
Relaxed Space Bounding for Moving Objects: A Case for
the Buddy Tree

1Shuqiao Guo 1Zhiyong Huang 2H. V. Jagadish 1Beng Chin Ooi 1Zhenjie Zhang

1Department of Computer Science
National University of Singapore, Singapore

{guoshuqi, huangzy, ooibc, zhenjie}@comp.nus.edu.sg

2Department of EECS
University of Michigan, USA

jag@eecs.umich.edu

ABSTRACT
Rapid advancements in positioning systems and wireless commu-
nications enable accurate tracking of continuously moving objects.
This development poses new challenges to database technology
since maintaining up-to-date information regarding the location of
moving objects incurs an enormous amount of updates. There have
been many efforts to address these challenges, most of which de-
pend on the use of a minimum bounding rectangle (MBR) in a
multi-dimensional index structure such as R-tree. The maintenance
of MBRs causes lock contention and association of moving speeds
with the MBRs cause large overlap between them. This problem
becomes more severe as the number of concurrent operations in-
creases. In this paper, we propose a “new” simple variant of the
Buddy-tree, in which we enlarge the query rectangle to account for
object movement rather than use an enlarged MBR. The result is
not only elegant, but also efficient, particularly in terms of lock
contention. An extensive experimental study was conducted and
the results show that our proposed structure outperforms existing
structures by a wide margin.

1. INTRODUCTION
Rapid advancements in positioning systems, sensing technolo-

gies, and wireless communications, make it possible to track accu-
rately the movement of thousands of mobile objects. This has led
to an urgent need to develop techniques of efficient storage and re-
trieval of moving objects. Indeed, this topic has received significant
interest in recent years [8, 12, 7, 15, 13].

Mobile objects move in (typically two or three-dimensional) space.
As such, traditional index techniques for multidimensional data are
a natural foundation upon which to devise an index for moving ob-
jects. A standard technique for indexing objects with spatial extent
is to create aminimum bounding rectangle (MBR) around the ob-
ject, and then to index the MBR rather than the object itself. Many
multidimensional index structures, including in particular R-tree
and its derivatives [5, 1], follow such an approach.

Moving objects, even if they are modeled as points, are in dif-
ferent locations in space at different times. In an index valid over
some period of time, if we wish to make sure to locate the mov-
ing object, we can do so by means of a bounding rectangle around
the locations of the object within this period of time. (Most spatio-
temporal indices also have explicit notions of object velocity, and
make linear, or more sophisticated, extrapolations on object posi-
tion as a function of time. But an MBR is still required to make
sure that a search query does not suffer a false dismissal). See our
discussion of the popular TPR-tree structure [13] in Section 2.3 for
more detail.

The key observation we make is that these MBRs can become

quite large, particularly as objects have high velocity or as index
structures are used to model the world for longer periods of time.
Because of this, too many false dismissals may be observed. If an
R-tree like structure is used to hierarchically organize these MBRs,
we may find large overlaps between non-leaf MBRs, causing search
to proceed on multiple paths down the tree.

A fix to the above problem is to have the tree reflect only a very
short period of time. (This is actually a fix only with respect to
queries regarding current position. Reducing the time interval of
index validity actually makes more difficult predictive queries deal-
ing with future positions of objects.) But this means objects have
to be removed and inserted from the tree very frequently, as soon
as they move more than a little. Traditional multidimensional index
structures have not been designed to support such high update rates.
There is always the possibility of a node split upon an insertion and
this could back up all the way to the root, requiring conservative
choices in concurrency control.

In this paper, we attempt to address these difficulties by redefin-
ing the problem of indexing mobile objects. Instead of embedding
the velocity information within the index, we attempt to capture it
in the query. Now, instead of point objects ballooning into large
MBRs, we will have point queries being turned into rectangular
range queries. On the surface, this appears to make no difference
in terms of performance – so one wonders why bother to make this
equivalence transformation?

It turns out that the benefit we get is that we can now build much
simpler indices – we only need to consider static objects rather than
mobile objects. So we can choose a multidimensional structure
with good update properties. In particular, we propose a simple
indexing structure based on the Buddy-tree [14] – the Buddy*-tree.
The bounding rectangles in the internal nodes are not minimum,
and are based on the pre-partitioned cells. This turns the Buddy-
tree to a multi-level like grid file [11], in that the union of the lower
level bounding spaces span the bounding space of the parent.

To allow concurrent modifications, we adapt the concurrency
control mechanism of the R-link tree [9]. Since the Buddy*-tree
is a space partitioning-based method, it does not suffer from the
high-update cost of the R-tree, and due to the decoupling of veloc-
ity information from bounding rectangles, it does not suffer from
the overlap problem of the TPR-tree. Experimental studies were
conducted, and the results that the Buddy*-tree is much more effi-
cient than the TPR*-tree [17] (an improved variant of the TPR-tree)
and the B+-tree [3] based Bx-tree [6].

The rest of this paper is organized as follows. Section 2 surveys
previous index techniques for moving objects and concurrency con-
trol for index trees. Section 3 and 4 describe the structure and al-
gorithms of the Buddy*-tree. Experimental evaluation is described
in Section 5. Finally, Section 6 concludes the paper.

2. RELATED WORK AND ANALYSIS

2.1 Index for Moving Objects
There is a long stream of research on the management and index-

ing of spatial and temporal data, which eventually led to the study
of spatio-temporal data management. MOST [15] is one such early
effort. By treating time as one dimension, moving objects in ad-
dimension space can be indexed in(d + 1)-dimensions. Thus, the
predicted near future state of an object can be queried.

TheTPR-tree (the Time Parameterized R-tree) [13] is a popular
R-tree based index conceptually similar to MOST. Velocity vec-
tors of objects or MBRs as well as the dynamic MBRs at current
time are stored in the tree. At a non-leaf node, the velocity vector
of the MBR is determined as the maximum value of velocities in
each direction in the subtree. A good study of the performance of
TPR-tree is in [17]. TheTPR*-tree [17] was proposed to improve
the TPR-tree by employing a new set of update algorithms. For in-
sertions, TPR*-tree maintains aQP (priority queue) to record the
candidates paths which have been inspected. By visiting the de-
scendant nodes, TPR*-tree extends the paths inQP until a global
optimal solution is chosen, while TPR-tree only chooses a local
optimal path.

The Bx-tree [6] is a B+-tree structure that indexesg moving ob-
jects after performing a transformation into single-dimensional space
using a space filling curve. Objects are partitioned based on time,
but indexed in the same space.

Indices based on hashing have been proposed to handle moving
objects [16], [2]. Combinations have also been proposed. For
instance, in [4], hashing on the grid cells is used to manage hot
moving objects in memory, while the TPR-tree is used to manage
cold moving objects on disk, as a way to provide efficient support
for frequent updates.

2.2 Concurrency in the B-Tree and R-tree
The B-link tree [10] was proposed to provide efficient concurrent

traversal and update of the B+-tree. Every node keeps a right link
pointing to the right sibling node in the same level. When a search
process without lock-coupling goes down in the tree, it will learn of
any splits racing with it by comparing keys. It is then able to visit
the new split node along the right link chain before the new node is
installed into the tree.

The R-link tree [9] employs a similar modification for the R-tree.
The main difference between the R-tree and B+-tree is that keys in
R-tree are not ordered. Therefore, LSN (logical sequence number)
is introduced to each node and kept in each entry of the internal
nodes. Comparison of these LSNs is used to discover node splits.
A right link chain is again used to locate newly split nodes.

2.3 MBR Expansion Due to Velocity
Let xl

i(0), xu
i (0) be the lower bound and upper bound of some

MBR respectively on dimensioni at time 0, and~ul
i, ~u

u
i be the

minimum and maximum velocity of the points in the MBR on di-
mensioni . After t time units, the volume of this MBR isV =Qd

i=1
(xu

i (t) − xl
i(t)). Sincexl

i(t) = xl
i(0) + ~ul

i · t andxu
i (t) =

xu
i (0) + ~uu

i · t, the volume of MBR can be rewritten asV =Qd

i=1
[(xu

i (0) − xl
i(0)) + (~uu

i − ~ul
i) · t]. Therefore,

∂V

∂t
=

dX
i=1

{(~uu
i − ~ul

i) ·
dY

i′=1,i′ 6=i

[(x′u
i − x′l

i) + (~u′u
i − ~u′l

i) · t]}

That is, ∂V
∂t

is O(td−1).
The probability of any MBR being accessed by a random point

search query, assuming uniform distributions, is proportional to the

volume of the MBR. Therefore the expected number of MBRs ac-
cessed at any level of the index tree is proportional to the sum of
their volumes. The rate of the increase on the expected number of
MBRs to be accessed at some levell is O(td−1), wheret is the
elapsed time andd is the dimensionality. This shows that tradi-
tional indexing methods for moving object deteriorate greatly due
to the overlap problem if there is no update for a long time.

3. OVERALL INDEXING STRUCTURE

3.1 Indexing Snapshots
In this paper, we adopt the basic assumption of maximum up-

date interval of the moving objects. Under such an assumption, a
moving object must update its movement at least once in everyTui

timestamps.
Thus, a series of snapshots indices are constructed on different

reference timestamps. The reference timestamp of theith index is
onTui(i− 0.5). There is a Buddy*-tree indexed at these reference
timestamps for the moving objects. The detail of Buddy*-tree will
be covered later in this paper. The lifespan of theith index tree is
betweenTui(i − 1) andTui(i + 1). Thus, there are two indexing
trees maintained at the same time in our system. Figure 1 shows an
example of the indexing trees.

ui
T
 ui
T
2
 ui
T
3

ui
T

2

1

ui
T

2

3

ui
T

2

5

0

Figure 1: The indices on the snapshots

In our system, every object is indexed by one Buddy*-tree at a
single timestamp. Assume an object updates its motion at times-
tamptu, it will be received and updated by the(⌊tu/Tui⌋ + 1)th
Buddy*-tree, according to the velocity and the position of the ob-
ject at the reference time of the Buddy*-tree. If the object is previ-
ously indexed by theith Buddy*-tree but the new update occurs on
thei + 1th tree, the object will be deleted from theith tree as well
as inserted intoi + 1th tree. For example, ifTui = 120 and an ob-
ject updates attu = 110, the update will be conducted on the first
Buddy*-tree at timestamp 60. If it updates again attu = 130, the
first tree will delete the object, while the second tree at timestamp
180 will insert the object into itself. It is guaranteed that theith in-
dex tree must be empty at the end of its lifespan, since every object
will update at least once between timestampTuii andTui(i + 1).

If the user issues a predictive range queryq on timestamptq, our
system will transform the queries to both the index trees currently
maintained. Since every object is stored in at least one tree, the
union of the range query result on these two trees must be a com-
plete and valid result for the original query. The detail of the query
processing on the Buddy*-tree will be covered later.

3.2 Buddy*-Tree
Given that we regard the moving objects as static points to in-

dex in each snapshot, and given the importance of fast update, we
choose the Buddy-tree [14] as the basic structure of our proposed
index. The index tree is constructed by cutting the space recursively
into two subspaces of equal size with hyperplanes perpendicular to
the axis of each dimension. Each subspace is recursively parti-
tioned until the points in the subspace fit within a single page on

S6 S7

S1 S3 S5 S2 S4

P

�
P� P� P� P

�� P� P� P

�� P� P

��
P

��P

��
P� P	 P

��
S0

S6 S7

S1 S3 S5 S2 S4

(a) The Buddy*-Tree

P
1

P

2

P
10

P
6

P
13

P
4

P

5

P

12

P
14

P
7

P
11

P
3

P

15

P
9

P

8

S
0
S
6
 S
7

S
3
 S
5

S
1
 S
2

S
4

(b) A planar represen-
tation

Figure 2: An Example of the Structure of Buddy*-Tree

disk.
We make several alterations to this basic Buddy-tree structure

to suit our needs. We call the new index structure Buddy*-tree.
A traditional Buddy-tree creates tight bounding rectangles around
the data points in each node. Since such tight MBRs are costly to
update, we choose instead to use loose bounding. We call this a
Loose Bounding Space (LBS) associated with the index tree node.
We also store the maximum and minimum velocities in a node for
all of the objects stored in the subtree of the node.

To support high degree concurrent operations on Buddy*-tree,
we absorb the idea of right links among each level from B-link tree
[10] and R-link tree [9]. Thus, at any given level all nodes are
chained into a singly-linked list. In [9], the authors extends the R-
Tree by assigning an additional parameter LSN as the timestamp to
each node, which is used to detect the split and determine where to
stop when moving right along the right link chain. However, this
structural addition is not necessary in the Buddy*-tree since we are
guaranteed not to have overlaps between nodes. Instead, we can
simply detect the uninstalled node split by comparing the current
LBS of the nodes with the old LBS. Figure 2(a) shows an example
of the Buddy*-Tree in2-dimensional space, with the corresponding
data space illustrated in Figure 2(b). The first capital letter in a
node denotes the LSB of it, followed by the entries with key LSB
(expected LBS for the child node) or points.

3.3 Query Expansion on Buddy*-Tree
On every snapshot Buddy*-tree index, we use query expansion

instead of MBR expansion for query answering. Our central idea
is that movement of objects can be handled by expanding queries
rather than actually perturbing objects in the index.

As in so many other moving object index structures, we use lin-
ear interpolation to estimate object position at times other thantref .
The position of an object at timet can be calculated by the function
x(t) = x(tref) + ~v × (t − tref).

Based on this, we can suitably enlarge a query as follows: Sup-
pose the query isq with query window [qxl

i, qxu
i] (i = 0, 1, ...d −

1,whered is dimension of the space), and the query time istq, the
enlarged query window [eqxl

i, eqxu
i] is obtained as:

eqxl
i =

�
qxl

i + ~ul
i · (tref − tq) iftq < tref

qxl
i + (−~uu

i) · (tq − tref) otherwise

eqxu
i =

�
qxu

i + ~uu
i · (tref − tq) iftq < tref

qxu
i + (−~ul

i) · (tq − tref) otherwise

whereu
l
i andu

u
i are the minimum and maximum velocities re-

spectively of objects inside the query window in dimensioni. Note
that we would ideally have liked to enlarge the query by precisely
the velocities of the objects included in the query. Although we do

not have idea about which objects are in the query result, the max-
imum and minimum velocity stored in the nodes is enough to help
us find the correct result. The following theorem is straightforward
and used in next section.

THEOREM 1. Given a query q and a MBR node N , the en-
larged query q′ must overlap N if N contains at least one object in
the result of q.

4. BUDDY*-TREE OPERATIONS
In this section, we provide the detailed algorithm on the oper-

ations of Buddy*-tree, including querying, insertion and deletion.
We also discuss how to achieve high concurrency on Buddy*-tree.

There are three kinds of locks on the nodes of Buddy*-tree, read
lock, write lock and mark lock. If a node is read locked, this node
can be read by other threads but can not be written. If a node is
write locked, it can not be read or written by any other thread. If the
node is mark locked, all read and write operations, except merge,
can be run on it. In the following, we use rlock (r unlock), w lock
(w unlock) and mlock (m unlock) to denote the locking (unlock-
ing) operations for read lock, write lock and mark lock respectively.

4.1 Querying

Algorithm 1 Range Search(r, N , l)
/* Input: r is the query window.N andl are the pointer of the node to be
examined and its LBS obtained from its parent node, respectively*/
1: r lock(N)
2: if N is mark locked by this threadthen
3: m unlock(N)
4: for each entrye in N thate.LBS overlapsR, obtained by enlargingr

according to the time difference and extremal velocities ine.node do
5: if N is not a leaf nodethen
6: Insert (e.node, e.LBS) into tobeV isited

7: m lock(e.node)
8: else
9: output qualified points ine

10: r unlock(N)
11: while tobeV isited is not emptydo
12: (N ′, l′) = GetFirst(tobeV isit)
13: RangeSearch(r, N ′, l′)
14: if N.LBS is not equal tol then
15: traverse the right link chain starting atN to first node whose LBS is

not contained inl
16: for each nodeM along the chain except the last onedo
17: r lock(M)
18: l′ := M.LBS

19: r unlock(M)
20: RangeSearch(r, M , l)

In Algo 1, we provide the detail of the recursive range search
over Buddy*-tree. The searching process is similar to other tree-

indexing structure. For a non-leaf node in Buddy*-tree, the al-
gorithm retrieves all the children with overlap with the expanded
query, and put all these children into the list for nodes to be visited
later (line 5 to line 13). Then, the algorithm further visits and search
the new nodes created by other threads on the right link chain of the
current node (line 14 to line 20).

By Theorem 1, the querying algorithm can not miss any node
containing at least one point in the query result. Therefore, it can
always output the correct result in all cases.

The read lock is exerted on the node when the range search algo-
rithm tries to retrieves the children node. Such a lock is used also
during the process of searching uninstalled nodes on the right chain
to get the correctLBS.

4.2 Insertion
To insert a point into Buddy*-tree, our system first computes the

location of the point at the reference time of the tree. Then, the
simple location searching operation is invoked to locate the leaf
node in Buddy*-tree whose LBS covers the point. In Algo 2, we
present the recursive implementation of how to insert an entry into a
Buddy*-tree node. Given the node to insert the point, the algorithm
first finds the correct node if uninstalled split nodes exist (line 1 to
line 4). If the node to insert still has room for a new entry, the
algorithm directly inserts it into it (line 5 to line 7). Otherwise,
some split operations are invoked, which is followed by recursive
insertion operation on the parent of the node (line 9 to line 18).

Algorithm 2 Insert Entry(s, N)
/* Input: s is the entry containing a point or a branch to install into nodeN .
NodesN as input is write-locked and it is unlocked after the procedure, */
1: while N.LBS doesn’t covers.LBS do
2: N ′ := N ’s right neighbor on the chain.
3: w lock(N ′) and wunlock(N)
4: N := N ′

5: if there is an empty entrye in N then
6: puts in e

7: w unlock(N)
8: else
9: newN = Split Node(N) /* Split N into two nodesN andnewN */

10: Choose one fromN andnewN to inserts
11: if N is not rootthen
12: P := N ’s parent node
13: w lock(P) and wunlock(N)
14: e := the entry containingnewN

15: InsertEntry(e, P)
16: else
17: Construct a new root and insertN andnewN into it
18: w unlock(N)

The write lock is exerted on a node in two cases. The first case
happens when the algorithm is trying to insert an entry to the node.
The second case happens when the algorithm finds an uninstalled
split, it moves the cursor as well as the write lock to the right nodes
on the chain.

4.3 Deletion
The deletion operation is similar to insertion operation. In the

first step, the leaf node containings is first located, followed by
Algo 3 to remove the entry and merging its parent if necessary.

In Algo 3, we present the detailed process of deleting an en-
try from the tree. The algorithm first locates the correct node by
traversing on the right chain (line 1 to line 4). The entry containing
the point is directly removed if it is found in the correct node (line
5 to line 8). Once the resulting node has too few entries, merging
operations is invoked if the right neighbor on the right chain is its

Algorithm 3 Delete Entry(s, N)
/* Input: s is the entry containing a point or a branch to install into nodeN .
NodesN as input is write-locked and it is unlocked after the procedure, */
1: while N.LBS doesn’t covers.LBS do
2: N ′ := N ’s right neighbor on the chain.
3: w lock(N ′) and wunlock(N)
4: N := N ′

5: if find the entrys in N then
6: deletes from N

7: else
8: w unlock(N) and report error
9: if there are too few entries inN then

10: M := N ’s right neighbor on the right chain
11: w lock(M) /* delayed ifM is mark locked */
12: if M andN are buddies and the total number of entries inM and

N below maximum entry boundthen
13: P := N ’s parent node
14: w lock(P)
15: MergeM into N

16: e :=the entry containingM
17: Del Entry(e, P)
18: else
19: w unlock(M)
20: w unlock(N)

buddy in the Buddy*-tree. The merging process is finished after
the parent of the two nodes removes one of the buddies (line 9 to
line 19). We note that the merge operation can be delayed due to
the mark lock exerted by querying operation.

Write lock is exerted on at most three nodes in the algorithm,
including the nodeN containings, N ’s right neighborM and their
parentP .

4.4 Deadlock Analysis
There can be no deadlock between any two threads in the system.

We analyze the situations based on the operations of the threads as
follows.

Two threads of the same type of operations must be safe from
deadlock, since the threads must lock the nodes on the same direc-
tion. For one querying thread and one insertion thread, there can
be no deadline, since the querying node can read lock at most one
node at the same time, while the insertion node can wait for the
release of it. For one insertion thread and one deletion thread, they
are also deadlock free, since both threads work from bottom to top
on the tree. For one querying thread and one deletion thread, on the
first hand, the read lock from querying thread can not have dead-
lock with the write lock from deletion thread. On another hand,
the mark lock is released after the querying thread exerting the read
lock, so it can not block deletion thread either.

5. EXPERIMENTAL EVALUATION
We implemented the Buddy*-tree, and compared its performance

to that of the TPR*-tree and Bx-tree. All of these structures were
implemented in C. All experiments were conducted on a single
CPU 3G PentiumIV Personal Computer with 1 G bytes of mem-
ory.

We ran two sets of experiments, one with a single thread of ac-
tivity, and another with multiple concurrent threads. In both sets
of experiments we use synthetic uniform datasets. The position of
each object in the data set is chosen randomly in a1000 × 1000
space. Each object moves in a randomly chosen direction with a
randomly chosen speed ranging from 0 to 3. We constructed the
index at time 0. The parameters used in the experiments are sum-
marized in Table 1, and the default values are highlighted in bold.

Parameter Setting
Page size 4K
Max update interval 60,120,180,240
Max predictive interval 120
Query window size 10,20,...,100
Number of queries 200
Dataset size 100K,...,500K,...1M
Number of threads 2,4,8,...,64,128,256
Number of operations per thread200

Table 1: Parameters and Settings

5.1 Storage Requirement
In a Buddy*-tree internal entry, the space partition is kept for the

child node (at least 8 Bytes for 2-dimension space). As for Bx-tree,
each entry contains a 64bit key (8 Bytes). However, a TPR*-tree
internal node stores MBRs and VBRs for each child entry (24 Bytes
for 2-dimensions). The storage requirement of the indices is shown
in Figure 3. As anticipated, TPR*-tree requires more than twice
storage space of the others, which are comparable.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1000900800700600500400300200100

S
to

ra
ge

 s
pa

ce
c

on
 d

is
k

(K
by

te
s)

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

Figure 3: Storage Requirement

5.2 Single Thread Experiments

5.2.1 Effect of Dataset Size
First, we study the range query performance with different sizes

of dataset. 200 window queries with size 10 are issued after the
index running for 120 time units (an entire maximum update inter-
val). The predictive intervals of the queries are randomly chosen
in the range from 0 to 120. Figure 4 shows the average cost of I/O
operation and CPU time per query for the three inspected indices.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 q
ue

ry
 I/

O
s

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

(a) I/O cost

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 q
ue

ry
 C

P
U

 ti
m

e
(s

)

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

(b) CPU time

Figure 4: Effect of Dataset Size on Range Query Performance
As expected, the results show that the window query costs of all

the indices increase with the number of objects. However, The in-
creasing speed of TPR*-tree is much higher than that of the others.
When there are 1M objects in the dataset, the cost of the TPR*-tree
is nearly 3 times over that of Bx-tree and more than 5 times over
that of Buddy*-tree. This is due to the fact that, the performance
of TPR*-tree highly depends on the ratio of overlap, while that of
Bx-tree and Buddy*-tree is related only to the result sizes of the
queries.

5.2.2 Effect of Query Size
We next investigate the performance of the indices with respect

to query size.
In the experiments we vary the query window size from 10 to 100

on a dataset of size 500K. The predictive intervals of queries are set
as same with last experiments. As shown in Figure 5, query costs
increase with the query window size. This behavior is straight-
forward, since a larger window contains more objects and accord-
ingly, more index nodes will be accessed. The TPR*-tree degener-
ates considerably over the other indices. This behavior is attributed
to the overlap problem of TPR*-tree. The costs of Bx-tree and
Buddy*-tree increase at the same rate.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 q
ue

ry
 I/

O
s

Range query window size

TPR*-tree
Bx-tree

Buddy*-tree

(a) I/O cost

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 q
ue

ry
 C

P
U

 ti
m

e
(s

)

Range query window size

TPR*-tree
Bx-tree

Buddy*-tree

(b) CPU time

Figure 5: Effect of Query Window Size on Window Query Per-
formance

5.2.3 Effect of Data Distribution
This experiment uses the network dataset to study the effect of

data distribution on the indexes. The dataset is generated by an ex-
isting data generator, where objects move in a road network of two-
way routes that connect a given number of uniformly distributed
destinations [13]. The dataset contains 500K objects, that are placed
at random positions on routes and are assigned at random to one of
three groups of objects with maximum speeds of 0.75, 1.5, and 3.
Objects accelerate as they leave a destination, and they decelerate
as they approach a destination. Whenever an object reaches its des-
tination, a new destination is assigned to it at random.

 0

 200

 400

 600

 800

 1000

Uniform100040030020015010050

A
ve

ra
ge

 q
ue

ry
 I/

O
s

Number of destinations

TPR*-tree
Bx-tree

Buddy*-tree

(a) I/O cost

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

Uniform100040030020015010050

A
ve

ra
ge

 q
ue

ry
 C

P
U

 ti
m

e
(s

)

Number of destinations

TPR*-tree
Bx-tree

Buddy*-tree

(b) CPU time

Figure 6: Effect of Data Distribution on Range Query Perfor-
mance

Figure 6 summarizes the average range query costs of the three
indexes when the number of destinations in the simulated network
of routes is varied. Decreasing the number of destinations adds
skew to the distribution of the object positions and their velocity
vectors. As is shown, increased skew leads to a decrease in the
range query cost in the TPR*-tree, since when there are more ob-
jects with similar velocities, they are easier to be bounded into rect-
angles. The performance of the Bx-tree is not affected by the data
skew because objects are stored using space-filling curves, which
is not sensitive to density. Observe that the range query cost of
the Buddy*-tree firstly increases with the number of destinations
and after the point that the number of destination is 300, the cost
descends.

5.3 Concurrent Operations
We implemented B-link for Bx-tree, and simply locked the whole

TPR*-tree1for concurrency control. In the following experiments,
each thread issues 200 operations, and the workload of each thread
contains the same number of queries and updates.

5.3.1 Effect of Thread Number
First, we investigate the effect of the number of threads. Figure 7

shows the throughput and response time for the indices by varying
the thread number from 2 to 256.

 0

 20

 40

 60

 80

 100

 120

 140

256128643216842

T
hr

ou
gh

pu
t

Number of threads

TPR*-tree
Bx-tree

Buddy*-tree

(a) Throughput

 0

 2

 4

 6

 8

 10

 12

256128643216842

R
es

po
ns

e
tim

e
(s

)

Number of threads

TPR*-tree
Bx-tree

Buddy*-tree

(b) Response time

Figure 7: Effect of Threads on Concurrent Operations

All the indices reach the highest throughput at around 8 threads
and thereafter show deteriorating performance as the number of
threads is increased. Measuring the decline as we go from 8 to
256 threads, we find this decrease to be only6.5% for Buddy*-
tree, but24.5% and24.6% for Bx-tree and TPR*-tree respectively.
Since Buddy*-tree has been designed for high concurrency, its su-
perior performance with multiple threads validates our design. The
decline in performance of TPR*-tree is also to be expected. The
surprise is the decline in performance of the Bx-tree in spite of the
use of B-link chain for high concurrency. The main reason for this
is that a lot of “jumps” in the Bx-tree for range query increase the
number of accesses of and locks on internal nodes.

5.3.2 Effect of Dataset Size
As shown in Figure 8, the performance of all indices reduces

with the increasing number of moving objects. This is straight-
forward, since the larger the dataset is, the more nodes an index
contains and the more I/O operations a query or update brings.
However the Buddy∗-tree outperforms the other indices for both
throughput and response time.

6. CONCLUSION
In this paper, we proposed a space partitioned based index struc-

ture Buddy*-tree, a generalization of Buddy-tree, for indexing mo-
bile objects. An adaptive query expansion technique is used for pre-
dictive range query over object motion, while only static snapshots
indexed, with a right link structure to achieve higher concurrency.

1Since TPR*-tree employs different update algorithms from TPR-
tree (e.g. remove and reinsert a set of entries in split algorithm), it
can not grantee RR even we implement R-link for it.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1000900800700600500400300200100

R
es

po
ns

e
tim

e
(s

)

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

(a) Throughput

 0

 50

 100

 150

 200

 250

 300

1000900800700600500400300200100

T
hr

ou
gh

pu
t

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

(b) Response time

Figure 8: Effect of Data Size on Concurrent Operations

7. REFERENCES
[1] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree:

an efficient and robust access method for points and rectangles. In the
Proceedings of ACM SIGMOD, 1990.

[2] H. D. Chon, D. Agrawal, and A. E. Abbadi. Using space-time grid
for efficient management of moving objects. Inthe Second ACM
international workshop on Data engineering for wireless and mobile
access, 2001.

[3] D. Comer. The ubiquitous b-tree.ACM Computing Surveys,
11(2):121–137, 1979.

[4] B. Cui, D. Lin, and K. L. Tan. Towards optimal utilization of main
memory for moving object indexing. InProceedings of DASFAA,
2005.

[5] A. Guttman. R-trees: A dynamic index structure for spatial
searching. Inthe Proceedings of ACM SIGMOD, 1984.

[6] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient
b+-tree based indexing of moving objects. InProceedings of VLDB,
2004.

[7] G. Kollios, D. Gunopulos, and V. J. Tsotras. Nearest neighbor queries
in a mobile environment. InProceedings of the International
Workshop on Spatio-Temporal Database Management, 1999.

[8] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile
objects. pages 261–272, 1999.

[9] M. Kornacker and D. Banks. High-concurrency locking in r-trees. In
Proceedings of VLDB, pages 134–145, 1995.

[10] P. Lehman and S. Yao. Efficient locking for concurrent operations on
b-trees.ACMTODS, 6(4), Dec. 1981.

[11] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid File: An
adaptable, symmetric multikey file structure.ACM TODS,
9(1):38–71, 1984.

[12] B. C. Ooi, K. L. Tan, and C. Yu. Frequent update and efficient
retrieval: an oxymoron on moving object indexes? InProceedings of
International Web GIS Workshop, 2002.

[13] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez.
Indexing the positions of continuously moving objects. Inthe
Proceedings of ACM SIGMOD, pages 331–342, 2000.

[14] B. Seeger and H. P. Krieger. The buddy-tree: An efficientand robust
access method for spatial data base systems. InProceedings of
VLDB, pages 590–601, Aug. 1990.

[15] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and
querying moving objects. Inthe Proceedings of ICDE, pages
422–432, 1997.

[16] Z. Song and N. Roussopoulos. Hashing moving objects. Inthe
Proceedings of the 2nd International Conference on Mobile Data
Management, 2001.

[17] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An optimized
spatio-temporal access method for predictive queries. Inthe
Proceedings of VLDB, 2003.

