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Abstract— The design of new indexes has been driven by
many factors such as data types, operations, and application
environment. The increasing demand for database systems
to support new applications such as online analytical pro-
cessing (OLAP), spatial databases, and temporal databases,
has continued to fuel the introduction of new indexes. In
this paper, we summarize the major considerations in devel-
oping new indexes, paying particular attention to progress
made in the design of indexes for spatial, temporal and
object-oriented databases (OODB). Our discussion focuses
on the general concepts or features of these indexes, thus
presenting the building blocks for meeting the challenges of
designing new indexes for novel applications to be encoun-
tered in the future.
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1. INTRODUCTION

Database management systems (DBMS) have become widely
accepted as a standard tools for manipulating data stored
in secondary storage. Inderes — structures associated with
database files — have been employed to provide fast and
selective retrieval of records from large collections of data
objects.

Traditionally, indexes are optional components (and hence
dispensable) since a database file can be scanned in its en-
tirety to retrieve the desired records. This was reasonable
in the early days since database files were generally small
then. However, DBMSs are increasingly being used for ad-
vanced applications (such as geographic information sys-
tems, multimedia information systems, text retrieval sys-
tems, and so on) where databases are usually voluminous
because of the large number of records, huge object size
and complex data types (such as images and spatial data).
Accessing data in these applications without utilizing any
indexing structures is inconceivable: indexes are indispens-
able in a DBMS today!

While there are other means of reducing 1/O cost such
as having more efficient buffer management, better clus-
tering techniques, and more effective query optimization,
the effects of indexes are much more evident. They are,
therefore, the primary means of reducing redundant disk
I/Os. Because performance is a crucial issue in database
systems, the development of new indexing techniques has
been an area of intense research and development.

In the last decade, we have witnessed the proliferation
of new indexes. This has been fueled by the demands of
advanced applications which are far more complex than
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the traditional business applications. Traditional indexing
techniques like the BT-tree cannot directly support these
applications. Therefore, several new indexing techniques
have been recently developed, specifically tailored to ac-
commodating new applications. These new indexes often
extend existing methods with additional data structures
to accommodate the specific requirements of new applica-
tions, which often differ only in detail. This raises issues of
extensibility, scalability, robustness, and general efficiency
rather than just query efficiency of indexes. In this pa-
per, we describe the development of indexes over the last
decade. In particular, we focus on indexes for spatial, tem-
poral, and object-oriented database systems without enu-
merating the many indexes described in the literature. We
examine the main features and concepts behind some of
these indexes, which form the building blocks for design-
ing more specific indexes. We also use these indexes as
examples in our discussion on issues such as specialized
versus general-purpose indexes, single versus multiple in-
dexes, and precomputation versus dynamic evaluation.

2. APPLICATION OF INDEXES

Recent advances in hardware technology have reduced the
access times of both memory and disk tremendously. How-
ever, the ratio between the two remains at about 5 orders
of magnitude. With the ever increasing volume of data
that need to be retrieved from disk, the number of disk
accesses becomes a very important performance parameter
to optimize. Data must be organized on the disk in such a
way that relevant data can be quickly located. This calls
for the use of indexing structures that are designed to pro-
vide fast retrieval of a small set of answers from large data
collections.

An index is a data structure that helps to organize the
data by mapping a key value to one or more records con-
taining the key value, providing a mechanism to efficiently
identify the storage location of records. Balanced trees,
such as BT-trees, are examples of effective and adaptive
structures for indexing and ordering large volumes of data.
Their main strengths lie in how they organize the tree
nodes into pages, and their logarithmic access and up-
date time. They are so well accepted that they have been
generalized for use in other applications such as multi-
dimensional indexing. Apart from indexing techniques based
on hierarchical organizations, many indexing structures have
been developed based on address computation, such as
hash based techniques.



Many indexes are designed based on the concept of prox-
imity, by either treating objects with close indexed values
as clusters or partitioning indexing space into subspaces.
This inherent characteristic enables the index to be readily
used as a guide in data clustering. Objects whose indexed
values are near to each other can be co-located within the
same disk block.

In addition to supporting direct access to a small set of
objects for simple retrieval operations, indexes are heav-
ily used in reducing the cost of expensive join operations
where relationships between objects are dynamically com-
puted. Consider the basic nested-loop join algorithm which
computes the #-join of the relations involved. It consists of
choosing one relation R, called outer relation, and compar-
ing each tuple of R with all the tuples of the other(inner)
relation S against the # join condition. The algorithm is
outlined below.

JOIN(R,S)

input: relation R and S,
predicate 6.

output: a list of pairs of objects.

begin

while (get next tuple, tupR, of R) do
while (get next tuple, tupS, of S) do
if (6(tupR,tupS)) then
add < tupR,tupS > to the resulting list;
end.

The nested-loop algorithm can be applied to all kinds of
joins by changing the predicate from simple relationships
between alpha-numerical values to more complex relation-
ships between objects, such as spatial relationships in a
spatial database system. Assuming that both relations are
very large, an obvious way of avoiding a sequential scan
of the inner relation for every tuple of the outer relation
is to use an index on the join attribute of the inner rela-
tion. The outer relation R is sequentially scanned, and for
each tuple, the index is used to find the matching tuples
of S. The number of pages accessed may be thus reduced
from all the pages storing tuples of the relation to a small
number of index pages and data pages. The use of indexes
is so effective in optimizing join executions, that in some
cases the indexes are dynamically built just for executing
the join.

The nested-loop algorithm can be further optimized to
exploit indexes of both relations. When indexes on the join
attribute for both relations R and S exist, the join can be
performed by traversing both indexes concurrently. Due
to different data spaces defined by two subtrees, a sub-
tree may be traversed more than once for a join between
two relations. Such a join behaves like a hash-based join,
where data are pre-partitioned into buckets before execut-
ing the join, buckets with the same address space are then
fetched and tuples from these buckets are checked. How-
ever, unlike hash-based partitioning where data records are
as randomly distributed into buckets as possible, data val-
ues are close within a defined range. A join execution strat-
egy based on the use of indexes on both relations is hence
much more flexible and efficient than a hash-based join
when there is a selection since ranges of subtrees can be
derived easily and values within each range are ordered.

3. DIMENSIONS IN INDEX DESIGN

In this section, we briefly describe the requirements of spa-
tial, temporal and object-oriented databases and their ben-
efits on the design of indexes.

3.1. SPATIAL INDEXES

Spatial data — data that are associated with spatial co-
ordinates and extents such as points, lines, polygons, and
volumetric objects — are becoming increasingly common
in many of today’s applications, including computer-aided
design (CAD), geographic information systems (GIS), com-
putational geometry and computer vision. In these appli-
cations, retrieval of data is primarily based on spatial prox-
imity relationships amongst objects rather than on exact
match of attribute values of objects. For example, in GIS,
a query may be “retrieve all buildings that are within a
certain distance from a particular road”. Spatial operators
like intersection, adjacency, and containment are more ex-
pensive to compute than conventional relational join and
select operators. This is due to irregularity in the shapes of
the spatial objects. For example, consider the intersection
of two polyhedra. Besides the need to test all points of one
polyhedron against the other, the result of the operation is
not always a polyhedron but it may sometimes consist of
a set of polyhedra.

Object representation and indexing structures are treated
separately in spatial database applications. Objects of
complex shape are approximated by simpler containers for
retrieval purposes. The aim of such approximation is to
filter out as much false hits as possible before performing
more expensive testing on the actual complex spatial ob-
jects. Spatial query processing therefore consists of the
following three logical steps:

1. The search space is pruned by traversing an index
structure to determine a set of candidate objects, which
is usually a superset of the answer. Unlike traditional
indexes, the index structure is built on simpler con-
tainers of spatial objects. This approach reduces the
index size (and hence storage) and results in faster
traversals since the approximations rather than the
actual objects are compared.

2. Some of the false hits in the first step can be further
filtered away. This further filtering is based on the
fact that two objects do not match if their approxi-
mations do not match. The effectiveness of this step
depends on the approximation techniques. More ac-
curate approximations are more expensive to compute
and maintain but are more effective in reducing the
actual object tests.

3. The actual objects are fetched and examined to deter-
mine those that satisfy the query.

Once again, we see how the index can play an important
role in reducing 1/0 cost; its use reduces the amount of re-
dundant data to be fetched and minimizes the computation
costs as a side effect.

A critical issue in the design of a spatial access structure
is how it partitions the data space and how it associates



data with subspaces. Two points do not overlap unless
they are the same point, and therefore point data can be
organized into partitions with non-overlapping data sub-
spaces. The association of an extended object with a data
subspace or cell is not as straightforward as it is for a point,
because extended objects may overlap with each other and
may span multiple data subspaces. The complexity of in-
dexes for extended objects 1s related to how such indexes
organize these objects into groups. Indexing structures for
extended objects can be characterized according to the way
they associate objects with data spaces:

1. The transformation approach. The transforma-
tion approach comes in two flavors:

e Parameter space indexing. Objects described by
n vertices in a k-dimensional space are mapped
into points in an nk-dimensional space. For ex-
ample, a two-dimensional rectangle described by
the bottom left corner (z1, y1) and the top right
corner (zs, yo) is represented as a point in a four-
dimensional space, where each attribute is taken
from a different dimension. The points generated
by such transformation can be stored directly in a
point index. An advantage of such an approach
i1s that it does not require any modification to
the multi-dimensional base structure. The main
drawback of the mapping scheme is that the spa-
tial proximity between the k-dimensional objects
may no longer be preserved. Consequently, in-
tersection search can be inefficient. Also, the
complexity of the insertion operation typically in-
creases with higher dimensionality.

e Mapping to a single attribute space. The data
space 1s partitioned into grid cells of the same
size, which are then numbered according to some
curve-filling methods [XXX]. A spatial object is
then represented by a set of numbers or one-
dimensional objects. These one-dimensional ob-
jects can be indexed using conventional indexes
such as BT-trees. A Bt-tree can be directly used
to index objects that have been mapped from a k-
dimensional space into points in a one-dimensional
space.

2. The non-overlapping native space indexing ap-
proach. This category comprises two classes of tech-
niques:

e Object duplication. A k-dimensional data space
is partitioned into pairwise disjoint subspaces.
These subspaces are then indexed. An object
identifier is duplicated and stored in all the sub-
spaces 1t intersects so that it can be correctly
retrieved .

e Object clipping. This technique is similar to the
object duplication approach. Instead of duplicat-
ing the identifier, an object is decomposed into
several disjoint smaller objects so that each smaller
sub-object is totally included in a subspace.

The most important property of object duplication
and clipping approaches is that the data structures
used are straightforward extensions of the underlying
point indexing structures. Both points and objects
with extensions can be stored together in one file with-
out having to modify the basic structure. However, an
obvious drawback is the duplication of objects which
requires extra storage space and hence implies more
expensive insertion and deletion operations. Another
concern is that the density (the number of objects that
contain one point) in a map space must be less than
the page capacity (the maximum number of objects
that can be stored in one page).

3. The overlapping native space indexing approach.
The basic idea of this approach is to hierarchically
partition the data space into a manageable number of
smaller subspaces. While a point object is entirely
included in one unpartitioned subspace, a non-zero
sized object may extend over more than one subspace.
To define a data space that properly contains all ob-
jects, data subspaces are allowed to overlap. These
subspaces are organized as a hierarchical index and
spatial objects are indexed in their native space. A
major design criterion for indexes using such an ap-
proach is to minimize both the overlap between bound-
ing subspaces and the coverage of subspaces. A poorly
designed partitioning strategy may lead to unneces-
sary traversal of multiple paths. Further, the dynamic
maintenance of effective bounding subspaces results
into higher update costs.

Figure shows the evolution of spatial indexing struc-
tures over the last decade [XXX] A solid arrow indicates a
relationship between a new structure and the original struc-
tures that it is based upon. A dashed arrow indicates a re-
lationship between a new structure and the structures from
which the techniques used in the new structure originated,
even though some were proposed independently of the oth-
ers. For a thorough survey and full references, please refer
to [XXX].

Among all the indexes, the R-tree [XXX] has received
most attention. As such, we single it out for further dis-
cussion here. The R-tree is a multi-dimensional general-
ization of the B-tree. Like the B-tree, the R-tree is height-
balanced, and may involve node splitting and merging when
objects are inserted and deleted. The hierarchical nature of
the R-tree recursively partitions a data space into smaller
subspaces to the level where objects in an unpartitioned
subspace can be stored into one physical page. An inter-
nal node has a data space that bounds the data spaces of
all the subtrees. Logically, the organization consists of a
number of nested rectangles arranged so that each node
corresponds to a spatial entity and contains descriptions of
smaller spatial entities. Each non-root entity is completely
contained in the entity corresponding to its parent node.

When performing a search, the decision to visit a sub-
tree depends on whether the covering rectangle overlaps
the query region. It is quite common for several covering
rectangles in an internal node to overlap the query rectan-
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gle, resulting in the traversal of several subtrees. Therefore,
minimization of overlap among the covering rectangles as
well as the coverage of these rectangles is of primary impor-
tance in constructing the R-tree. Two algorithms involved
in the process of minimization are the insertion and its node
splitting algorithms. Of the two, the splitting algorithm
affects the index efficiency more. An optimized splitting
algorithm is able to yield some improvement [XXX].
Dynamic hierarchical spatial indexes are sensitive to the
order of data insertion. A tree may behave differently for
the same data set over a different sequence of insertions.
Data rectangles previously inserted may result in a bad
split of the R-tree after some insertions. Hence it may be
worth to perform some local reorganization, which is how-
ever expensive. The R-tree deletion algorithm supports
the reorganization of the tree to some extent, by forcing

the entries in underflowed nodes to be inserted from the
Using the idea of reinsertion of the R-tree, Beck-
[XXX] proposed a reinsertion algorithm to
handle node overflows. The reinsertion increases the stor-
age utilization, but it can be expensive for large trees. The
R*-tree improves upon the R-tree at the price of having
more expensive insertion operations. Many variants of the
R-tree have been proposed, which mainly differ on their
node splitting algorithms, which employ different strategies
to reduce overlap as well as coverage. Performance gains,
however, depend very much on data distribution and vol-
ume [XXX]. Quite often, the gain becomes less significant
as the size of database grows.

root.
mann et al.

3.2. TEMPORAL INDEXES

In a temporal database, temporal data are modeled as



collections of line segments. These line segments have a
start time (Ts), an end time (T.), a time-invariant at-
tribute (key), and a time-varying attribute. Each object
may be associated with a wvalid time and a transaction
time. Applications can support one of the two or both
times. Valid time represents the time interval when the
database fact is true in the modeled world, whereas trans-
action time is time interval when the database fact is cur-
rent in the database. With this definition, retroactive and
predictive updates are allowed in a valid time database but
not in a transaction time database. Valid time intervals of
a time-invariant object may overlap although they are of-
ten disjoint, and they are typically closed intervals due to
pro-active insertion. On the other hand, transaction time
intervals of a time-invariant object do not overlap and they
are defined at the time when new versions are inserted.
Transaction times which are system-generated follow a se-
rialization order of transactions and hence are monotoni-
cally increasing. The lastest versions have progressive time
span and have open time intervals. These properties pose
unique problems to the design of temporal indexes.
Indexes are typically designed to meet the demands of
the intended applications by considering their data types
and classes of queries. The choice of temporal index is
thereforely dependent on the time dimension(s) supported.

the record and Ptr is a pointer pointing to a child node.
Searching algorithms are affected by how a node is split
and the information it captures about its data space. In
the TSB-tree, two types of node splits are supported, key
value and time splits. A key split is similar to a node
split in a conventional BT-tree where a partition is made
based on a key value. For the time split, an appropriate
time is selected to partition a node into two. Unlike key
split, all record entries that persist through the split time
are replicated in the new node which stores entries with
time greater than the split time. If the number of different
attribute values in a node is more than [M/2| (M is the
number of entries in a node), a key split is performed; oth-
erwise the node is split based on time. If no split time can
be used except the lowest time value among the index item,
a key split is executed instead of time split. To search based
on key and time, index keys and times of internal nodes are
used respectively to guide the search. With data replica-
tion, data whose time intersects the data space defined in
the index entries are properly contained in its subtree, and
this enables very fast search space pruning. Node splitting
along time dimension entails some amount of data repli-
cation which may affect its storage requirement and query
performance. The constraint that data versions of a time
invariant key do not overlap, i.e. the semantics of data

In general, temporal indexes can be categorized as transaction-type, is also built into the index, somewhat restricting the

time, valid-time and bitemporal, based on the time dimen-
sion(s) supported. Within each category, indexes can be
further classified according to query types: key-only, time-
only and time-key. Most temporal indexes have been de-
signed for transaction time databases and based on variants
of R-trees and variants of BT-trees.

Temporal data can be indexed based on its start time,
end time, or the whole interval, together with the time-
varying attribute or time invariant attribute. A Bt-tree
can be used to index transaction times on start time (or
end time). Tt is not efficient for answering time-slice queries
since no information on the data space is captured in the
index. To answer a time-slice query, the end time of the
search interval is used to get the leaf node that contains the
record whose start time is just before the search end time.
From there, all the nodes to the left have to be searched.
While this problem can be alleviated by replicating records
in leaf nodes whose smallest start time intersects the record
time interval, replication increases storage cost as well as
the height of the index which affects the query and update
cost.

The Write-Once B-tree (WOBT) [XXX] is a modification
of the BT-tree, that indexes out-of-date data on write-once
optical disks (WORMs). Many variations of this method
have since been proposed, including the Time-Split B-tree
(TSB-tree) [XXX], the Persistent B-tree [XXX], and the
Multiversion B-tree [XXX].

The TSB-tree is one of the first temporal indexes that
support search based on key attribute and transaction time.
An internal node contains entries of the form <att-value,
trans-time, Ptr>, where att-value is the time-invariant at-
tribute value of a record, trans-time is the timestamp of

extensibility of the index.

The underlying characteristics of temporal databases nat-
urally lead to a direct use of spatial indexes. However, un-
like spatial applications where non-spatial data are usually
stored and indexed separately from spatial data, temporal
attribute data such as time-invariant key and time-varying
key are indexed together with temporal data. For temporal
applications, to index temporal data and its key, the R-tree
can be implemented as a two-dimensional R-tree (2-D R-
tree) or a three-dimensional R-tree (3-D R-tree). To use a
2-D R-tree, time intervals [T, T.] are treated as line seg-
ments in a two-dimensional space, with keys on the other
dimension. To index temporal data using a 3-D R-tree, the
time intervals and keys have to be mapped into points (key,
T, Te) in a three-dimensional space. Both implementa-
tions can handle all queries typical of temporal databases.
However, unlike spatial databases, the attributes have dif-
ferent domains. The ranges of key attributes are well de-
fined and are comparatively much smaller to the time range
which is progressing with time. A node splitting algorithm
that splits based on coverage is likely to keep on splitting
along one dimension.

A spatial index like the R-tree cannot directly handle
intervals with open end-time. An entry in the internal
node of the R-tree contains a minimum bounding rectan-
gle (MBR) that describes the data space of its child node.
When data intervals are not closed, the MBR, cannot be
defined properly, and these affect the splitting algorithm
that makes use of space coverage to distribute the data
into two groups. It is however possible to use the current
time or the largest time due to the proactive insertion as
an estimate during node splitting and data insertion. The



approximation is likely to have some effect on the perfor-
mance.

One approach to temporal indexing using the R-tree di-
rectly is by making use of two R-trees, one to index tempo-
ral data that are ‘dead’ as line segments and the other to
index data that are ‘alive’ as points. When intervals in the
second R-tree become dead, they are moved to the first
R-tree. This is necessary, as searching on the second R-
tree 1s more complex than searching on the first R-tree. To
answer a time-slice query, both R-trees must be searched.

3.3. OODB INDEXING

The advent of object-oriented database management sys-
tems (OODBSs) has introduced new indexing issues due to
the semantic richness of the object-oriented model. In par-
ticular, the following three object-oriented concepts have
an impact on the evaluation of object-oriented queries, as
well as the indexing support required.

1. Class Hierarchy. A key concept in object-oriented
data models (OODM) is the notion of a class hierar-
chy (also known as an inheritance hierarchy). In an
OODM, each entity is modeled by an object; objects
are classified into classes based on their properties and
behavior. A class can be specialized into a number of
subclasses, giving rise to a hierarchy of classes which
captures the IS-A relationship between classes: an ob-
ject of a class is also an object of its ancestor classes
(superclasses), and the properties of a class are in-
herited by all its descendant classes (subclasses). An
implication of the inheritance hierarchy for the eval-
uation of an object-oriented query is the class scope
of the query; that is, the classes over which the query
will be evaluated. Unlike the relational model where a
query on a relation R retrieves tuples from only R it-
self, an object-oriented query on a class C' has two pos-
sible interpretations. In a single-class query, objects
are retrieved from only the queried class C' itself. In
a class-hierarchy query, objects are retrieved from all
the classes in the class hierarchy rooted at C' since any
object of a subclass of C' is also an object of C'. The
interpretation of the query type (single-class or class-
hierarchy) is specified by the user. To facilitate the
evaluation of such types of queries, a class-hierarchy
inder needs to support efficient retrieval of objects
from a single class, as well as from all the classes in
the class hierarchy.

2. Aggregation Hierarchy. Besides the class-subclass
relationship, another important type of relationship
between classes is the attribute-domain relationship.
In the OODM, the domain of an attribute of a class
can be either a primitive type (e.g. integer, real, string)
or a complex domain (i.e. a class domain). A class
can thus be defined as a nested structure of classes,
giving rise to an aggregation hierarchy (or class com-
position hierarchy). Note that the concepts of a class
hierarchy and an aggregation hierarchy are orthogo-
nal. An aggregation index must index object paths
efficiently. Without efficient index support, the eval-

uation of queries involving classes along aggregation
paths can be slow as it requires access to multiple
classes.

3. Methods While the structural properties of objects
in the OODM are described by attributes, their be-
haviorial properties are defined by methods which are
procedures to either access the values of the attributes,
or operate on the attribute values. A method can be
used in object-oriented queries as a derived attribute
that returns a value (or an object), or as a predicate
that returns a boolean value. To speed up the eval-
uation of OO query predicates that involve methods,
efficient index support is necessary.

A class-hierarchy index is characterized by two param-
eters: the hierarchy of classes to be indexed, and the in-
dex attribute of the indexed hierarchy. There are two ap-
proaches to class-hierarchy indexing:

¢ Class-dimension based approaches [XXX] partition the
data space primarily on the class of an object.

e Attribute-dimension based approaches [XXX] parti-
tion the data space primarily on the indexed attribute
of an object.

Space partitioning of both approaches is illustrated in
Figure . While the class-dimension based approach sup-
ports single-class queries efficiently, it is not effective for
class-hierarchy queries due to the need traversing multi-
ple single-class indexes. On the other hand, the attribute-
dimension based approach generally provides efficient sup-
port for class-hierarchy queries on the root class (i.e., re-
trieving objects of all the indexed classes), but is inefficient
for single-class queries or class-hierarchy queries on a sub-
hierarchy of the indexed class hierarchy, as it may need
to access many irrelevant leaf nodes of the single index
structure. To support both types of queries efficiently, the
index must support both ways of data partitioning [XXX].
However, this is not a simple or direct application of multi-
dimensional indexes, since totally ordering of classes is not
possible and hence partitioning along the class dimension
is problematic.

A second important issue in indexing techniques for OODBs

is related to aggregation hierarchies and navigational ac-
cesses along these hierarchies. Navigational access is based
on traversing object references; a typical example is rep-
resented by graph traversal. Navigations from one ob-
ject in a class to objects in other classes in a class ag-
gregation hierarchy are essentially expensive pointer chas-
ing operations. To support navigations efficiently, index-
ing structures that enable fast path instantiation are nec-
essary. In practice, many of these structures are based
on pre-computing traversals along aggregation hierarchies.
Consider the following example: class Organization ref-
erences class Author, class Author references class Book,
class Book references class Chapter. From the path, ob-
jects from one class can be retrieved via objects of another
class along the path. To efficiently supporting aggregation
hierarchies traversal several techniques have been defined.
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Figure illustrates six path indexing schemes by using the
notion of indexring graph. An indexing graph contains a
node for each class in the indexed path; it moreover con-
tains an edge from the node representing a class C' to the
node representing a class C’ if there is an indexing rela-
tionship from class C' to class C’. An indexing relationship
from class C' to class C’/ means that an entry in the in-
dex contains as key values the identifiers (or values) of the
instances of class C' and it associates with each such key
value the identifiers of the instances of class C’ that refer-
ence, directly or indirectly, the key value. The multi-index
approach maintains an inverted index for each edge. As
can be seen from Figure .a, only backward traversal is
supported. The second approach is that based on the well
known join index [XXX], where two Bt-trees are main-
tained for join pairs between two classes. Both forward
and backward traversals are supported, but the update
cost and storage cost is much higher than before (see Fig-
ure .b). For both methods, the number of indexes that
need to be accessed for navigational access is proportional
to path length. To alleviate this problem, direct associa-
tion between objects of the first class and last class along
the path are maintained in a single nested index [XXX].
The major problem of such an index is update operations
that require access to several objects in order to determine
the entries that need update (see Figure .c). The nested
index can be further generalized to support access from the
objects to all parent objects [XXX], as shown in Figure .d.
To reduce update overhead and yet maintain the efficiency
of path indexing structures, paths can be broken into sub-
paths which are then indexed separately [XXX]. Figures .d
and .e show two examples where a path is split into several
subpaths and different indexing techniques are allocated on
each subpath. An effective splitting and allocation strat-
egy is highly dependent on the query and update patterns
and frequencies. Therefore adequate index allocation tools
should be developed to support the optimal index alloca-
tion.

Query processing involving an user-defined method may
require the execution of such method for a large number of
instances. Because a method can be a general program the
query execution costs may become prohibitive. Possible
solutions, not yet fully investigated, are based on method
precomputation; such approaches, however, make object
updates rather expensive.

4. SCALABILITY

Many application databases grow in size daily. In spatial
databases, an increase in database size means more over-
lap between extended data, which implies that it becomes
harder for indexes to partition data objects into cells ef-
fectively. For applications involving temporal databases,
data volume increases as time progresses. For OODB, new
classes and their instances, and new relationships, may be
added to an existing database. Thus, a good index struc-
ture must be able to support growth in data volume with-
out performance degradation.

For multi-dimensional indexing structures, another scal-
ability criteria is in terms of number of dimensions of the
data space. An efficient index like the R-tree has been
shown to perform poorly for high dimensional data [XXX].
With increase in the number of dimensions, the number of
entries per node decreases, resulting in a higher tree and
increased overlap between subtrees.

To avoid the complexity resulting from a high number
of dimensions, it may be more efficient to partition the at-
tributes into groups and employ a multi-dimensional index
for each group. Of course, the issue on how partitioning
should be performed needs to be addressed as attributes
are not totally independent. Very often, we use some more
important attributes to remove false hits. For example, in
image content-based retrieval by color, the specific color
is more important than where that color appears in the
image. Given that color has more discriminating power
compared to other attributes, an index based on color can
be used to filter objects before using their spatial descrip-
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tions. For this sort of application, a general k-dimensional
index may not be efficient.

5. PRECOMPUTATION VERSUS DYNAMIC RETRIEVAL

A join index [XXX], just as its name implies, is an indexing
structure used for join operations. The main idea of join
indexing is to precompute the join and store the result in an
index file. Hence, the computation of join operations can
be converted to looking up the join index file. Each record
of the join index file contains only object identifiers of the
matching object pairs to make the file relatively small. The
efficiency of a join index will be proportional to its size
which is in turns dependent on the join selectivity. If the
join is more selective, the join index is small. However, a
join with a larger join selectivity, which can be close to the
Cartesian product, can make the index quite large. In this
case, the join index is not appropriate.

Join indexes reduce join processing time at the expense
of higher update cost. The update cost has been the main
deterrent factor for adopting a join index. A compromise
is to precompute the join results partially. Rotem [XXX]
extended the concept of the join index to spatial join, i.e.
join of spatial objects under spatial predicate, with grid
file [XXX] as the underlying structure. This approach con-
verts geometric computation for certain spatial relation-
ships such as within a certain distance into a simple join
index. Based on the join index, we can tell which are the
data pages that contain objects having predefined spatial
relationships.

The conventional join index can be generalized to a cluster-
based join index in which objects are grouped into clusters
based on proximity, and each record of the join index rep-
resents a pair of clusters in which some of their members
satisfy the join condition. Most high dimensional databases
are indexed using multidimensional indexes such as the R-
tree, in which entries in the internal nodes provide effective

and precomputed clusters. The size can be used to fine
tune the join index to achieve a balance between update

cost and retrieval cost to suit individual application.

6. SUMMARY AND OUTLOOK

Over the last decade, many indexes have been designed and
developed primarily driven from the need of supporting dif-
ferent data models and different data types. Many indexes
are similar in features and design concepts, differing only
in detail. While new indexes are being designed for new
applications, existing indexes are enhanced or extended to
cope with increasing data volume and new features that
need to be indexed.

Another factor driving significant extensions to index-
ing techniques is related to advances in computer archi-
tectures. Such extensions are required to fully exploit the
performance potential of new architectures, such as in the
case of parallel architectures, or to cope with limited com-
puting resources, such as in the case of mobile computing
systems. Taking into account the specific architecture in-
troduces an additional dimension in the design of indexes;
questions related to the scalability of many indexes, such
as the ones discussed in this paper, to different architec-
tures (in particular parallel ones) are important and still
need to be fully addressed.

New applications, in addition to the ones already men-
tioned, also play an important role in dictating extensions
to indexing techniques and in offering wider contexts in
which traditional techniques can be used. Two relevant
such areas include data warehousing systems and the Web.

Data warehousing systems are characterized by queries
involving large number of joins and computation of aggre-
gate functions. However, updates are seldom. Therefore,
techniques such as join indexes and view materialization
strategies can be used here; techniques such as bit-mapped
indexes, projection indexes, and bit-sliced indexes have also



been proposed and adopted in commercial systems. How-
ever, research on indexing techniques and index allocation
for data warehouses is still at the beginning.

The Web is characterized by the fact that information is
higly distributed, data are not regularly structured, and the
situation evolves day-by-day. Information retrieval tech-
niques can be used here; some of the simplest techniques,
developed in the information retrieval area, are in fact used
by commercial browsers. However, it is not clear yet how
more sophisticated techniques, such as clustering or search
reformulation based on the user feedback, could be used
here.
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