
Fast and Adaptive Indexing of Multi-Dimensional
Observational Data

Sheng Wang #1, David Maier †2, Beng Chin Ooi #3

#National University of Singapore, †Portland State University
1,3{wangsh,ooibc}@comp.nus.edu.sg, 2maier@cs.pdx.edu

ABSTRACT
Sensing devices generate tremendous amounts of data each
day, which include large quantities of multi-dimensional mea-
surements. These data are expected to be immediately avail-
able for real-time analytics as they are streamed into storage.
Such scenarios poses challenges to state-of-the-art indexing
methods, as they must not only support efficient queries but
also frequent updates. We propose here a novel indexing
method that ingests multi-dimensional observational data
in real time. This method primarily guarantees extremely
high throughput for data ingestion, while it can be continu-
ously refined in the background to improve query efficiency.
Instead of representing collections of points using Minimal
Bounding Boxes as in conventional indexes, we model sets
of successive points as line segments in hyperspaces, by ex-
ploiting the intrinsic value continuity in observational data.
This representation reduces the number of index entries and
drastically reduces “over-coverage” by entries. Experimen-
tal results show that our approach handles real-world work-
loads gracefully, providing both low-overhead indexing and
excellent query efficiency.

1. INTRODUCTION
Rapid advances in sensing technologies and devices are

creating a new norm in digitizing our physical world and
daily life. The types of entities whose state can be con-
tinuously captured are increasing in tandem, from micro-
scopic molecules to macroscopic celestial bodies. The range
of properties that can be sensed from monitored entities is
growing as well. As a result, the collected measurements,
called observational data, are exploding both in volume and
velocity. On one hand, sensors’ capabilities keep improving
in both sampling frequency and resolution. For example,
a single sensor can capture the velocity of a moving ob-
ject in units of µm/s at a frequency of 2000Hz. On the
other hand, decreasing device prices and increasing power
efficiency facilitate the deployment of large sensor networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 42nd International Conference on Very Large Data Bases,
September 2016, New Delhi, India.
Proceedings of the VLDB Endowment,Vol. 9, No. 14
Copyright 2016 VLDB Endowment 2150-8097/16/10.

MBR

MBS

Observations

Query Range

Figure 1: False positives from data sparseness.

They may consist of thousands of sensors, producing simul-
taneous high-frequency observations. All these trends make
observational data management write-intensive.

To make the collected data ready for querying as soon
as they are ingested into storage, indexing structures must
be efficient for frequent updates. Various indexing meth-
ods have been proposed to address this problem. Examples
include bulk-insertion techniques [6, 7] that update the in-
dexes in a batch manner, lowering per-item cost, and log-
structured-merge trees [1, 19, 22] that incur only sequential
I/Os for updates. In our previous work [26], we proposed
an index that exploits the intrinsic value-continuity of ob-
servations. Compared with other indexes where individual
records are indexed, this method assigns one index entry for
a collection of records (represented as a bounding-value pair)
to reduce index-construction cost. When a query arrives, it
relies on partial scans to access record collections. However,
that method only addresses data in single dimension.

In this paper, we consider the indexing problem for multi-
dimensional observations. In practice, an observational data
flow is usually a continuous collection of observations with
multiple attributes (i.e., dimensions). For example, obser-
vations from underwater sensors may contain water tem-
perature, salinity, oxygen saturation and pH. Though all
these data could be perfectly value-continuous, it is still
challenging to exploit this feature. First, data sparseness in
multi-dimensional spaces hurts query efficiency. Bounding
objects such as minimal bounding rectangles/boxes/spheres
(MBR/MBB/MBS) are widely used [12, 16] to represent
a collection of data items. However, such representations
cause “over-coverage”, i.e., portions of indexed spaces that
contain no actual points, as shown in Figure 1, where queries
overlap with bounding objects, but not with observations.
These structures force us to access false-positive entries.
This issue becomes more severe as the dimensionality in-
creases. Second, the write-intensive aspect limits resources

and possibilities to derive bounding objects with the least
over-coverage. Prior work [15] investigates flexible bound-
ing objects to reduce over-coverage, but it incurs high con-
struction cost and hence is not affordable in our case. The
derivation of index entries should be extremely fast so that
it does not affect the throughput.

To address challenges above, we propose a novel indexing
method called SICC (Segment-oriented Indexing for Contin-
uously Changing data), which exploits value-continuity on
observations to support fast and adaptive indexes for real-
time workloads. The index is lightweight for data ingestion,
but still ensures query efficiency. Its graceful performance
derives from the following three considerations. First, we
note that while data are scattered all over the space in
a global view, points collected during a short time period
nonetheless can be estimated by a segment in hyperspace.
Thus we represent points concisely with a bounding segment

that minimizes over-coverage. Second, to ensure real-time
access, the index must be constructed as data arrive. The
cost for deriving and indexing bounding segments is ex-
pected to be small and constant. Third, the initial construc-
tion targets massive data ingestion, hence might lead to un-
satisfactory performance on some queries. Index-structures
should be able to improve over time in the background.

The contributions of this paper include:

• A novel bounding object called a bounding segment

that represents points as a hyperline-segment, exploit-
ing the value-continuity in observational data. Related
operations, such as deriving segments and calculating
volumes are provided as well.

• A framework that constructs segment-oriented indexes
for continuously arriving observations. In this frame-
work, online segmentation algorithms derive bounding
segments effectively and efficiently.

• An R-tree variant for indexing bounding segments with
low overhead, while ensuring query efficiency. The
structure is adaptive: it is continuously improved based
on query-execution statistics.

• An extensive experimental evaluation on three real-
world datasets, comparing with baseline approaches.
The results confirm that our approach significantly re-
duces insertion overhead and at the same time provides
excellent query efficiency.

The rest of this paper is organized as follows. Section 2
describes the targeted problem and key concepts in our de-
sign. Section 3 presents the overall framework. The details
of bounding segment and index construction are discussed
in Sections 4 and 5. We evaluate performance in Section 6.
Sections 7 and 8 give related work and conclusions.

2. PRELIMINARIES
This section characterizes observational data and provides

a description of the problem we address. We also present
key concepts in our design and explain how they exploit
characteristics of observational data.

2.1 Observational Data
Sensing devices are common data sources for analytic ap-

plications, especially scientific tasks. For example, coastal-
margin observation [2] deploys underwater sensors at differ-
ent sites and depths to gather data, such as water tempera-
ture, salinity and oxygen saturation. We call data collected

in such a manner observational data, as they are observa-
tions of an entity (or environment) at different moments.

We rely on three characteristics of observational data that
facilitate the indexing: 1) Append-only: observations are
rarely modified after entering the storage, each having its
own observation time. 2) Value-continuity: observations
from the same sensor inherently tend to have similar read-
ings during a short period. 3) Sequence analysis: it is
common to analyze series of consecutive observations rather
than individual points. These traits permit us to reduce
index information without compromising query efficiency.

2.2 Problem Description
We focus on an online observational data flow, with an

unbounded stream of arriving records. Assume that each
record contains d property dimensions as floating-point val-
ues, as well as an observation time. We can represent each
individual record as a point1 in a d-dimensional space Rd

(or Rd+1 with the time dimension).
The major concern is that, upon arrival, each point should

be stored and indexed as quickly as possible. The system
should provide superior write throughput for rapidly gener-
ated observations. At the same time, a query request should
be able to acquire up-to-date results. Due to the nature of
observational data and scientific analysis, it is uncommon to
perform exact point queries on high-precision values. Hence,
we focus on range queries, which find all points within a d-
dimensional query range r (or with d′ < d dimensions spec-
ified). We address the retrieval of complete query answers,
where no approximate or lossy results are allowed.

This task is an typical indexing problem, but in a specific
context. Thus, we have to address various issues with re-
spect to the particularities and opportunities. For sequence
analysis, qualified records should be returned in observation-
time order, since an additional sorting phase is expensive for
results with large cardinality. To provide real-time access,
we also need to support incremental queries, in which results
are periodically produced over just the new data.

2.3 Basic Design of SICC Indexes
Low Overhead. The traits and challenges of observa-

tional data discussed above drive our index design. Most
important is low maintenance overhead. For write-intensive
applications, it is prohibitive to take up too many system
resources to index constantly arriving records at the expense
of input throughput or query speed. We prefer lightweight
methods that handle high insertion rates and concurrent
query retrievals, as indexes could be refined during periods
when the system has available resources.

Log-Structured Storage and Sequential I/Os. Se-
quence analysis is common for observational data. For this
purpose, we use a log-structured storage as our data storage.
Log-structured storage is an ideal platform for us to store
and query data with sequential writes and reads. First, it
has higher write-throughput compared to update-in-place
systems [25]. As records are immediately appended into
log files, separate WALs can be eliminated, and this aspect
saves a large number of I/Os. Second, sequential scans re-
turn records in insertion order (which correlates with ob-
servation time). Furthermore, scans are highly efficient, as

1An observation (application level), a record (storage level)
and a point (logical level) are used interchangeably.

Observational Data

Data Space (Logical View)

Segmentation

Algorithm
Tier 1

Block Headers

H1 H2 H3 H4 Hk-1 Hk

Log-structured Storage

Log

Files

S1

S2

S3

Header

Indexing
R1

R2

Tier 2

append

ID: Sk

Bounding Segment

Location: (File, Offset)

Length: n

Block Header Format

S1

S2S3

S4

S5

S6

Sk Sk-1

Figure 2: SICC index framework.

they avoid disk seeks and yield high bandwidth. Given a sin-
gle disk-head seek (∼5ms), accessing one record (∼10µs) or
hundreds of physically contiguous records have comparable
costs. Therefore, a data-block scan have cost comparable to
a single random-record access.

Intrinsic Clustering versus Induced Clustering. Tra-
ditional index methods organize records with similar values
into the same physical page to save query I/Os. This ar-
rangement can be called induced data clustering. As new
records arrive, they are always stored nearby similar records.
Thus the physical index organization keeps changing, incur-
ring extra overhead. In contrast, there is intrinsic data clus-

tering in observational data, which provides a similar effect
to induced clustering, but with little overhead. By simply
appending newly arrived records into contiguous disk pages,
potential results of a range query tend to be grouped to-
gether. Although not all results of a query will be adjacent,
they are likely clustered into consecutive sequences on the
disk. This phenomenon becomes more attractive in multi-
dimensional spaces. When storing a multi-dimensional point
on disk, the “closest” neighbors on each dimension cannot
be all physically nearby [14]. Hence there is no perfect in-
duced clustering for all dimensions, while intrinsic clustering
still provides reasonable effectiveness.

3. INDEX FRAMEWORK
In this section, we introduce our SICC framework for in-

dexing observational data. The architecture is shown in Fig-
ure 2. Arriving data are stored sequentially in log-structured
storage before being indexed. On top of the storage, we
maintain two tiers of index structures.

In the first tier, all records are divided into logical blocks,
via a segmentation algorithm. A block refers to a number
of successive records and is the finest unit for data access.
For any query referring to a certain subset of the records
in a block, the whole block will be fetched as a batch. For
each block, we generate a block header, which keeps neces-
sary information for processing queries, i.e., that needed to
determine whether and where to access those records. More
specifically, the bounding segment in the header determines
if the block possibly contains query results. Only when the
bounding segment intersects the query range will the system
fetch that data block. These headers are generated by the
segmentation algorithm on the fly. Since a group of records
share a single header, the total index size is quite small.

12 14 16 18 20 22 24 26 28 30 32
10

10.5

11

11.5

12

12.5

13

Salinity

O
xy

ge
n

S
at

ur
at

io
n

(a)

0
1000

2000
3000

4000
5000

10

20

30

40
10

10.5

11

11.5

12

12.5

13

TimeSalinity

O
xy

ge
n

S
at

ur
at

io
n

(b)

Figure 3: Observations from an estuary that con-
tain salinity and oxygen saturation: (a) distribution
across a time period; (b) distribution over time.

In the second tier, block headers are organized and in-
dexed, so that we need test only some of the headers to get
the complete query result. During frequent data insertion,
good organization is essential to ensure query efficiency, as
the number of blocks can quickly grow large. This tier per-
forms as an indexing structure for block headers. Addition-
ally, it also facilitates sequential scans for data blocks, so
that disk bandwidth can be fully utilized.

Overall, there are three critical issues that dominate the
effectiveness and efficiency of our SICC framework:

• Given a block of records, how do we derive a proper
bounding segment, so that “over-coverage” in multi-
dimensional space is minimized? (Section 4)

• During massive data ingestion, how do we generate
bounding segments and index them without compro-
mising system performance? (Section 5.1)

• If there are resources available after handling data in-
gestion and query requests, how can we refine the index
for better query efficiency? (Section 5.2)

4. BOUNDING SEGMENTS
In this section, we present the structure of bounding seg-

ments. Algorithms that quickly compute bounding segments,
match segments against queries, and calculate segment vol-
umes are also provided.

4.1 Continuity among Observations
For a sequence of d-dimensional observations, the corre-

sponding points form a continuous path in d-space, provided
that the values in each dimension are continuous over time.
This pattern can be observed in real-world data sources.
Figure 3 shows such a situation, where the salinity and oxy-
gen saturation status of an estuary are expressed in a 2d-
space. Although the path is obvious in Figure 3(b), these
two dimensions are not completely correlated, as shown in
Figure 3(a). No global correlation means that it is ineffec-
tive to directly apply dimension-reduction techniques [9] to
cut down the dimensionality. However, the path (exhibit-
ing “local correlations”) can be exploited. For a properly
chosen sequence of points, their path can be approximated
as a segment of a hyperline in d-space. This opportunity
motivates our design for bounding segments.

4.2 Bounding Segment Representation
Here we present the structure of a bounding segment, and

visualize the space bounded by a segment. Assume that we
are considering a d-dimensional space. A bounding segment
S consists of three d-dimensional values:

Bounded Space

vb
ve

vs

vb+vs

Figure 4: 2d bounding segment visualization.

• vb represents the base point of the segment,

• vs represents the segment direction and length, and

• ve represents the extent of points on the segment.

Figure 4 depicts these values and the bounded space, when
d = 2. Points vb and (vb + vs) are the two endpoints of the
underlying hyperline segment. The extent ve only contains
non-negative scalars. It can be viewed as a function mbbe(p)
that extends any point p to be an MBB centered at p, with
bounding range [p(i) − ve(i), p(i) + ve(i)].

2

The total extent bounded by a bounding segment S is the
union of those extended MBBs from all points between the
endpoints vb and (vb + vs), which can be expressed as:

ext(S) =
⋃

α∈[0,1]

mbbe(vb + α · vs)

4.3 Computing Bounding Segments
A bounding segment S covers a collection of points P

if P ⊂ ext(S). However, unlike MBBs, which are easy to
calculate, the optimal bounding segment for a collection P
is harder to discover, due to the many degrees of freedom.
First, the axis vs is hard to determine, as the search space
grows exponentially with increasing dimensionality. Second,
even the axis is fixed, the extent ve is still not unique. It is
possible to increase ranges in some dimensions in order to
reduce ranges in other dimensions. (See Figure 5.)

Considering low overhead, we prefer simple algorithms
that find bounding segments with reasonable but not neces-
sarily optimal pruning effectiveness. Here we provide a lin-
ear solution for computing bounding segments in two steps:
(1) determine the segment axis (direction of vs); (2) deter-
mine the segment extent (vb, ve and scale of vs). In our
method, only the segment axis is maintained incrementally
as points arrive. The segment extent is determined only
after all points in the block are available.

4.3.1 Segment Axis
The segment axis is determined using principal-component

analysis (PCA) techniques. PCA is a statistical procedure
that finds orthogonal axes, so-called principal components

(PCs), so that points are linearly uncorrelated when aligned
to those components. The first PC has the largest variance,
and each succeeding component has largest variance subject
to being orthogonal to all preceding components.

In our scenario, a proper segment direction of vs can be
considered as the direction with largest variance, i.e., the
first PC. However, calculating the exact first PC for n d-
dimensional points has complexity O(nd2) or O(n2d). To
ensure that the total procedure is linear in the data size, an
incremental PCA (IPCA) algorithm, called CCIPCA [27], is
adopted. It approximates the first k PCs in an incremen-
tal manner with only O(kd) complexity per point. Another

2We use x(i) to denote the ith element of vector x.

Segment Axis

Bounding Segment

p

p’

p

p’

Figure 5: Different point projections onto the seg-
ment axis in 2-dimensions.

reason that an IPCA algorithm is desirable is that the sup-
port of incremental updates facilitates online segmentation
(Section 5). CCIPCA is used because of its efficiency and
simplicity for implementation, but other IPCA algorithms
should also be applicable.

The effectiveness of the bounding segment S does not de-
pend on the sequential order of points inside. If all points
are close to the segment axis, S should have good pruning
effectiveness, even if consecutive points are not always ad-
jacent. Therefore, the bounding segment can tolerate small
discontinuities in the data, e.g., data disorder.

4.3.2 Segment Extent
The segment axis is the line passing through the mean

of all points in the block, along the direction of vs. After
obtaining the segment axis, we can “project” points onto the
axis. For any point p represented by the bounding segment,
there must exist at least one point p′ on the axis so that
p ∈ mbbe(p

′). To derive ve, we need to find a p′ for each
point p and update ve, such that:

ve(i) = max (ve(i), |p
′
(i) − p(i)|)

However, the projection of p to p′ is not unique, and different
projections will affect ve (and thus the mbbe(x) function).
Figure 5 illustrates the effect of different projections.

To simplify this procedure, we project points onto the seg-
ment axis along norm vectors, which are orthogonal to the
axis (as shown in the right part of Figure 5). This projec-
tion is optimized for the squared error between p and p′.
The projected point p′ can be expressed as:

p′ = omean + θ ·
vs

‖vs‖

θ = (p− omean) ·
vs

‖vs‖

where omean is the mean of all points in the segment. The
two endpoints are also easy to find, by recording the minimal
and maximal θ encountered, so as:

vb = omean + θmin ·
vs

‖vs‖

vs = (θmax − θmin) ·
vs

‖vs‖

By this method, all three values in a bounding segment are
computed. Note that the extent ve could be replaced with
two values, one for the upper bounds and the other for the
lower bounds, to further reduce the total extent.

4.4 Matching against a Query
The main reason that we record the extent ve aligned to

the original axes is that this choice makes the test against

queries extremely simple. The extent of a bounding segment
S can be easily “transferred” to a query, by enlarging the
query range. The intersection check for S (with ve) against
the query range [qmin, qmax] is equivalent to the check of
a pure segment (without extent) against the query range
[qmin − ve, qmax + ve].

To test segment vb to vb+vs against box [qmin−ve, qmax+
ve], we can decompose this task into multiple 1-dimensional
overlap checks. For each dimension i, we use a pair (li, ui)
where 0 ≤ li ≤ ui ≤ 1, to express the intersected portion:

[vb(i) + li · vs(i), vb(i) + ui · vs(i)]

= [vb(i), vb(i) + vs(i)] ∩ [qmin(i) − ve(i), qmax(i) + ve(i)]

The final test is true only if ∩1≤i≤n[li, ui] 6= ∅.

4.5 Calculating Segment Volume
To support online segmentation algorithms (Section 5), we

need to calculate (or at least estimate) the volume bounded
by a segment, especially in an incremental way.

Once we have a bounding segment S, we can calculate an
accurate volume of the bounded space as:

Vol(S) =

(

n
∏

i=1

2ve(i)

)

·

(

1 +
n
∑

j=1

vs(j)
2ve(j)

)

However, the ve component can only be obtained by pro-
cessing all points in the block whenever the segment axis is
updated. Hence, the complexity of getting the up-to-date
volume after m points will be O(md). For a sequence of n
points, the total cost of getting the volume of the bound-
ing segment after each incremental update will be O(n2d),
which is likely unaffordable.

We provide here a simple way to estimate the volume.
Calculating the volume with above formula only needs ve
and vs, so we estimate these two values to get an approxi-
mation. For the extent ve, another v

′
e is maintained during

incremental update. For each new point p, we first compute
its projection p′ on the current segment axis, and update v′e
in the same way we calculate ve. As the segment axis keeps
adjusting, v′e will no longer capture the real extent. How-
ever, so long as the segment axis changes only slightly during
the updates, v′e is a good estimate of ve. Similarly, we can
estimate vs incrementally. For each point p, we calculate
the distance between p′ and the axis origin. The approxi-
mate v′s is then estimated from the two endpoints that are
at maximal distance to the origin in opposite directions.

5. INDEXING AND REFINING
This section presents the initial construction of SICC in

a lightweight manner when ingesting new data, in order to
maximize write-throughput. We then discuss the strategy
for continuously refining the index.

5.1 Index Construction
A SICC index can be easily constructed when data records

are initially ingested into log-storage, hence these data are
immediately ready for answering queries. To ensure through-
put, the construction is lightweight. We segment consecutive
records into disjoint blocks, each of which are then repre-
sented by a bounding segment.

The bounding segments are based on the insight that a
collection of consecutive points are close to an “implicit”

segment axis. Its effectiveness is more sensitive to the lo-
cation of points, compared to that of MBBs, i.e., a point is
less probable to be near a axis than within a box. There-
fore, segmentation algorithms that determine the scope of
each block (i.e., the start and end record of a block) are
critical. We used an eager segmentation algorithm to take
newly arrived records as input and divide them into logi-
cal blocks. For each block, the algorithm generates a block

header as output. Block headers allow us to skip blocks of
data that do not contribute results to a given query. All
generated headers are appended into a header file. To avoid
checking all headers for each query, we design OR-trees to
index them in a write-optimized way.

5.1.1 Block Header
A block header contains two types of data: (1) that for

matching against queries, including a bounding segment;
and (2) that for locating the block contents for retrieval, in-
cluding the block id, file id, file offset and count of records.
Given a block header and a query, the bounding segment is
first tested against the query range. Only on a positive test
is the location information used to fetch the data block.

5.1.2 Eager Segmentation
We use an eager segmentation algorithm to segment blocks

during data ingestion due to its simplicity. It is extremely
lightweight that requires only a single pass of data, with
amortized O(d) complexity per record. The main idea is
that we maintain one active block to accept incoming records.
When a new record arrives, we immediately decide whether
to put it into the active block, or to close that block and
initiate a new one. To guide the decision, we follow a rule:
For answering any query with r results, the number
of accessed records should be less than µ · r, where
µ (> 1) is called the amplification factor.

First, we address a sub-problem at the block level: given a
block B with |B| records and rB as the number of expected
results in B, how to determine whether fewer than µ · rB

records will be accessed for answering queries. To make the
analysis, pre-knowledge of the query workload is required.
For range queries, the relevant aspects are: (1) the expected
range extent of queries; and (2) the distribution of queries.
To simplify the problem, we assume that query workload
has a uniform distribution, and the expected extent of the
query range is l.

We define the query-enlarged area of a point p to be the
MBB that has range [p(i), p(i)+l(i)] for each dimension i. For
each point p, the probability that it is returned as a query
result is proportional to the volume of its query-enlarged
area, that is: Respoint(p) ∼

∏n

i=1 l(i). Hence, for the whole

block B, the expected number of results rB it contains can
be expressed as:

rB =
∑

p∈B

Respoint(p) ∼ |B| ·

n
∏

i=1

l(i)

Now we consider the expected frequency with which B
needs to be fetched and accessed, which depends on the
bounding object representing the block. More specifically,
the frequency is proportional to the query-enlarged area of
the bounding object, which should cover the query-enlarged
area of all contained points. For a block B, we need the
query-enlarged segment S′

B. It should be the same as bound-
ing segment SB , except that the extent ve is replaced by

Algorithm 1: Eager Segmentation (Record r)

Input: a newly arrived record r
Output: a new block header or null
/* global variables */

Block active;
/* local variables */

Header ret = null;
Boolean closed = false;
/* check constraint */

add r into active and update segment axis;
if active.enlargedVol / active.PointsVol ≥ µ then

closed = true;
remove r from active;

/* check whether to close the block */

if closed is true then
/* create header for the block */

compute segment extent of active;
ret = new Header(active);
active = new Block();
active.filePosition = r.position;
add r into active;

return ret;

ve + 1
2
l. As a result, the access frequency of block B is

proportional to Vol(S′
B). (See Section 4.5 for calculating

segment volume.) As the whole block will be fetched and
scanned for each access, the expected number of accessed
records is |B| · Vol(S′

B).
To ensure that fewer than µ · rB records are accessed, we

have the following constraint:

µ >
number of accessed records in B

number of results in B
=

Vol(S′
B)

∏n

i=1 l(i)

If every block meets this constraint, the expected number of
accessed records is less than µ ·r. Algorithm 1 shows the ea-
ger segmentation procedure. We keep loading new records
into the active block until it violates the constraint for a
given µ, and then start a new block. Note that no assump-
tion on data distribution or continuity is required. To adapt
this analysis to arbitrary query distributions, all we need is
a query histogram containing query frequencies and range
sizes. We replace l with actual range sizes and weight the
query-enlarged areas with the recorded frequencies.

The amplification factor µ controls the trade-off between
index-construction cost and query efficiency. Though it is
user-defined, its in-world meaning is straightforward, i.e, the
number of records we can tolerate before getting a result.
There is no clear optimal setting, as we can always reduce
it so long as the system can handle increased overhead.

5.1.3 Header Indexing
Similar to data stored in log-storage, block headers are

also organized sequentially on disk. Generated headers are
appended to the end of a headerfile. When answering a
query, the simplest way is a brute-force scan of the entire
header file. Although such a method is not intelligent, it
does have advantages: it always returns qualified headers in
insertion order. This order facilitates the scan in underly-
ing log-storage, as consecutive qualified data blocks can be
fetched in a single round without extra disk seeks. In ad-

H1 H2 H3Header File

OR-tree 1 OR-tree 2

OR-tree Height

R-tree

Figure 6: Indexing with OR-trees of height 2.

dition, final results can be returned in order as well, which
benefits sequence analysis from a user’s perspective.

Intuitively, we might consider R-trees [12] to index block
headers, using the MBB of the bounding segment as the spa-
tial key. Although R-trees outperform brute-force scans on
access, their high maintenance cost make them prohibitive
for write-intensive scenarios. If observations come in a high
rate, node splits and re-organizations will be the bottleneck.
Since index entries are no longer accessed in insertion order,
an additional sorting phase for qualified entries is required,
if we want to fully utilize bandwidth to access data blocks.

To combine strengths of R-trees and brute-force scans, we
propose an R-tree variant that provides both write through-
put and query efficiency. The header file will be indexed by
a number of sub-trees, termed OR-trees, and only their root
nodes are put into a global R-tree. Each sub-tree is orga-
nized like a normal R-tree, but constructed in a bottom-up
manner in which block headers are grouped and indexed in
insertion order. Hence we name it Ordered R-tree (OR-tree).
Figure 6 illustrates this organization. As consecutive obser-
vations are close together, the MBBs of internal nodes in
an OR-tree should be compact and that property ensures
its effectiveness. To keep qualified entries in order, we only
need to sort the retrieved OR-tree roots from the global R-
tree. All subsequent traversals inside an OR-tree naturally
return headers in order. The height of the OR-trees reflects
the trade-off between construction cost and effectiveness. In
the extreme, we can maintain a single huge OR-tree to en-
tirely eliminate node splits and sort phases.

Queries with time-range conditions are essential in sci-
entific analysis. The header file and OR-tree support such
queries well. It is straightforward to filter out an entire
OR-tree that is disjoint from a time range, provided that
each header contains temporal information. For supporting
incremental queries over new data, we bypass the OR-tree
indexes and directly scan the tail of the header file. We
mark the current end of the header file after each round and
then can continue to scan from the mark later. The specific
procedure for answering range queries can be easily derived
from the one-dimensional algorithm [26].

5.2 Index Refinement
Given a bounded amount of system resources, SICC al-

ways ensures that all incoming data are indexed as soon
as possible. The remaining resources can then be used to
answer query requests. During index construction, eager
segmentation relies on estimated query distributions, hence
query performance is not guaranteed. In practice, query
workloads are complicated and data of interest may change
drastically over time. We avoid the adaption in initial con-
struction to keep it simple and fast. Instead, the index
structure is continuously refined in the background when

the system has available resources.

5.2.1 Refinement Criterion
The performance of recent query requests reflects which

parts of the index need to be refined. To collect query statis-
tics, we assign a number of counters for each accessed block
header B, as follows:

• Cfetch: the number of queries that matched B, hence
caused its data block to be fetched.

• Cco−fetch: the number of queries that fetched both B’s
data block and its following block.

• Cresult: the total number of records that are returned
as results from B’s data block over all queries.

These counters are easy to maintain in memory, causing
negligible overhead for queries. We can derive the actual
query cost for block B as

cost(B) = Cfetch(B) · |B|

This value is the main characteristic to help us determine if
a part of the index needs to be refined. We can either split

a block to improve efficiency, or merge consecutive blocks
to remove unnecessary index entries. The refinement fre-
quency depends on the quality of segmentation against ac-
tive queries. Thus, it tends to be low when segmentation
algorithms are able to provide effective segments by them-
selves, or after extended period of similar queries.

5.2.2 Splitting and Exhaustive Segmentation
Recall that users provide a factor µ to limit expected read

amplification (Section 5.1.2). With the help of the counters
above, we can verify whether a block satisfies the users ex-
pectation. We might need to split a block B when

cost(B)

Cresult(B)
> µ

“Split” replaces a block’s original header with two or more
new headers, each covering a sub-block. Splitting costly
blocks can reduce both scan cost and the false-positive rate.
In the case that more than one block is to be split, we always
choose the one with most “potential” benefit from splitting,
i.e., the one with maximum cost(B)− Cresult(B).

To conduct split, we use exhaustive segmentation, which
takes the records in the original block as input and gener-
ates a number of new block headers as output. Compared to
eager segmentation, this algorithm is more computational-
intensive, as it considers every possible choice for splitting
the block. The goal of exhaustive segmentation is to seg-
ment a collection of records into K blocks that min-
imize the total query cost.

Similar to the previous analysis, we use w(B) = |B| ·
Vol(S′

B) as the query cost of block B, where S′
B is its en-

larged bounding segment. Note that we can use recent query
requests to determine the enlarged area, instead of a pre-
defined range expectation. For a segmentation of a sequence
of records into K blocks B1, B2, ..., BK , our target is to min-
imize the total query cost W as:

W =
K
∑

i=1

w(Bi) =
K
∑

i=1

|Bi| ·Vol(S
′
Bi

)

It is straightforward to solve this problem when K = 2. We
just need two passes, i.e., forward and backward, to compute

Algorithm 2: Exhaustive-Core (Matrix w, Integer K)

Input: the query-cost matrix w
Input: the number of target splits K
Output: a list of split positions
List<Integer> ret;
Integer n = w.size;
Double f [0 ... K][0 ... n];
set all elements in f to +∞;
f [0][0] = 0;
/* compute optimal cost for f[K][n] */

for i = 0 to K do
for j = i to n-1 do

if f [i][j] == +∞ then continue;
for k = j + 1 to n do

if f [i+ 1][k] > f [i][j] +w(j + 1, k) then
f [i+ 1][k] = f [i][j] + w(j + 1, k);

/* backtrack segmented positions */

Integer p = n;
add p into ret;
for l = K downto 1 do

find p′ with f [l][p] = f [l − 1][p′] + w(p′ + 1, p);
add p′ into ret;
p = p′;

reverse elements in ret;
/* i-th block is from record ret[i] + 1 to record

ret[i+ 1] */

return ret;

segments of a partial block and keep corresponding volumes.
The split point can be found by enumeration in linear time.

Sometimes a costly block may need to be split into K > 2
pieces. There are

(

n−1
K−1

)

choices to spit K blocks with n
records. It is prohibitive to explicitly enumerate all options.
Fortunately, the problem can be solved efficiently by dy-
namic programming.

Suppose there are n records r1, r2, ...rn. Let B(i,j) denote
the block containing records from ri to rj , and w(i, j) denote
the query cost of B(i,j). Let f(k, j) denote the minimum cost
of segmenting r1 to rj into k blocks. Thus, f(k, j) can be
derived recursively as:

f(k, j) =

min
k−1≤i<j

(f(k − 1, i) + w(i+ 1, j)), k > 0

0, k = 0 and j = 0

+∞, k = 0 and j > 0

No more than K ·n terms of f are needed to obtain f(K,n).
The computational complexity is therefore O(Kn2). Dur-
ing the computation, the w(i, j)’s are required in advance.
They can be pre-processed and stored within O(dn2) time
and O(n2) space. Therefore, the overall cost is O((K+d)n2).
The actual split positions can be found by backtracking
through intermediate values. To further reduce the com-
putation when n is large, we can limit split positions, e.g.,
at every 10 records, to reduce the search space. Algorithm 2
shows the core of exhaustive segmentation that takes pre-
calculated w(i, j)’s and finds the optimal K-way split.

Although exhaustive segmentation is more expensive than
eager segmentation, it happens only on write and minimizes
subsequent query cost. If we do not need optimal perfor-
mance, a cheaper alternative is multiple passes of eager seg-
mentation. We choose an amplification factor µ′ (via binary

H1 H3

OR-tree

H2

Patch File H2a H2b

H4 H5

H5a

H1

new OR-tree

H2a H2b H4 H5aH3

Minor Refinement

Major Refinement

H6

Figure 7: Minor refinement and major refinement.

search) before each pass, and terminate the iteration once
we get a µ′ that results in a K-way split.

5.2.3 Merge
In contrast to the split refinement, merge is used when

data are fragmented into too many pieces through past splits,
and those pieces are not so helpful for the current query
workload. Specifically, we detect if a group of consecutive
blocks are always accessed together by most queries. We
can simply combine their index entries without compromis-
ing query efficiency. The Cco−fetch counter helps us find all
sequences of co-accessed blocks. Merging two co-accessed
blocks should not introduce too much over-coverage. Hence,
for a block B and the next block B′, we can estimate the
query cost of the merged block as:

merge(B,B′) =(Cfetch(B) + Cfetch(B
′)− Cco−fetch(B))

· (|B|+ |B′|)

Blocks are allowed to merge as long as the bound on read
amplification is still met, i.e., merge(B,B′)/(Cresult(B) +
Cresult(B

′)) < µ. When multiple candidates are available,
we will choose the pair with least penalty for query perfor-
mance, i.e., the one with minimummerge(B,B′)−cost(B)−
cost(B′). The merge procedure is simple, as we only need to
produce a new block header for the merged block to replace
the old ones.

5.2.4 Minor Refinement versus Major Refinement
Based on available system resources and the number of

accumulated refine operations, we can conduct a minor re-
finement or a major refinement.

A minor refinement is preferred when resources are lim-
ited and we only need to change a small number of blocks.
In this case, the header log is only slightly modified. Dur-
ing minor refinement, no locks are required and no queries
will be blocked. For each OR-tree, an additional patch file
is maintained to keep all updates. Generated headers from
splits and merges are appended to the patch file. After-
wards, an atomic modification in the header file is done to
tag old headers and redirect to new ones. The OR-tree is left
unchanged, as we will access the header file as normal but
jump to the patch file when a tagged header is encountered.

A major refinement is needed when the patch file grows
too large. A long patch file causes a chain of jumps before we
can get updated headers. During major refinement, header
chains are eliminated by re-writing all updated headers back
into the header log, and the patch file is discarded. If there
are any headers that cannot fit in the header file, they will
be kept in a smaller patch file. After the re-writing, a new
OR-tree is constructed from scratch. We delete the old OR-
tree root from the global R-tree and insert the new one.

Figure 7 shows minor and major refinements. In minor
refinement, H2 is split to H2a, H2b and H5,H6 are merged to
H5a. In major refinement, H2a,H2b,H5a in the patch file are
written back to the header file, and a new OR-tree is built.
Note that, at all times, the underlying data are unchanged,
so we can support time-range queries and sequence analysis
efficiently. Better performance might be obtained by re-
clustering the data and building a new SICC on top of them;
we leave that possibility to future investigation.

It might happen that there are no resources for major
compaction at times. As we cannot tolerate data loss by
rejecting write requests, we have to stop or delay the com-
paction to preserve resources. This situation may affect
query efficiency, possibly limiting query requests. However,
we should assume resources for compaction become available
some later time, otherwise the system is under-provisioned.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the pro-

posed SICC index and alternative methods for indexing and
querying multi-dimensional observational data. We consider
two aspects of performance: index-maintenance overhead
and query efficiency.

6.1 Data Sets
Experiments are conducted on three real datasets. All are

observations collected from sensing devices, but with differ-
ing application scenarios and degrees of value continuity.

• Coastal-Margin Observation (CMOP):
This dataset contains coastal margin observations col-
lected from the CMOP [2] SATURN observing system.
The data were collected between April 2011 and Au-
gust 2012 from station SATURN-01. Each record con-
tains diverse variables reflecting ocean and river status,
such as salinity, temperature and oxygen saturation.

• Hi-Tech Equipment Observation (POWER):
This dataset3 contains status observations for a huge
hi-tech manufacturing installation. Monitoring data is
recorded by the manufacturing equipment itself using
an embedded PC and a set of sensors. Each record
contains power consumption and state flags for sub-
components. The power consumption may vary signif-
icantly due to a change of running status.

• Real-time Soccer Observation (SOCC):
This dataset4 contains moving-object observations col-
lected by a real-time location system on a soccer field.
The data were generated by senors embedded in balls
during a soccer game. Each record contains motion
status, such as position, velocity and acceleration. We
concatenate observations from all balls alternately in
play to construct a continuous source.

6.2 Methods and Implementations
We compare the SICC index with three baseline methods,

based on PH-trees [28] and R-trees [12]. All methods are
implemented as secondary indexes, in which index entries
contain record references to log-storage, and storage access
fetches final results. All implementations are in Java, and
integrated into a log-structured storage [25].
3http://www.csw.inf.fu-berlin.de/debs2012/grandchallenge.html
4http://www.orgs.ttu.edu/debs2013/index.php

 0

 50

 100

 150

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

System Write Time (sec)

SICC
PH-tree

R-tree
R-block

No index

(a) CMOP

 0

 80

 160

 240

 320

6.5M 12.9M 19.4M 25.9M 32.4M

Number of Records

System Write Time (sec)

SICC
PH-tree
R-block

No index

(b) POWER

 0

 80

 160

 240

 320

4.8M 9.7M 14.5M 19.4M 24.2M

Number of Records

System Write Time (sec)

SICC
PH-tree

R-tree
R-block

No index

(c) SOCC

Figure 8: Overall system-load time.

 0

 20

 40

 60

 80

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Index Update Time (sec)

SICC
PH-tree
R-block

R-tree

Figure 9: Index-maintenance
cost. (CMOP)

Table 1: Average number of records in a block.
µ = 1.2 µ = 2 µ = 4 µ = 8

CMOP 24.1 41.8 84.7 181.1
POWER 54.9 117.5 207.8 359.9
SOCC 152.6 325.5 583.4 908.2

• SICC. Our proposed index framework (Section 3) us-
ing bounding segments (Section 4). It applies eager
segmentation and OR-tree header indexing (Section 3).

• PH-tree. A state-of-the-art point access method based
on binary PATRICIA-tries and hypercubes, reported
to outperform other PAMs, such as kD-trees and critical-
bit trees. We index each observation individually in
the PH-tree. We use the implementation provided by
its author. Note that this implementation is memory-
based, while other methods we used are disk-based.

• R-tree. A well known spatial access method. Each
observation is individually indexed in an R-tree. We
use an open-source implementation for it5.

• R-block. A primitive version of SICC that directly
uses MBBs as bounding objects. A fixed number of
consecutive records are first grouped as a block, and
the block’s MBB is then indexed in the R-tree. We
include it to measure over-coverage.

To evaluate the effect of design choices, we further com-
pare SICC with different settings. For the segmentation
algorithms, we have: (a) Fixed: fixed-length segmentation,
which segments blocks into equal lengths; (b) Eager: ea-
ger segmentation; and (d) Exhaustive: buffers batches of
records and then applies the exhaustive algorithm to mini-
mize estimated query-cost. For the block-header indexing,
we have: (a) HeadLog: no index for header log; (b) Head-
Rtree: an R-tree; and (c) HeadORtree: an OR-tree.

6.3 Experimental Setup
All experiments were conducted on a server with a quad-

core processor, 8GB physical memory and 500GB disk ca-
pacity. Secondary indexes are built on three dimensions
for each dataset: CMOP (salinity, temperature and oxygen
saturation), POWER (power consumption for three com-
ponents), SOCC (speed plus positions in two dimensions).6

Each inserted record contains a string (its unique key), the
indexed fields and other existing fields. The number of
records ingested into storage are 13 million, 32 million and
24 million, respectively. The total disk space used by the
storage system is 2.4GB, 5.6GB and 4.8GB, respectively.

5https://github.com/oschrenk/spatialindex
6Here we did not index time dimension, but it is a straight-
forward extension.

 0

 20

 40

 60

 80

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Segmentation Time (sec)

Eager
Fixed

Exhaustive

(a) Segmentation

 0

 20

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Header Indexing Time (sec)

HeadORtree
HeadRtree

HeadLog

(b) Header Indexing

Figure 10: Decomposed SICC maintenance cost
for segmentation algorithms and header indexes.
(CMOP)

All range queries are pre-generated from a uniform distri-
bution with 1% expected coverage of the indexed space for
each. A group of 100 queries is issued sequentially, after
each fifth of data is ingested.

We use µ = 4 as the default setting for eager segmenta-
tion, which leads to different block-lengths in each dataset,
as shown in Table 1. Hence, block-lengths in fixed-length
segmentation (for both SICC and R-block) are configured
differently across datasets to be consistent with the eager
segmentation. The average block-length quantifies the value-
continuity of a dataset, i.e., the longer the better.

6.4 Write Overhead
Index overhead is critical in write-intensive scenarios. This

subsection evaluates that overhead, on both time and space
consumption, for different approaches.

6.4.1 System-Load Time
Figure 8 shows the total time for loading data into storage

and having them indexed under different workloads. Among
all indexes, SICC has the lowest system-load time for all
three workloads. It exhibits indexing overhead of at most
20% (and only 5% in SOCC), compared to the cost of storing
data in the storage without indexes (No Index). This supe-
rior performance is expected, as the number of index entries
is reduced by orders of magnitude compared to record-level
indexes. The R-tree degrades system performance unaccept-
ably, as frequently inserting new entries causes frequent node
split and index re-organization. We only succeeded in three
rounds of insertions for the POWER and SOCC workloads
due to its unaffordable cost. PH-tree, a point access method,
exhibits much lower insertion cost compared to R-tree. How-
ever, its overhead is still significant. As can be seen, even the
in-memory PH-tree is worse than the disk-based SICC and
R-block. Overall, block-level indexes are more competitive
in loading write-intensive workloads.

 0

 0.2

 0.4

 0.6

 0.8

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Average Query Time (sec)

SICC
SICC-r

PH-tree
R-tree

R-block

(a) CMOP

 0

 0.8

 1.6

 2.4

6.5M 12.9M 19.4M 25.9M 32.4M

Number of Records

Average Query Time (sec)

SICC
SICC-r

PH-tree
R-tree

R-block

(b) POWER

 0

 0.3

 0.6

 0.9

 1.2

4.8M 9.7M 14.5M 19.4M 24.2M

Number of Records

Average Query Time (sec)

SICC
SICC-r

PH-tree
R-tree

R-block

(c) SOCC

Figure 11: Average query-response time.

 0

 1

 2

 3

 4

3.14% 1.18% 0.32% 0.16% 0.05%

Query Selectivity

System Query Time (sec)

SICC
PH-tree
R-block

Figure 12: Query selectiv-
ity. (CMOP)

Table 2: Disk Consumption for indexes.
SICC R-block R-tree PH-tree

CMOP 16.0M 13.6M 739M N/A
POWER 20.2M 17.6M 1.8G N/A
SOCC 5.3M 4.3M 1.5G N/A

6.4.2 Index-Maintenance Cost
By removing the loading time inside storage, Figure 9

shows the pure index cost more clearly with the CMOP
workload. We can see that SICC has less than half the
cost of any other approach. Though constructing a bound-
ing segment is a bit costlier than an MBB, with the OR-
trees, SICC outperforms R-block. On closer examination of
the results, we find that about three-quarters of the cost of
R-block comes from R-tree construction. We also observe
that the cost of continuous index refinement is negligible
compared to that of creating initial segments and header
indexes.

6.4.3 Maintenance Cost of SICC Components
We further decompose SICC’s cost into segmentation and

header-indexing costs. Figure 10 compares design choices
on the CMOP workload. As Figure 10(a) shows, eager seg-
mentation (Eager) costs only slightly more than naive fixed-
length segmentation (Fixed). The dominant cost for these
two methods is the I/O for persisting block headers. In con-
trast, exhaustive segmentation (Exhaustive) is dominated
by expensive computations. To get the best segments, it
buffers a large number of records and conducts exhaustive
segmentation batch by batch. Such a method is costly and
delays the availability for new data, hence is unaffordable
for initial index construction. However, it is suitable for
continuous refinement due to its effectiveness.

Figure 10(b), also on the CMOP workload, presents the
choices for indexing block headers, i.e., the header log. The
result shows that indexing the header log with an OR-tree
(HeadORtree) is nearly as efficient as just maintaining a
header log (HeadLog) alone, due to the fast construction of
append-only sub-trees. However, the overhead of construct-
ing an entire R-tree (HeadRtree) is considerable.

6.4.4 Index-Space Consumption
Table 2 lists the disk-space consumption of different in-

dexing methods. SICC requires slightly more space than R-
block, as the representation of bounding segments is larger
than for MBBs, i.e., a segment needs three arrays (vb,vs,ve)
while MBB needs just two arrays (lower and upper bounds).
We see the R-tree consumes much more disk space in order
to index individual records. Since the PH-tree implementa-
tion is totally in-memory, we omit its disk consumption.

6.5 Query Efficiency
This subsection focuses on the evaluation of query per-

formance. We evaluate the overall query response time for
different datasets. Decomposed costs for data access and
index lookup are also analyzed.

6.5.1 Query Execution Time
Figure 11 presents query-response time using different in-

dexes. R-block cannot achieve satisfactory efficiency, due to
the over-coverage introduced by MBRs. Its performance is
sensitive to workload distribution. In contrast, SICC has
comparable efficiency to record-level indexes at small scale,
and outperforms them as data grows. R-tree and PH-tree
have similar efficiency, since the dominant costs are the I/O
for fetching results from storage. However, since they cannot
return index entries in insertion order, random disk seeks
are unavoidable when fetching data. As the data volume
keeps growing, successive disk accesses are more spread out,
raising the disk-seek overhead and limiting scalability. This
issue can be resolved by collecting and sorting disk-offset
before actually accessing the disk, but that requires more
memory resources, or an external sort in the worst case.
When dealing with highly continuous data, scans with large
blocks can benefit more from high bandwidth. SICC per-
forms even better when it is continuously refined at the back-
ground (SICC-r). This result verifies our design of bounding
segments as well as the concept of intrinsic clustering.

6.5.2 Data-Access Cost
Figure 13(a) examines the data-access cost after obtaining

block references (in SICC and R-block) or record references
(in PH-tree and R-tree). Fetching records from storage is
often the dominant cost of executing a range query. Hence,
it follows the same trend as query-response time. As shown
in the figure, PH-tree and R-tree have the lowest data-access
cost, as both of them only fetch disk pages that are guaran-
teed to contain results. SICC and R-blocks may read disk
pages with no results, because of over-coverage by bound-
ing objects. Even with false-positive accesses, SICC still
performs quite well, with the help of bounding segments.

Figure 14(a) presents SICC data-access cost under differ-
ent segmentation algorithms. Exhaustive segmentation is
expected to be superior. With a reasonable amplification
factor µ, eager segmentation is also efficient. Considering
its low overhead, the performance is more than satisfactory.
Since fixed-length segmentation does not consider data dis-
tribution, it rarely achieves good pruning effectiveness.

6.5.3 Index-Lookup Cost
Figure 13(b) presents index-lookup cost. Among all meth-

ods, R-block has the lowest cost, as all block headers are well

 0

 0.2

 0.4

 0.6

 0.8

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Data Access Time (sec)

SICC
SICC-r

PH-tree
R-block

R-tree

(a) Data Access

 0

 20

 40

 60

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Index Lookup Time (ms)

SICC
SICC-r

PH-tree
R-block

R-tree

(b) Index Lookup

Figure 13: Decomposed query cost. (CMOP)

 0

 0.2

 0.4

 0.6

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Data Access Time (sec)

Eager
Fixed

Exhaustive

(a) Data Access

 0

 20

 40

 60

 80

 100

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Index Lookup Time (ms)

HeadORtree
HeadRtree

HeadLog

(b) Index Lookup

Figure 14: Decomposed SICC query cost for segmen-
tation algorithms and header indexes. (CMOP)

 0

 10

 20

 30

 40

2 6 10

Number of Dimensions

Index Update Time (sec)

SICC
PH-tree
R-block

(a) Maintenance Overhead

 0

 0.5

 1

 1.5

 2

2 6 10

Number of Dimensions

Query Response Time (sec)

SICC
PH-tree
R-block

(b) Query Efficiency

Figure 15: Index performance with increasing number
of dimensions. (Synthetic Data)

organized in an R-tree and only a small number of block
headers are tested during a lookup. For SICC, the higher
lookup time is attributed to the ordered OR-trees, which af-
fect pruning effectiveness. In addition, checking a bounding
segment requires more computation than checking an MBB.
It is not surprising that lookups in the PH-tree and R-tree
are expensive, since both of them contains many more index
entries than block-level indexes. Such performance gaps are
wider in workloads with better value-continuity.

Figure 14(b) illustrates the lookup cost in SICC with dif-
ferent header-indexing methods. The cost of scanning an
entire header log is high, as expected. Overall, OR-tree ap-
pears a good choice for indexing headers, as its maintenance
overhead is nearly as low as a pure header log, while its query
efficiency is comparable to the R-tree’s.

6.6 Exploratory Study
In this subsection, we explore the effect of bounding ob-

jects, query selectivity and dimensionality.

6.6.1 Bounding Segments vs. Bounding Boxes
Table 3 shows the huge gap between bounding segments

and bounding boxes, in terms of bounded volume and esti-
mated query cost. Bounding segments reduce over-coverage
by an order of magnitude. Their query costs are also less
than half those of bounding boxes. Table 3 also confirms
the effectiveness of different segmentations. The reduction
of over-coverage is also sensitive to workload continuity and
distribution. We observed that the volume reductions in
bounding segments are about 12.2× for CMOP, 17.5× for
POWER and 5.8× for SOCC, relative to R-block.

6.6.2 Query Selectivity
Figure 12 shows the effect of query selectivity on SICC,

PH-tree and R-Block. As query selectivity increases, result
size decreases. However, the number of false-positive blocks
does not drop as rapidly, so their relative effect is greater
at high selectivities. Thus, PH-tree, which only accesses

Table 3: Volume and Access-Cost in the CMOP
dataset (baseline: fixed-length segmentation)

Vol/Cost Fixed Eager Exhaustive
Segment 1.00/1.00 0.55/0.92 0.43/0.77

Box 8.64/2.46 6.74/2.19 4.20/1.38

true-positive blocks, has an advantage over SICC. Even for
true-positive blocks, SICC may get only a small fraction of
results from each block. However, at low selectivities, false-
positive blocks factor less, and true-positive block are likely
to contain many result records, so SICC gains the edge.
SICC is better than R-block at all selectivities, because over-
coverage of the latter means more false-positive blocks.

6.6.3 Dimensionality
In high dimension, SICC can capture correlations from

the PCA component to achieve good pruning effectiveness.
For a fair comparison, we generate a synthetic dataset, in
which each dimension is independent, to minimize correla-
tions. Figure 15 illustrates the results. In each test, we eval-
uate the overhead of indexing 5 million records, and the av-
erage query time of 100 random queries. Figure 15(a) shows
that the maintenance overhead scales well for both PH-tree
and SICC. In fact, insertion cost in PH-tree is proportional
to the number of bits in a record. For SICC, eager segmen-
tation and OR-tree have linear complexity in the number of
dimensions. Figure 15(b) shows that the SICC also achieves
the best query scalability among the approaches.

7. RELATED WORK
A large number of multi-dimensional access methods have

been proposed over the past three decades. These methods
can be broadly classified into two classes, point access meth-
ods (PAMs) and spatial access methods (SAMs), as exam-
ined in several surveys [10, 17]. In PAMs, the whole space
is divided into subspaces, either flatly, e.g., grid files [18],
or hierarchically, e.g., kD-trees [4] and quadtrees [8]. Re-
cently, a space-efficient PH-tree [28] was proposed based on
binary PATRICIA-tries and hypercubes. In contrast, SAMs
are designed for objects with geometric extent. The most
well known SAM index is the R-tree and its variants [3, 12,
5]. In SAMs, bounding objects are used to approximate the
objects and bound the subtree spaces. Such representations
may incur over-coverage, which affects query efficiency. An
earlier work [15] uses polygons to reduce over-coverage, but
is costly to construct.

Index-maintenance cost is a bottleneck for write-intensive
applications. Various methods have been proposed to ad-
dress this issue. Bulk insertions [6, 7] buffer a number of

records and insert the whole batch at once. They reduce
random writes, at the expense of insertion latency. LSM-
trees [19, 22] eliminate random writes by merging exponential-
sized sub-components using sequential I/Os. A generaliza-
tion of LSM-trees [1] allows an index to be converted to
append-only. Adaptive indexing [11, 13] gradually construct
indexes during queries. They do not target reducing index
cost, but rather the downtime before data can be queried,
thus are mainly used in read-heavy data warehouses. All
the methods above are at the record-level, which is limiting
in write-intensive scenarios. Another direction is to exploit
partial order and local clustering in unclustered data [23,
26]. Our previous work [26] focuses on single-dimensional
data and constructs compact indexes on local sequences.

Trajectory indexing over position sequences of moving ob-
jects is another related area. Trajectory indexes stores po-
sitions from multiple trajectories in a single structure while
preserving trajectory-level properties [21]. They are tailored
for data in 2 or 3-D spaces with special assumptions [20].
This case is different from observational data where we have
a single long-life entity with many dimensions. In general,
trajectory indexing focuses on the time dimension, i.e., find
all trajectories at a time-point, while we focus on space di-
mensions, i.e., find all sub-sequences within a value-range.

Data-series and time-series analyses [24, 29] also index
multiple points, i.e., points in a series, in one index entry,
but are fundamentally different. In time-series analysis, each
series is considered as a whole, thus indexing points together
is to facilitate similarity or kNN search. However, in SICC,
indexing points together is to reduce maintenance cost, and
points are still queried independently.

8. CONCLUSION
It can take large amounts of system resources and time

to index write-intensive observational data that arrives as
streams. To reduce index cost, we propose a lightweight
index method, called SICC, that incurs little construction
overhead while efficiently supporting multi-dimensional range
queries. Unlike conventional methods that cluster similar
points, we exploit the intrinsic data continuity in observa-
tions, and construct indexes on local data sequences. The
bounding segment is proposed to overcome “over-coverage”
problem of MBBs. It can be derived quickly and readily
supports range queries. The index can be continuously re-
fined in the background to further improve query perfor-
mance. Experimental studies verify the feasibility of this
index method, and confirm that SICC is an order of mag-
nitude faster to construct than conventional record-level in-
dexes, while it preserves comparable query efficiency.

Acknowledgments
This work was supported by A*STAR project 1321202073.
Maier was supported by NSF grant OCE-0424602 and a
Shaw Visiting Professorship.

9. REFERENCES
[1] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y. Kim,

M. J. Carey, M. Dreseler, and C. Li. Storage management
in AsterixDB. Proc. of VLDB Endow., 7(10), June 2014.

[2] A. M. Baptista et al. Infrastructure for collaborative
science and societal applications in the columbia river
estuary. Frontiers of Earth Science, 2015.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: an efficient and robust access method for
points and rectangles. SIGMOD Rec., 19(2), May 1990.

[4] J. L. Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9), Sept. 1975.

[5] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree:
an index structure for high-dimensional data. Proc. of Int.
Conf. on VLDB, 1996.

[6] L. Chen, R. Choubey, and E. A. Rundensteiner.
Bulk-insertions into R-trees using the small-tree-large-tree
approach. Proc. of ACM Int. Symp. on GIS, 1998.

[7] R. Choubey, L. Chen, and E. A. Rundensteiner. GBI: a
generalized R-tree bulk-insertion strategy. Proc. of Int.
Symp. on SSD, 1999.

[8] R. A. Finkel and J. L. Bentley. Quad trees: a data
structure for retrieval on composite keys. Acta Informatica,
4(1), 1974.

[9] I. K. Fodor. A survey of dimension reduction techniques.
Technical report, 2002.

[10] V. Gaede and O. Günther. Multidimensional access
methods. ACM Comput. Surv., 30(2), June 1998.

[11] G. Graefe and H. Kuno. Self-selecting, self-tuning,
incrementally optimized indexes. In Proc. of Int. Conf. on
EDBT. ACM, 2010.

[12] A. Guttman. R-trees: a dynamic index structure for spatial
searching. SIGMOD Rec., 14(2), June 1984.

[13] S. Idreos, M. L. Kersten, and S. Manegold. Database
cracking. In CIDR, volume 3, 2007.

[14] H. V. Jagadish. Linear clustering of objects with multiple
attributes. SIGMOD Rec., 19(2), May 1990.

[15] H. V. Jagadish. Spatial search with polyhedra. Proc. of Int.
Conf. on Data Engineering, 1990.

[16] N. Katayama and S. Satoh. The SR-tree: an index
structure for high-dimensional nearest neighbor queries.
ACM SIGMOD Rec., 26(2), 1997.

[17] K. Markov, K. Ivanova, I. Mitov, and S. Karastanev.
Advance of the access methods. Information Technologies
and Knowledge, 2(2), 2008.

[18] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid
file: an adaptable, symmetric multikey file structure. ACM
Trans. Database Syst., 9(1), Mar. 1984.

[19] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree. Acta Inf., 33(4), June 1996.

[20] D. Pfoser. Indexing the trajectories of moving objects.
IEEE Data Eng. Bull., 25(2), 2002.

[21] D. Pfoser, C. S. Jensen, Y. Theodoridis, et al. Novel
approaches to the indexing of moving object trajectories. In
Proc. of VLDB, 2000.

[22] R. Sears and R. Ramakrishnan. bLSM: a general purpose
log structured merge tree. Proc. of ACM SIGMOD, 2012.

[23] L. Sidirourgos and M. Kersten. Column imprints: a
secondary index structure. Proc. of ACM SIGMOD, 2013.

[24] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and
E. Keogh. Indexing multi-dimensional time-series with
support for multiple distance measures. In SIGKDD, 2003.

[25] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi.
LogBase: a scalable log-structured database system in the
cloud. Proc. of VLDB Endow., 5(10), June 2012.

[26] S. Wang, D. Maier, and B. C. Ooi. Lightweight indexing of
observational data in log-structured storage. Proc. of
VLDB Endow., 7(7), Mar. 2014.

[27] J. Weng, Y. Zhang, and W.-S. Hwang. Candid
covariance-free incremental principal component analysis.
IEEE Trans. on PAMI, 25(8), 2003.

[28] T. Zäschke, C. Zimmerli, and M. C. Norrie. The PH-tree: a
space-efficient storage structure and multi-dimensional
index. Proc. of ACM SIGMOD, 2014.

[29] K. Zoumpatianos, S. Idreos, and T. Palpanas. Indexing for
interactive exploration of big data series. In Proc. of ACM
SIGMOD. ACM, 2014.

