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ABSTRACT
The success of Bitcoin and other cryptocurrencies bring
enormous interest to blockchains. A blockchain system im-
plements a tamper-evident ledger for recording transactions
that modify some global states. The system captures entire
evolution history of the states. The management of that
history, also known as data provenance or lineage, has been
studied extensively in database systems. However, query-
ing data history in existing blockchains can only be done
by replaying all transactions. This approach is applicable
to large-scale, offline analysis, but is not suitable for online
transaction processing.

We present LineageChain, a fine-grained, secure, and effi-
cient provenance system for blockchains. LineageChain ex-
poses provenance information to smart contracts via simple
interfaces, thereby enabling a new class of blockchain ap-
plications whose execution logics depend on provenance in-
formation at runtime. LineageChain captures provenance
during contract execution and stores it in a Merkle tree.
LineageChain provides a novel skip list index that supports
efficient provenance queries. We have implemented Lin-
eageChain on top of Hyperledger Fabric and a blockchain-
optimized storage system called ForkBase. We conduct
extensive evaluation, demonstrating the benefits of Lin-
eageChain, its efficient query, and its small storage over-
head.

1. INTRODUCTION
Blockchains are capturing attention from both academia

and industry. A blockchain is a chain of blocks, in which each
block contains many transactions and is linked with the pre-
vious block via a hash pointer. It is first used in Bitcoin [13]
to store cryptocurrency transactions. Often referred to as
decentralized ledger, blockchain ensures integrity (tamper
evidence) of the complete transaction history. It is replicated
over a peer-to-peer (P2P) network, and a distributed con-
sensus protocol, for instance Proof-of-Work (PoW), is used
to ensure that honest nodes in the network have the same
ledger. More recent blockchains, for instance Ethereum [1]
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and Hyperledger [3], enables applications beyond cryptocur-
rencies by supporting for smart contracts. A smart contract
has its states stored on the blockchain, and the states are
modified via transactions that invoke the contract.

The management of data history, or data provenance, has
been extensively studied in databases, and many systems
have been designed to support provenance [7, 5, 4]. In the
context of blockchain, there is explicit, but only coarse-
grained support for data provenance. In particular, the
blockchain can be seen as having some states (with known
initial values), and every transaction moves the system to
new states. The evolution history of the states (or prove-
nance) can be securely and completely reconstructed by re-
playing all transactions. However, this reconstruction can
only be done during offline analysis. During contract execu-
tion (or runtime), no provenance information is accessible to
smart contracts. This lack of runtime access to provenance
therefore restricts the expressiveness of the computation log-
ics that the contract can encode.

Consider an example smart contract shown in Figure 1,
which contains a method for transferring a number of tokens
from one user to another. Suppose user A wants to send to-
kens to B based on the latter’s historical balance in recent
months. For example, A only sends tokens ifB’s average bal-
ance per day is more than t. It is not currently possible to
write a contract method for this operation. To work around
this, A needs to first compute the historical balance of B by
querying and replaying all on-chain transactions, then based
on the result issues the Transfer transaction. Beside perfor-
mance overhead incurred from multiple interactions with the
blockchain, this approach is not safe: it violates transaction
serializability. In particular, suppose A issues the Transfer

transaction tx based on its computation of B’s historical bal-
ance. But before tx is received by the blockchain, another
transaction is committed such that B’s average balance be-
comes t′ < t. Consequently, when tx is later committed,
it will have been based on stale state, and therefore fails
to meet the intended business logic. This scenario can be
caused by benign network conditions as well as by malicious
attacks. In blockchains with native currencies, serializability
violation can be exploited for Transaction-Ordering attacks
that cause substantial financial loss to the users [11].

We design and implement LineageChain, a fine-grained,
secure, and efficient provenance system for blockchains that
enables a new class of smart contracts which can access
provenance information at runtime. Although our goal is



contract Token {
method Transfer(sender, recipient, amount) {

bal1 = gState[sender];
bal2 = gState[recipient];
if (amount < bal1) {

gState[sender] = bal1 - amount;
gState[recipient] = bal2 + amount;

} } }

Figure 1: A token management smart contract.

similar to that of existing works in adding provenance to
databases, we face three unique challenges due to the na-
ture of blockchain. First, there is a lack of data opera-
tors whose semantics capture provenance in the form of
input-output dependency. More specifically, for general data
management workloads (i.e., non-cryptocurrency), current
blockchains expose only generic operators, for example, put
and get of key-value tuples. These operators do not have
input-output dependency. In contrast, relational databases
operators such as map, join, union, are defined as relations
between input and output, which clearly capture their de-
pendencies. To overcome this lack of provenance-friendly
operators, we instrument blockchain runtime to record read-
write dependency of all the states used in any contract invo-
cation, which is then passed to a user-defined method that
specifies which dependency to be persisted.

The second challenge is that blockchains assume an ad-
versarial environment, therefore any captured provenance
must be made tamper evident. To address this, we store
provenance in a Merkle tree data structure that also allows
for efficient verification. The final challenge is to ensure that
provenance queries are efficient, not only to improve latency,
but also to avoid degrading security [12]. To address this
challenge, we design a novel skip list index optimized for
provenance queries.

In summary, we make the following contributions:

• We present LineageChain, a system that efficiently
captures fine-grained provenance for blockchains. It
stores provenance securely, and exposes simple access
interface to smart contracts.

• We present a novel index optimized for querying
blockchain provenance. The index is similar to skip
list, but is deterministic. Its performance is indepen-
dent of the blockchain size.

• We implement LineageChain for Hyperledger Fabric
v1.3 [3]. Our implementation builds on top of Fork-
Base, a blockchain-optimized storage [15]. Our experi-
mental results demonstrate its benefits to provenance-
dependent applications and its efficient query.

LineageChain is a component of our FabricSharp system
[2], for which we improve Fabric’s execution and storage
layer for the secure runtime provenance support. Elsewhere,
we have addressed the consensus bottleneck by applying
sharding efficiently and exploiting trusted hardware to scale
out system horizontally, to substantially improve the system
throughput [8]. We have also improved the storage efficiency
by designing a tamper-evident storage engine that supports
efficient forking called Forkbase. We are currently incorpo-
rating smart contract verification to enhance the correctness
of smart contracts.

2. BLOCKCHAIN STATES ORGANIZA-
TION

In this section, we discuss how the global states are or-
ganized in blockchains. [9] provides a comprehensive survey
of blockchain design. There are three key requirements for
building an index over the global states of a blockchain. We
explain how they are met in Ethereum and Hyperledger.
LineageChain also meets these requirements.

Tamper evidence. A user may read some states without
downloading and executing all the transactions. Thus, the
index structure must be able to generate an integrity proof
for any state. The index must provide a unique digest for
the global states, so that blockchain nodes can quickly check
if their states are the same.

Incremental update. The size of global states may be, but
one block only updates a small portion of states. For exam-
ple, some states may be updated at every block, whereas
other may be updated much more infrequently. Because the
index must be updated at every block, it must be efficient
at handling incremental updates.

Snapshot. A snapshot of the index, as well as of the global
states, must be made at every block. This is necessary be-
cause of the immutability property of the blockchain which
allows users to read any historical states. It is also impor-
tant for block verification: when a new block is received that
creates a fork, an old snapshot of the state is used for verifi-
cation. Even when the blockchain allows no forks, snapshots
enable roll-back when the received block is found to be in-
valid after execution.

Existing blockchains use indices that are based on Merkle
tree. In particular, Ethereum implements Merkle Patri-
cia Trie (MPT), and Hyperledger Fabric v0.6 implements
Merkle Bucket Tree (MBT). In a Merkle tree, content of
the parent node is recursively defined by those of the child
nodes. A proof of integrity can be efficiently constructed
without reading the entire tree. The Merkle tree meets the
first requirement. It also meets the second requirement, be-
cause only the tree nodes affected by the update need to be
changed. It meets the third requirement, because an update
in the block recursively creates new tree nodes in the path
affected by the change. And then new root then serves as
index of the new snapshot, and is then included in the block
header.

3. FINE-GRAINED PROVENANCE
In this section, we describe how we capture provenance,

and the smart contract APIs for accessing it. We use as run-
ning example of the token smart contract shown in Figure 1.
Figure 2 depicts how the global states are modified by the
contract. In particular, the contract is deployed at block
Lth in the blockchain. Two accounts (or addresses), Addr1
and Addr2, are initialized with 100 tokens. Two transac-
tions Txn1 and Txn2 transferring tokens between the two
addresses are committed at block M and N respectively.
The value of Addr1 is 100 from block L to block M − 1, 90
from block M to N − 1, and 70 from block N . The global
state gState is essentially a map of addresses to their values.

3.1 Capturing Provenance
In LineageChain, every contract method can be made

provenance-friendly via a helper method. In particular, dur-
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Figure 2: Content of the blockchain and gState.

contract Token {
method Transfer(...){...} // as above
method prov_helper(name, reads, writes) {
if name == "Transfer" {
for (id,value) in writes {

if (reads[id] < value) {
recipient = id;

} else {sender = id; }
}
// dependency list with a
// single element.
dep = [sender];
return {recipient:dep};

}
...

}
}

Figure 3: The provenance helper method for To-
ken contract, which defines dependency between the
sender identifier and recipient identifier.

ing transaction execution, LineageChain collects the identi-
fiers and values of the accessed states, i.e., those used in read

and write operations. The results are a read set reads and
write set writes. For Txn1, reads = {Addr1 : 100,Addr2 :
100}, and writes = {Addr1 : 90,Addr2 : 110}. After
the execution finishes, these sets are passed to prov_helper

method, together with the name of the contract method.
prov_helper has the following signature:

method prov_helper(name: string,

reads: map(string, byte[]),

writes: map(string, byte[]))

returns map(string, string[]);

prov_helper is defined by the contract developer, and it
returns a set of dependencies based on the input read and
write sets. Figure 3 shows an implementation of the helper
method for the Token contract. It first computes the identi-
fier of the sender and recipient from the read and write sets.
Specifically, the identifier whose value in writes is lower
than that in reads is the sender, and the opposite is true for
the recipient. It then returns a dependency set of a single
element: the recipient-sender dependency. In our example,
for Txn1, this method returns {Addr2 : [Addr1]}.

3.2 Smart Contract APIs
Current smart contracts can only access the latest states.

LineageChain provides access to the captured provenance
via three additional smart contract APIs.

• Hist(stateID, [blockNum]): returns the tuple (val,

blkStart, txnID) where val is the value of stateID

contract Token {
...
method Blacklist(addr) {
blk := last block in the ledger
blacklisted = false;
iterate 5 times {
val, startBlk, txnID = Hist(addr, blk);
for (depAddr, depBlk)

in (Backward(addr, startBlk)
or Forward(addr, startBlk)) {

if depAddr in gState["blacklist"] {
gState["blacklist"].append(addr);
return;

}
}
blk = startBlk - 1;

}
}

}

Figure 4: Smart contract with the new APIs.

at block blockNum. If blockNum is not specified, the
latest block is used. txID is the transaction that sets
stateID to val, and blkStart is the block number at
which txID is executed.

• Backward(stateID, blkNum): returns a list of tuples
(depStateID, depBlkNum) where depStateID is the
dependency state of stateID at block blkNum. dep-

BlkNum is the block number at which the value of dep-
StateID is set. In our example, Backward(Addr2, N)

returns (Addr1, M).

• Forward(stateID, blkNum): similar to the Backward

API, but returns the states of which stateID is a de-
pendency. For example, Forward(Addr1, L) returnss
(Addr2, M).

Figure 4 illustrates how the above APIs are used to ex-
press smart contract logics that are currently impossible, as
shown in the Blacklist method. This will mark an ad-
dress as blacklisted if one of its last 5 transactions is with a
blacklisted address.

4. PROVENANCE STORAGE AND QUERY
In this section, we describe the design for storing and

querying the captured provenance.

4.1 Storage
LineageChain enhances existing blockchain storage layer

to provide efficient tracking and tamper evidence for the
captured provenance. The key idea is to reorganize the flat
leaf nodes in the original Merkle tree into a Merkle DAG.

Merkle DAG. Let k be the unique identifier of a
blockchain state, whose evolution history is expected to be
tracked. Let v be the unique version number that identifies
the state in its evolution history. When the state at version
v is updated, the new version v′ is strictly greater than v.
In LineageChain, we directly use the block number as its
version v. Let sk,v denote the value of the state with iden-
tifier k at version v. We drop the subscripts if the meaning
of k and v are trivial. For any k 6= k′ and v 6= v′, sk,v and
sk′,v′ represent the values of two different states at different

versions. sbk represents the state value with identifier k at its
latest version before block b. In our example, for k = Addr1
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Figure 5: A Merkle DAG for storing provenance.
sk2,v4 and sk3,v4 updated by the same transaction
(tid4), block b contains two transactions, tid3 and
tid4. Its latest states are represented by the Merkle
root.

and v = M , sk,v = 90.

Definition 1. A transaction, identified by tid which is
strictly increasing, consumes a set of input states Si

tid and
produces a set of output states So

tid. A valid transaction sat-
isfies the following properties:

∀sk1,v1 , sk2,v2 ∈ S
o
tid. k1 6= k2 ∧ v1 = v2 (1)

∀sk1,v1 ∈ S
i
tid, sk2,v2 ∈ S

o
tid. v1 < v2 (2)

∀sk,v ∈ Si
tid, sk,v′ ∈ Si

tid′ . tid < tid′ ⇒ v ≤ v′. (3)

tid 6= tid′ ⇒ So
tid ∩ So

tid′ = ∅ (4)

Property (1) means that the versions of all output states
of a transaction are identical, because they are updated by
the same transaction in the same block. Property (2) implies
the version of any input state is strictly lower than that of
the output version. This makes sense because the blockchain
establishes a total order over the transactions, and because
the input states can only be updated in previous transac-
tions. Property (3) specifies that, for all the states with
the same identifier, the input of later transactions can never
have an earlier version. This ensures the input state of any
transaction must be up-to-date during execution. Finally,
Property (4) means that every state update is unique.

Definition 2. The dependency of state s is a subset of
the input states of the transaction that outputs s. More
specifically:

dep(s) ⊂ Si
tid where s ∈ So

tid.

Note that dep, which is returned by prov_helper method,
is only a subset of the read set.

Definition 3. The entry Esk,v of the state sk,v is a tu-
ple containing the current version, the state value, and the
hashes of the entries of its dependent state. More specifi-
cally:

Esk,v = 〈v, sk,v, {hash(Es′)|s′ ∈ dep(sk,v)}〉

An entry uniquely identifies a state. In LineageChain, we
associate each entry with its corresponding hash.

Definition 4. The set of latest states at block b, denoted
as Slatest,b, is:

Slatest,b =
⋃
k

{sbk}

Let Ub be the updated states in block b. We can compute
Slatest,b by recursively combining Ub with Slatest,b−1 \ Ub.

Definition 5. χb is the root of a Merkle tree built on the
map Sb where

Sb = {k : hash(Esb
k
)|∀sbk ∈ Slatest,b}.

LineageChain stores χb as the state digest in the block
header.

Forward tracking. One problem with the above DAG
model is that it does not support forward tracking, be-
cause the hash pointers only reference backward dependen-
cies. When a state is updated, these backward dependencies
are permanently established, so that they belong to the im-
mutable history of the state. However, the state can be read
by future transaction, and as a consequence its forward de-
pendencies cannot be determined at the time of update.

Fortunately, an important observation is that only forward
dependencies of the latest state are mutable. Once the state
is updated, due to the execution model of blockchain smart
contract, in which the latest state is always read, forward
dependencies of the previous state version becomes perma-
nent. As a result, they can be included into the history.
Figure 5 illustrates an example, in which forward dependen-
cies of sk1,v1 becomes fixed when the state is updated to
sk1,v2 . This is because when the transaction that outputs
sk2,v4 is executed, it reads sk1,v2 instead of sk1,v1 .

In LineageChain, for each state sk,v at its latest version,
we buffer a list of forward pointers to the entries whose de-
pendencies include sk,v. We refer to this list as Fsk,v , where

Fsk,v = {hash(Es′)|sk,v ∈ dep(s′)}

When the state is updated to sk,v′ for v′ > v, we store Fsk,v

at the entry of sk,v′ .

4.2 Efficient Query
The Merkle DAG structure supports efficient access to the

latest state version, since the state index at block b contains
pointers to all the latest versions at this block. To read the
latest version of s, one simply reads χb, follows the index to
the entry for s, and then reads the state value from the entry.
However, querying an arbitrary version in the DAG is ineffi-
cient, because one has to start at the DAG root and traverse
the edges towards the requested version. Supporting fast
version queries is important when a user wants to examine
the state history only from a specific version (for auditing,
for example). It is also important for provenance-dependent
smart contracts because such queries directly affect contract
execution time.

Deterministic Append-only Skip List. We propose to
build an index, called Deterministic Append-only Skip List
(or DASL), on top of a state DAG to support fast version
queries. The index has a skip list structure. It is designed
for blockchains, exploiting the fact that the blockchain is
append-only, and randomness is not well supported [6]. A
DASL has two distinct properties compared to a normal skip
list. First, it is append-only; that is, the index keys of the



struct Node {
Version v;
Value val;
List<Version> pre_versions;
List<Node*> pre_nodes;

}

Figure 6: A Node structure that captures a state
sk,v with value val
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Figure 7: (a) A DASL containing versions 1, 3, 5
and 10. The base b is 2. The intervals for L2 and
L3 are shown in blue lines. (b) The new DASL after
appending version 12 and 16. L4 is created when
appending version 16. L5 is created, then discarded.

appended entries, which are state versions, are strictly in-
creasing. Second, it is deterministic; that is, the index struc-
ture is uniquely determined by the values of the appended
items, unlike a stochastic skip list.

Definition 6. Let Vk = 〈v0, v1, ...〉 be the sequence of
version numbers of states with identifier k, in which vi < vj
for all i < j. A DASL index for k consists of N linked
lists L0, L1, .., LN−1. Let vij−1 and vij be the versions in the

(j− 1)th and jth node of list Li. Let b be the base number, a
system-wide parameter. The content of Li is constructed as
follows:

1) v0 ∈ Li

2) Given vij−1, vij is the smallest version in Vk such that:⌊
vij−1

bi

⌋
<

⌊
vij
bi

⌋
(5)

Figure 6 shows how DASL is stored with the state in a
data structure called Node. This structure (also referred
to as node) contains the state version and value. A node
belongs to multiple lists (or levels), hence it maintains a list
of pointers to other nodes in each level as well as a list of
the version numbers of pointed nodes. Both lists are of size
N , and the ith entry of a list points to the previous version
(or the previous node) of this node in level Li. For the same
key, the version number uniquely identifies the node, and
hence we use version numbers to refer to the corresponding
nodes.

We can view a list as consisting of continuous, non-
overlapping intervals of certain sizes. In particular, the jth

interval of Li represents the range Ri
j = [jbi, (j+1)bi). Only

the smallest version in Vk that falls in this range is included
in the list. Figure 7(a) gives an example of a DASL structure
with b = 2. It can be seen that when the version numbers
are sparsely distributed, the lists at lower levels are identi-
cal. In this case, b can be increased to create larger intervals

Algorithm 1: DASL Append

Input: version v and last node last
Output: previous versions and nodes

1 level=0; // list level

2 pre versions = [];
3 pre nodes = [];
4 finish = false ;
5 cur = last ;
6 while not finish do
7 l = cur->pre versions.size() ;
8 if l > 0 then
9 for j=level; j<l; ++j do

10 if cur->version / bj < v / bj then
11 pre versions.append(cur->version);
12 pre nodes.append(cur);

13 else
14 finish = true;
15 break;

16 if not finish then
17 cur = cur->pre versions[l-1] ;
18 level = l

19 else
/* We have reached the last level */

20 finish = true;

21 while cur->version / blevel < v / blevel do
22 ++level;
23 pre versions.append(cur->version);
24 pre nodes.append(cur);

25 return pre version, pre nodes;

in order to reduce the overlapping among lower-level lists.
A DASL and a skip list share two properties. First, if a

version number appears in Li, it also appears in Lj where
j < i. Second, with b = 2, suppose the last level that a ver-
sion appears in is i, then this version’s preceding neighbour
in Li appears in Lj where j > i. Given these properties,
a query for a version in the DASL is executed in the same
way as in the skip list. More specifically, the query traverses
a high-level list as much as possible, starting from the last
version in the last list. It moves to a lower level only if the
preceding version in the current list is strictly smaller than
the requested version. In DASL, the query for version vq
returns the largest version v ∈ Vk such that v ≤ vq (the
inequality occurs when vq does not exist). This result rep-
resents the value of the state which is visible at the time of
vq.

We now describe how a new node is appended to DASL.
The challenge is to determine the lists that should include
the new node. Algorithm 1 details the steps that find the
lists, and subsequently the previous versions, of the new
node. The key idea is to start from the last node in L0, and
then keep moving up the list level until the current node and
the new node belong to the same interval (line 9 - 18). Figure
7(b) shows the result of appending a node with version 12
to the original DASL. The algorithm starts at node 10 and
moves up to list L1 and L2. It stops at L3 because in this
level node 10 and 12 belong to the same interval, i.e., [8, 16).
Thus, the new node is appended to list L0 to L2. When the
algorithm reaches the last level and is still able to append,
it creates a new level where node 0 is the first entry and



repeats the process (line 21 - 24). In Figure 7(b), when
appending version 16, all existing lists can be used. The
algorithm then creates L4 with node 1 and appends node
16 to it. It also creates a new level L5, but subsequently
discards it because node 16 will not be appended since it
belongs to same interval of [0, 32) with node 1.

4.3 Discussion
Our new Merkle DAG can be easily integrated to existing

blockchain index structures. It meets the three requirements
listed in Section 2. In particular, existing Merkle index such
as MPT stores state values directly at the leaves, whereas
the Merkle DAG in LineageChain stores the entry hashes of
the latest state versions at the leaves. By adding one more
level of indirection, we preserve the three properties of the
index (tamper evidence, incremental update and snapshot),
while enhancing it with the ability to traverse the DAG to
extract fine-grained provenance information. Recall that the
state entry hash captures the entire evolution history of the
state. Since this hash is protected by the Merkle index for
tamper evidence, so is the state history. In other words, we
add integrity protection for provenance without any extra
cost to the index structure. For example, suppose a client
wants to read a specific version of a state, it first reads the
state entry hash at the latest block. This read operation
can be verified against tampering, as in existing blockchains.
Next, the client traverses the DAG from this hash to read
the required version. Because the DAG is tamper evident,
the integrity of the read version is guaranteed.

DASL and Merkle DAG integration. Adding DASL
to the Merkle DAG is straightforward. The node structure
(Figure 6) is stored in the state entry (Definition 3). The
node pointers are implemented as entry hashes. The Merkle
tree structure remains unchanged.

Speed vs. storage. As a skip list variant, DASL shares the
same lineage space complexity and logarithmic query time
complexity. Suppose there are v∗ number of versions and
the base of DASL is b. There are at most dlogb v

∗e levels

and the i-th level takes at most d v
∗

bi
e − 1 pointers. Suppose

the queried version is vq and the query distance d = v∗−vq,
the maximum number of hops in such query is capped at
2bdlogb de. This is because a typical query consists of two
stages: one going towards the lower levels, and the other
going towards the upper level. Each stage involves traversing
at most b hops on the same list before moving to the next
level, and there are at most dlogb de levels. It can be seen
that b determines the tradeoff between the space overhead
and query latency. Furthermore, DASL queries are more
efficient for more recent versions, i.e. d are small, which
is useful for smart contracts that rely on recent rather than
old versions. Finally, the performance of such recent-version
queries does not change as the state history grows.

5. PERFORMANCE EVALUATION
We implement LineageChain on top of Hyperledger Fabric

v1.3. More details of the implemenation can be found in [14].
Figure 8 shows the software stack, highlighting the changes
to the original Fabric’s stack. We completely replace Fab-
ric’s storage layer with our implementation of the Merkle
DAG and DASL index on top of ForkBase [15], a state-
of-the-art blockchain storage system with efficient support
for versioning. We instrument Fabric’s execution engine to

Storage Layer

ForkBase

          DAG Model with DASL Index

Execution Layer

Provenance

Consensus Layer (Unchanged)

Application

Provenance Helper 
Method Specification

Provenance 
Query Handler

Original 
Handler

Execution Engine
Provenane 

Engine
Accessed States

Figure 8: LineageChain’s software stack. The
original storage layer is replaced with the imple-
mentation that supports fine-grained provenance.
The original execution layer is instrumented with a
provenance capture engine. The application layer
contains the new helper method and provenance
query APIs. The consensus layer is unchanged.

record read and write sets during contract execution. At
the application layer we add a new helper method and three
provenance APIs. The execution engine invokes the helper
method after every successful contract execution.

5.1 Methodologies
We evaluate LineageChain against two baselines. In the

first baseline, called Fabric-plus, we directly store prove-
nance information to Hyperledger’s original storage and re-
lies on its internal index to support provenance query. In the
second baseline, called LineageChain-lite, we use ForkBase
for storing state versions. This baseline has no support for
multi-state dependency, and no DASL index. We use this
to understand the index’s performance.

We perform three sets of experiments. First, we eval-
uate the performance of LineageChain for provenance-
dependent blockchain applications. We compare it against
the approach that queries provenance offline before issuing
blockchain transactions. Second, we evaluate the perfor-
mance of provenance queries in LineageChain on a single
machine. For single-state version queries, we use the YCSB
benchmark provided in BLOCKBENCH [10] to populate
the blockchain states with key-value tuples. We then mea-
sure the latencies of two queries: one retrieves a state at a
specific block, and the other iterates over the state history.
For multi-state dependency tracking, we implement a con-
tract for a supply chain application. In this application, a
phone is assembled from intermediary components which are
made from other components or raw material. The supply
chain creates a DAG representing the derivation history of a
phone. The maximum depth of the DAG is 6. We generate
synthetic data for this contract, and examine the latency of
the operation that uses Backtrack to retrieve dependencies
of a given phone.

In the third set of experiments, we evaluate the impact
of provenance on the overall blockchain performance. For
this, we run the Smallbank benchmark on multiple nodes.
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Figure 9: Performance of (a) a provenance-
dependent blockchain application and (b) BFS
Traversal latency

We measure the overall throughput, and analyze the cost
breakdown to understand the overhead of provenance sup-
port.

Our experiments are run on a local clusters of 16 nodes.
Each node is equipped with E5-1650 3.5GHz CPU, 32GB
RAM, and 2TB hard disk. The nodes are connected via
1Gbps Ethernet.

5.2 Experimental Results

Provenance-dependent applications
We implement a simple provenance-dependent blockchain
application by modifying the YCSB benchmark in BLOCK-
BENCH such that the update operation depends on his-
torical values. With LineageChain, the contract has direct
access to the provenance information, and the client remains
the same as in the original YCSB. Without LineageChain,
the client is modified such that it reads B latest blocks be-
fore issuing transactions. B represents how far behind the
client is to the latest states.

Figure 9(a) shows transaction latency with varying B. It
can be seen that with LineageChain, the latency remains
almost constant because the client does not have to fetch
any block for the provenance query. In contrast, without
LineageChain, the latency increases linearly with B. This
demonstrates the performance gain brought byLineageChain
for having access to provenance information at runtime.

Provenance queries
We first create 500 key-value tuples and then continuously is-
sue update transactions until there are more than 10k blocks
in the ledger. Each block contains 500 transactions. We
then execute a query for the values of a key at different
block numbers. Figure 10(a) illustrates the query latency
with increasing block distance from the last block. It can be

seen that when the distance is small, LineageChain-lite has
the lowest latency. LineageChain-lite does not have DASL
index, and as a consequence for this query it has to scan
linearly from the latest version. As expected, the query
is fast when the requested version is very recent because
the number of read is small, but degrades the performance
quickly as the distance increases. In particular, when the
block distance reaches 128, the query is 4× slower than Lin-
eageChain. We observe that the query latency in Fabric-
plus is independent of the block distance, because the query
uses flat storage index directly. LineageChain outperforms
both LineageChain-lite and Fabric-plus. Because of DASL,
the query latency in LineageChain is low when the block
distance is small. When the block distance increases, the la-
tency increases only logarithmically, as opposed to linearly
in LineageChain-lite.

We repeat the experiment above while fixing the block
distance to 64 and varying the total number of blocks.
Figure 10(b) shows the results for the version query with
increasing number of blocks. It can be seen that the
query latency in both LineageChain and Fabric-plus re-
mains roughly the same. In other words, the performance
of version queries in these systems are independent of the
block numbers, which is due to the DAG data model that
tracks state versions. LineageChain outperforms Fabric-
plus, thanks to the index that reduces the number of entries
needed to be read.

Next, we measure the latency for the operation that scans
the entire version history of a given key. Figure 10(c) shows
the scan latency with increasing number of blocks. For
Fabric-plus, we first construct the key range and rely on the
storage iterator for scanning. LineageChain-lite and Lin-
eageChain both use ForkBase iterator, and therefore they
have the same performance. As the number of block in-
creases, the version history becomes longer which accounts
for the linear increase in latency in both systems. However,
LineageChain outperforms Fabric-plus by a constant factor.
We attribute this difference to ForkBase’s optimizations for
version tracking.

Finally, we evaluate the query performance with multi-
state dependency. We populate the blockchain states and
issue transactions that produce new phones. We perform
a breadth-first search to retrieve all the dependencies of a
phone. For this experiment, we only compare Fabric-plus
and LineageChain, because LineageChain-lite does not sup-
port multi-state dependencies. Figure 9(b) shows the per-
formance with varying search depths. The latency of both
Fabric-plus and LineageChain grow exponentially with in-
creasing depths, but LineageChain outperforms the baseline.
It is because the index in LineageChain directly captures the
dependencies, whereas each backtrack operation in Fabric-
plus requires traversing on the storage index. As the number
of queries increases with the search level, their performance
gap widens.

Performance Overhead
Finally, we evaluate LineageChain overhead on Hyperledger
Fabric v1.3. We use 16 nodes and vary the offer load by
increasing the client’s transaction rate. Figure 11 shows
the performance overhead. At saturation, LineageChain-lite
and LineageChain add less than 200ms in latency, compared
to the original Fabric that has no provenance support. In
contrast, Fabric-plus adds more than 1s. LineageChain-lite
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and LineageChain reach similar throughput as the original
Hyperledger, which is around 350tps. Fabric-plus peaks
at around 330tps. These results demonstrate that Lin-
eageChain’s overhead over the original Fabric is small.

6. CONCLUSIONS
In this paper, we presented LineageChain, a fine-grained,

secure and efficient provenance system for blockchains. The
system efficiently captures provenance information during
runtime, and exposes simple APIs to smart contracts, which
enables a new class of provenance-dependent blockchain ap-
plications. Provenance is stored securely, and queries are
efficient thanks to a novel skip list index. We implemented
LineageChain on top of Hyperledger Fabric and bench-
marked it against several baselines. The results show the
benefits of LineageChain in supporting rich, provenance-
dependent applications. They demonstrate that provenance
queries are efficient, and that LineageChain incurs small
runtime overhead.
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