
database partitioning algorithm based on an adaptation of
the neighborhood search technique, and a cost model that
estimates the coordination cost and load distribution for
a sample workload. E-Store [28] provides a two-tier data
placement strategy to prioritize hot data and adopts a live
reconfiguration technique [16] to repartition the database.
ElasTraS [12] recursively partitions the database with tree-
structured scheme towards minimizing remote data accesses,
and adopts the 2PC protocol to handle distributed trans-
actions. L-Store differentiates itself from these works by
automatically transferring the data to the computation ac-
cording to the transaction execution request.

Non-2PC distributed transaction processing has been stud-
ied in the context of shared-data databases [6, 24]. For ex-
ample, Loesing et al. [24] proposed a design of distributed
transaction processing by leveraging the in-memory shared-
data storage. It shares similarity with L-Store in the mech-
anism of transaction processing such that it gathers all re-
quired data of a transaction from the storage to a node and
processes the transaction locally. With shared-data storage,
this design can achieve load balancing since the execution of
each transaction is independent of the location of data. How-
ever, this design requires the shared-data storage to provide
atomic data access primitives to resolve contention among
parallel updates. This renders the solution less applicable to
vanilla in-memory storage systems that are not necessary to
guarantee atomicity of data access. In contrast, in L-Store,
the logic of transaction processing and concurrency control
are decoupled from the underlying storage layer, making L-
Store friendly to all kinds of distributed in-memory storage.
In Appendix I, we provide an experimental comparison be-
tween LEAP and the scheme in [24].

7. CONCLUSION
We proposed a distributed transaction management scheme

called LEAP which facilitates low latency and good scalabil-
ity. LEAP always converts a distributed transaction into a
local transaction to eliminate the expensive commit proto-
col. Based on LEAP, we developed a distributed in-memory
OLTP engine L-Store with full ACID support. L-Store en-
ables a good scalability with a shared-nothing database en-
gine and no single-node failure problem by employing a dis-
tributed in-memory storage. Furthermore, we presented a
lock-based distributed concurrency control scheme to handle
concurrent requests in L-Store. The experimental evaluation
highlighted the superiority of the LEAP-based distributed
transaction processing over 2PC-based systems like H-Store.

Acknowledgments

We would like to thank Dawei Jiang for initiating the idea of
this research in February 2014, and Chang Yao and Meihui
Zhang for their early tests. We would also like to thank our
reviewers and shepherd of the paper, and H. V. Jagadish,
for their insightful feedback that helped improve the paper.
This research is funded by the National Research Founda-
tion Singapore under its Campus for Research Excellence
and Technological Enterprise (CREATE) programme with
the SP2 project of the E2S2 programme, and the National
Research Foundation, Prime Minister’s Office, Singapore
under its Competitive Research Programme (CRP Award
No. NRF-CRP8-2011-08).

APPENDIX

A. REFERENCES

[1] Tpc-c benchmark. http://www.tpc.org/tpcc/.

[2] A. Adya et al. Efficient optimistic concurrency control
using loosely synchronized clocks. In Proc. of

SIGMOD, 1995.

[3] P. Bailis et al. Coordination avoidance in database
systems. In Proc. of VLDB, 2015.

[4] J. Baker et al. Megastore: Providing scalable, highly
available storage for interactive services. In Proc. of

CIDR, 2011.

[5] Y. Cao et al. Es2: A cloud data storage system for
supporting both oltp and olap. In Proc. of ICDE,
2011.

[6] S. Chandrasekaran et al. Shared cache - the future of
parallel databases. In Proc. of ICDE, 2003.

[7] F. Chang et al. Bigtable: A distributed storage system
for structured data. ACM Trans. on Computer

Systems, 26(2):4:1–4:26, 2008.

[8] B. F. Cooper et al. Benchmarking cloud serving
systems with ycsb. In Proc. of SoCC, 2010.

[9] J. C. Corbett et al. Spanner: Google’s
globally-distributed database. In Proc. of OSDI, 2012.

[10] C. Curino et al. Schism: A workload-driven approach
to database replication and partitioning. In Proc. of

VLDB, 2010.

[11] S. Das et al. G-store: A scalable data store for
transactional multi key access in the cloud. In Proc. of

SoCC, 2010.

[12] S. Das et al. Elastras: An elastic, scalable, and
self-managing transactional database for the cloud.
ACM Trans. on Database Systems, 38(1):5:1–5:45,
2013.

[13] G. DeCandia et al. Dynamo: Amazon’s highly
available key-value store. In Proc. of SOSP, 2007.

[14] D. E. Difallah et al. Oltp-bench: An extensible
testbed for benchmarking relational databases. In
Proc. of VLDB, 2014.

[15] A. J. Elmore et al. Zephyr: Live migration in shared
nothing databases for elastic cloud platforms. In Proc.

of SIGMOD, 2011.

[16] A. J. Elmore et al. Squall: Fine-grained live
reconfiguration for partitioned main memory
databases. In Proc. of SIGMOD, 2015.

[17] C. Hewitt et al. A universal modular actor formalism
for artificial intelligence. In Proc. of IJCAI, 1973.

[18] P. Hunt et al. Zookeeper: Wait-free coordination for
internet-scale systems. In Proc. of USENIX ATC,
2010.

[19] D. Jiang et al. epic: An extensible and scalable system
for processing big data. In Proc. of VLDB, 2014.

[20] E. P. Jones et al. Low overhead concurrency control
for partitioned main memory databases. In Proc. of

SIGMOD, 2010.

[21] R. Kallman et al. H-store: A high-performance,
distributed main memory transaction processing
system. In Proc. of VLDB, 2008.

[22] J. F. Kurose et al. Computer networking: a top-down

approach. Pearson Education, 2012.

[23] A. Lakshman et al. Cassandra: Structured storage
system on a p2p network. In Proc. of PODC, 2009.

[24] S. Loesing et al. On the design and scalability of
distributed shared-data databases. In Proc. of

SIGMOD, 2015.

[25] A. Pavlo. On Scalable Transaction Execution in

Partitioned Main Memory Database Management

Systems. PhD thesis, Brown University, 2014.

[26] A. Pavlo et al. Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems.
In Proc. of SIGMOD, 2012.

[27] M. Stonebraker et al. The voltdb main memory dbms.
IEEE Data Engineering Bulletin, 36(2):21–27, 2013.

[28] R. Taft et al. E-store: Fine-grained elastic partitioning
for distributed transaction processing systems. In
Proc. of VLDB, 2015.

[29] K.-L. Tan et al. In-memory databases: Challenges and
opportunities from software and hardware
perspectives. ACM SIGMOD Record, 44(2):35–40,
2015.

[30] A. Thomson et al. Calvin: Fast distributed
transactions for partitioned database systems. In Proc.

of SIGMOD, 2012.

[31] G. Weikum et al. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency

Control and Recovery. Elsevier, 2001.

[32] C. Yao et al. Adaptive logging: Optimizing logging
and recovery costs in distributed in-memory databases.
In Proc. of SIGMOD, 2016.

[33] H. Zhang et al. In-memory big data management and
processing: A survey. IEEE Trans. on Knowledge and

Data Engineering, 27(7):1920–1948, 2015.

B. DATA ACCESS VIA NON-PRIMARY KEYS
Our proposal in LEAP with data access via primary key

can be easily extended for transactional workloads with data
access via non-primary keys using secondary indexes. To
this end, existing techniques of building and manipulating
distributed index can be exploited to construct the secondary
indexes. Each secondary index entry records the primary
key of the data record so that the secondary indexes facili-
tate identifying the primary key via non-primary keys. As a
consequence, data access via the non-primary key is done in
two steps: retrieving the primary key through the secondary
index and then accessing the data through the LEAP pro-
tocol using the obtained primary key. Therefore, the cor-
responding process of ownership transfer can reduce to the
one described in the paper.

http://www.tpc.org/tpcc/

C. SYMBOLIC NOTATIONS
Table 2 lists the notations used in Section 3.4.1.

Table 2: List of notations.

Sym. Description

T Latency expectation of a transaction.
n Number of data accesses within a transaction.
i Number of steps dependent on intermediate results.
R Event of remote data access.
L Event of remote data access appearing locality.
X Cost of one-time network communication.

D. FAULT TOLERANCE SCHEME
As an addendum to Section 4.2, we shall further elaborate

on the fault tolerance of LEAP, particularly on its handling
of data and message loss.

Handling Message Loss. The LEAP design handles
message loss with two levels of guarantees. First, in the
transmission level, LEAP relies on TCP for inter-node mes-
sage passing, which has been shown to be reliable [22].

Second, in the protocol level, LEAP adopts a timeout-and-
resend strategy. Every owner/transfer request is accompa-
nied with a timeout setting. When there is a timeout wait-
ing for a corresponding response, the owner/transfer request
will be resent. Note that the response to an owner request
is either the requested data or a transaction abort signal,
and the response to a transfer request is an inform message
indicating whether the ownership transfer succeeds or not.
With the resent requests, the process of ownership transfer
can be replayed once message loss occurs. However, resend-
ing requests may introduce the issue of duplicate requests.
To address this issue in LEAP, duplicate messages are fil-
tered out at the receiver site based on the processing logic.
Referring to Figure 6, we enumerate the cases of duplicate
elimination with respect to the four types of messages in the
general case of ownership transfer (i.e., R-P-O).

• Suppose S2 receives an owner request from S1, e.g., S1(T1.t)
for K. If S2 detects that S1(T1.t) is already in the wait-
ing queue for K or S1 is already the owner of K, the
ownership request will be ignored. Otherwise, S2 will add
S1(T1.t) into the waiting queue for K, or send a corre-
sponding transfer request to S3, or send an abort signal
of T1 to S1.

• Suppose S3 receives a transfer request S1(T1.t) for K from
S2. If S3 detects that S1(T1.t) is already in the waiting
queue for K, the transfer request will be ignored. Other-
wise, S3 will either transfer (a copy of) K to S1 or send an
abort signal of T1 to S1. Note that after K is transferred
out of S3, S3 still maintains a backup of K for a longer
timeout until deletion.

• Suppose S1 receives the requested K or an abort signal of
T1. After T1 completes (i.e., commits or aborts), S1 will
inform S2 whether the ownership transfer of K succeeds
or not. Note that no duplicate elimination is performed
in this case.

• Suppose S2 receives an inform message from S1 for K. If
S2 detects that the ongoing ownership transfer is not for
S1, the inform message will be ignored. Otherwise, based
on the inform message, S2 will update the owner table
entry for K and invoke a pending owner request, if any,
from the waiting queue for K.

In brief, the message-passing-based ownership transfer can

be guaranteed by the reliable transmission of TCP and the
timeout-and-resend strategy of LEAP.

Handling Data Loss. Considering the general case of
ownership transfer (i.e., R-P-O), we discuss all possible fail-
ures in requester, partitioner and owner during the protocol.
Note that the protocol starts with the owner request be-
ing sent by the requester and ends with the inform message
being confirmed by the partitioner. Our current implemen-
tation of L-Store only considers the mechanism of handling
single-node failure.

• Requester failure may occur in the cases based on the sta-
tus of receiving the response message (associating either
the requested data or a transaction abort signal).

• Partitioner failure may occur in the cases based on the
status of receiving the owner request, sending the transfer
request and receiving the inform message.

• Owner failure may occur in the cases based on the status
of receiving the transfer request and sending the response
message.

Due to space constraint, we only elaborate on two cases,
and the remaining ones follow the similar processing pat-
tern. For example, suppose the partitioner fails before the
owner request arrives. In this case, once the requester wait-
ing for the response message is timed out, it will resend
the owner request. This procedure repeats until the parti-
tioner resumes. Once the partitioner resumes and receives
the owner request, the protocol proceeds as normal. For
another example, suppose the requester fails before the re-
sponse message arrives. In this case, once the partitioner
waiting for the inform message is timed out, it will resend
the transfer request and then the owner will resend the re-
sponse message with (a backup copy of) the data. This
procedure repeats until the requester resumes. Once the
requester resumes and receives the response message, the
protocol proceeds as normal.

Moreover, we specially elaborate on node recovery with
respect to its data. While the data owned by the failed node
can be recovered through the log, it is possible that some
data have been transferred out prior to the node failure:

• If the data transferred out belongs to the failed node (i.e.,
the failed node is the partitioner of the data), then the
new owner of the data will flush the data (after its running
transaction completes) to the distributed storage after it is
informed about the failure. When the failed node resumes,
it will retrieve the data from the distributed storage on
demand (i.e., when the data is requested but the owner
table entry is missing, which by default means the data
locates at the partitioner). In other words, the data is
“indirectly” transferred back to the partitioner.

• If the data transferred out does not belong to the failed
node (i.e., the failed node is not the partitioner of the
data), then the data is owned by a new owner and the
recovery of the failed node (i.e., the old owner) does not
affect the protocol.

E. EVALUATING OWNERSHIP TRANSFER
Figure 15 illustrates the breakdown of ownership transfer

cases referring to Figure 4. The experiment is conducted on
a 16-node cluster by running L-Store with the TPC-C work-
load. Each result is measured after the system has been
saturated for 15 minutes. Figure 15.a and Figure 15.b show

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8 9

#
 o

f
O

w
n
e
rs

h
ip

 T
ra

n
s
fe

r
(M

)

(a) Percentage of Remote Data Access (%)

RP-O R-PO R-P-O

 0

 10

 20

 30

 40

 50

10 20 30 40 50 60 70 80 90 100

#
 o

f
O

w
n
e
rs

h
ip

 T
ra

n
s
fe

r
(M

)

(b) Percentage of Remote Data Access (%)

RP-O R-PO R-P-O

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 10 20 30 40 50 60 70 80 90

#
 o

f
O

w
n
e
rs

h
ip

 T
ra

n
s
fe

r
(M

)

(c) Locality Level of Remote Data Access (%)

RP-O R-PO R-P-O

Figure 15: Breakdown of ownership transfer cases. (Case types referring to Figure 4)

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
a

te
n

c
y
 E

x
p

e
c
ta

ti
o

n
 (

X
)

Probability of Data Access Being Remote

TLEAP

T2PC (n=4)

T2PC (n=8)

T2PC (n=12)

T2PC (n=16)

Figure 16: Comparison of latency
expectation.

 0

 100

 200

 300

 400

 500

1 2 3 4 5

M
a

x
.

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

s
/s

e
c
)

of Threads Per Node

L-Store

H-Store

Figure 17: Performance of local
transaction processing.

 0

 50

 100

 150

 200

4 8 16 32

M
a

x
.

T
h

ro
u

g
h

p
u

t
(K

 t
x
n

s
/s

e
c
)

of Nodes

L-Store

Tell

Figure 18: Comparison of scalabil-
ity with Tell [24].

the results when varying the percentage of remote data ac-
cess from 1% to 100% with the locality level set to be 0%.
When remote data accesses are rare (e.g., less than 10% as
in Figure 15.a), the number of ownership transfers increases
obviously along the increment of remote data access. When
remote data accesses become frequent (e.g., more than 10%
as in Figure 15.b), the total amount of ownership transfers
remains nearly the same in spite of the increment of remote
data access. This is due to the exploitation of locality of
remote data access in LEAP. (Although the locality of all
data accesses in Figure 15.a and Figure 15.b are not advis-
edly preserved, the randomization of data access naturally
contributes some degree of locality.) Moreover, the portion
of R-P-O of ownership transfer increases steadily along the
increment of remote data access. This explains the perfor-
mance loss of LEAP-based transaction processing when re-
mote data access rises but the total amount of ownership
transfer remains stable, because R-P-O of ownership trans-
fer is most expensive comparing with RP-O and R-PO.

Furthermore, Figure 15.c shows the results when varying
the locality level from 0% to 90% with 10% remote data ac-
cess. The rise of locality decreases the amount of ownership
transfer, especially those of R-P-O. This confirms the gain
of the LEAP protocol due to the locality of data accesses.

F. LATENCY EXPECTATION
Figure 16 illustrates the comparison of latency expecta-

tion between LEAP-based and 2PC-based transaction pro-
cessing. The plots are based on Equation 1 and Equation 2
with α = 4 and β = 5 respectively. The locality of remote
data access is ignored, i.e., P (L|R) = 0. Each transaction
only contains single step (i.e., i = 1). Recall that n is the
number of data access within a transaction and X is the
estimated average cost of one-time network communication.

G. LOCAL TRANSACTION PROCESSING
To evaluate how local transactions affect the overall perfor-

mance, Figure 17 provides the result of maximum through-
put when L-Store and H-Store process the TPC-C workload
with local transactions only. The experiment is conducted

on a 16-node cluster. The percentage of remote data access
is set to 0% (i.e., all generated transactions are local), and
the number of threads per node varies from 0 to 5. From
the result we obtain two insights. First, H-Store outper-
forms L-Store with local transaction only workloads. The
performance difference is mainly contributed by the over-
head of locking. To handle data contention, H-Store applies
the warehouse-granule locks along with its single-threaded
processing for each warehouse, whereas L-Store applies the
tuple-granule locks in the design to support multi-threaded
processing. Moreover, once H-Store figures out that a trans-
action is local, it does not actually perform locking [20,
26] since only one thread is manipulating the data in the
same warehouse and thus no contention exists. This makes
H-Store more efficient than L-Store when processing local
transactions. Second, the scalability curves of both H-Store
and L-Store share a similar pattern. Especially, the perfor-
mance peak appears with 4 threads per node. This is ra-
tional because each node is equipped with 4 physical cores.
Specially, for H-Store, the thread for coordinating the pro-
cessing of distributed transactions is always idle since no
distributed transaction is generated. As a consequence, all
the cores can fully participate in processing local transac-
tions.

Additionally, we measure the latency under the same set-
tings as above. With the number of threads per node vary-
ing from 1 to 4, the latency remains around 3.2 ms and 2.6
ms for L-Store and H-Store respectively. This is because
each thread processes local transactions independently and
no thread scheduling is performed over the cores. However,
with 5 threads per node, the latency increases to 3.5 ms for
L-Store and 3.1 ms for H-Store due to the overhead of thread
scheduling.

H. MEMORY USAGE OF OWNER TABLE
Figure 20 shows the memory consumption of owner table

when L-Store runs the TPC-C workload in a 16-node clus-
ter. The percentage of remote data access varies from 0% to
100%, and the locality level of remote data access is set to
0% (i.e., no locality is preserving). Each result is measured

 0

 50

 100

 150

 200

 250

0 1 2 3 4 5 6 7 8 9

M
a
x
.
T

h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Percentage of Remote Data Access (%)

L-Store

Tell

 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 60 70 80 90 100

M
a
x
.
T

h
ro

u
g
h
p
u
t
(K

 t
x
n
s
/s

e
c
)

Percentage of Remote Data Access (%)

L-Store

Tell

(a) Throughput.

 0

 10

 20

 30

 40

 50

 60

0 1 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Percentage of Remote Data Access (%)

L-Store

Tell

 0

 100

 200

 300

 400

 500

 600

10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Percentage of Remote Data Access (%)

L-Store

Tell

(b) Latency.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9

A
b
o
rt

 R
a
te

 (
%

)

Percentage of Remote Data Access (%)

L-Store Tell

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 20 30 40 50 60 70 80 90 100

A
b
o
rt

 R
a
te

 (
%

)

Percentage of Remote Data Access (%)

L-Store Tell

(c) Abort Rate.

Figure 19: Comparison of performance with Tell [24].

 0

 20

 40

 60

 80

 100

 120

 140

0 1 2 3 4 5 6 7 8 9

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 o

f
 O

w
n

e
r

T
a

b
le

 P
e

r
N

o
d

e
 (

M
B

)

Percentage of Remote Data Access (%)

 100

 150

 200

 250

 300

10 20 30 40 50 60 70 80 90 100

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 o

f
 O

w
n

e
r

T
a

b
le

 P
e

r
N

o
d

e
 (

M
B

)

Percentage of Remote Data Access (%)

Figure 20: Memory consumption of owner table.

after the system has been saturated for 15 minutes. As can
be seen from the result, the owner tables do not consume any
memory when the system processes local transactions only
(i.e., with 0% remote data access). This confirms the mem-
ory optimization as discussed in Section 3.2. Furthermore,
the memory consumption increases along the increment of
remote data access. This is expected with respect to the
ownership transfer protocol.

I. COMPARISON WITH SHARED-DATA

OLTP SYSTEM
Here, we shall evaluate L-Store against a state-of-the-art

shared-data OLTP system, Tell [24]. For Tell, each physical
node consists of two logical nodes: one processing node and
one storage node5. Additionally, two nodes are exclusively
used as the commit manager and the management node,
and they are not counted in the experiments. We conduct
experiments by running the TPC-C workload.

We first compare the performance with various settings of
remote data access. Figure 19 shows the results of through-
put, latency and abort rate by varying the percentage of
remote data access from 0% to 100%. L-Store outperforms
Tell in throughput and latency due to the following two rea-
sons. First, although L-Store and Tell share similarity in
turning every distributed transaction into a local one for
processing, Tell does not exploit any locality of data access
since it always retrieves data acquired by the transactions
from the storage. Second, Tell resolves write-contention in
the storage layer when transactions commit. This leads to
high abort rate of Tell in comparison with L-Store, as shown

5In the experiments, we only count the physical nodes.

in Figure 19.c. The high abort rate of Tell inversely affects
its throughput and latency, since the throughput refers to
only the committed transactions and the latency includes
all the retrials of the aborted transactions.

Next, we compare the scalability. The result in Figure 18
shows that Tell also exhibits nearly linear scalability as L-
Store does. This is expected as the design of Tell is specially
proposed for good scalability [24].

J. ASSIGNING GLOBAL TIMESTAMPS
Current implementation of L-Store assigns a timestamp to

each issued transaction of the format of 〈node_time, node_id〉.
Specifically, node_time is the local wall-time in nanosec-
onds when the transaction arrives at the execution node,
and node_id is the unique node identifier. We assume each
node can accept at most one transaction per nanosecond,
which is practical in general. Thus, the timestamp of each
transaction is globally unique.

The timestamp ordering is determined by the comparison
between timestamps. For transactions in the same node,
their timestamps are naturally ordered by the node_time’s.
For transactions in different nodes, the timestamp ordering
is primarily based on node_time and secondarily based on
node_id. Although this is an easy-to-implement approach,
it suffers from two disadvantages. First, all clocks of the
nodes have to be synchronized to make the timestamp order-
ing among different nodes meaningful. This is known to be
hard in practice, especially for maintaining the synchroniza-
tion strictly all the time. In the experiments of this paper,
we only synchronize the clocks at the beginning of each run-
ning instances. Second, the comparison based on node_id

is biased towards nodes with identifiers of high preference.
But its impact is limited since it is only used for breaking
ties when the node_time’s appear to be equal.

An alternative solution is to assign a global order for each
transaction through a central coordinator [20]. But the cen-
tral coordinator could be a bottleneck of the system. Using
multiple coordinators with synchronization protocols (e.g.,
loosely synchronized clocks [2] or TrueTime [9]) could mit-
igate the issue. We leave the optimized implementation to
future work, and only adopt the simple method as described
above in this paper.

	Introduction
	Preliminaries
	Distributed Transaction Processing: The LEAP Way
	The Big Picture
	Managing Ownership and Data Placement
	Ownership Transfer
	Comparison with 2PC
	Theoretical Analysis

	LEAP-Based OLTP Engine
	Concurrency Control
	Life Cycle of a Transaction
	Deadlock Prevention
	Handling Concurrent Requests

	Fault Tolerance

	Performance Evaluation
	Experimental Setup
	Impact of Multi-Threaded Processing
	Impact of Distributed Transactions
	Impact of Locality of Remote Data Access
	Impact of Intermediate Result Transfer
	Impact of Access Pattern
	Scalability

	Related Work
	Conclusion
	References
	Data Access via Non-Primary Keys
	Symbolic Notations
	Fault Tolerance Scheme
	Evaluating Ownership Transfer
	Latency Expectation
	Local Transaction Processing
	Memory Usage of Owner Table
	Comparison with Shared-Data OLTP System
	Assigning Global Timestamps

