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ABSTRACT

Recently, deep learning techniques have enjoyed success in various
multimedia applications, such as image classification and multi-
modal data analysis. Two key factors behind deep learning’s re-
markable achievement are the immense computing power and the
availability of massive training datasets, which enable us to train
large models to capture complex regularities of the data. There are
two challenges to overcome before deep learning can be widely
adopted in multimedia and other applications. One is usability,
namely the implementation of different models and training algo-
rithms must be done by non-experts without much effort. The other
is scalability, that is the deep learning system must be able to pro-
vision for a huge demand of computing resources for training large
models with massive datasets. To address these two challenges, in
this paper, we design a distributed deep learning platform called
SINGA which has an intuitive programming model and good scal-
ability. Our experience with developing and training deep learning
models for real-life multimedia applications in SINGA shows that
the platform is both usable and scalable.

Categories and Subject Descriptors

I.5.1 [Pattern Recognition]: Models—Neural Nets;
H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—Distributed System

General Terms

Design, Experimentation, Performance

Keywords

Deep learning; Multimedia application; Distributed training

1. INTRODUCTION
In recent years, we have witnessed successful adoptions of deep

learning in various multimedia applications, such as image and
video classification [14, 29], content-based image retrieval [24],
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music recommendation [27] and multi-modal data analysis [25,
9, 33]. Deep learning refers to a set of feature learning models
which consist of multiple layers. Different layers learn different
levels of abstractions (or features) of the raw input data [15]. It
has been regarded as a re-branding of neural networks developed
twenty years ago, since it inherits many key neural networks tech-
niques and algorithms. However, deep learning exploits the fact
that high-level abstractions are better at representing the data than
raw, hand-crafted features, thus achieving better performance in
learning. Its recent resurgence is mainly fuelled by higher than
ever accuracy obtained in image recognition [14]. Two key factors
behind deep learning’s remarkable achievement are the immense
computing power and the availability of massive training datasets,
which together enable us to train large models to capture the regu-
larities of data more efficiently than twenty years ago.

There are two challenges in bringing deep learning to wide adop-
tion in multimedia applications (and other applications for that mat-
ter). The first challenge is usability, namely the implementation
of different models and training algorithms must be done by non-
experts without much effort. Many deep learning models exist, and
different multimedia applications may use different models. For
instance, the deep convolution neural network (DCNN) is suitable
for image classification [14], recurrent neural network (RNN) for
language modelling [17], and deep auto-encoders for multi-modal
data analysis [25, 9, 33]. Most of these models are too complex and
costly to implement from scratch. An example is the GoogleNet
model [23] which comprises 22 layers of 10 different types. Train-
ing algorithms are also intricate in details. For instance the Back-
Propagation [16] algorithm is notoriously difficult to debug.

The second challenge is scalability, that is the deep learning sys-
tem must be able to provision for a huge demand of computing
resources for training large models with massive datasets. It has
been shown that larger training datasets and bigger models lead to
better accuracy [3, 15, 23]. However, memory requirement for a
deep learning model may exceed the memory capacity of a single
CPU or GPU. In addition, computational cost of training may be
unacceptably high for a single, commodity server. For instance,
it takes 10 days [30, 20] to train the DCNN [14] with 1.2 million
training images and 60 million parameters using one GPU 1.

Addressing both usability and scalability challenge requires a
distributed training platform that supports various deep learning
models, that comes with an intuitive programming model (simi-
lar to MapReduce [7], Spark [31] and epiC [12] in spirit), and that
is scalable. A recent deep learning system, called Caffe [11], ad-
dresses the first challenge but falls short at the second challenge (it

1According to the authors, with 2 GPUs, the training still took
about 6 days.
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Figure 1: Deep learning model categorization.

is not designed for distributed training). There are systems support-
ing distributed training [20, 30, 13], but they are model specific and
do not generalize well to other models. General distributed plat-
forms such as MapReduce and Spark achieve good scalability, but
they are designed for generic data processing. As a result, they lack
both the programming model and system optimizations specific to
deep learning, hindering the overall usability and scalability. Re-
cently, there are several specialized distributed platforms [6, 4, 1]
that exploit deep learning specific optimizations and hence are able
to achieve high training throughputs. However, they forgo usability
issues: the platforms are closed-source and no detail of their pro-
gramming models is given, rendering them unusable by multimedia
users.

In this paper, we present our effort in bringing deep learning to
the masses. In particular, we design and implement an open source
distributed deep learning platform, called SINGA2, which tackles
both usability and scalability challenge at the same time. SINGA
runs on commodity servers and provides a simple, intuitive pro-
gramming model which makes it accessible even to non-experts.
SINGA’s simplicity is driven by the observation that both the struc-
tures and training algorithms of deep learning models can be ex-
pressed using a simple abstraction: the neuron layer (or layer). In
SINGA, the user defines and combines layers to create the neural
network model, and the runtime takes care of issues pertaining to
the distributed training such as partitioning, synchronization and
communication. SINGA achieves scalability via its hybrid archi-
tecture design which consists of groups of workers (and servers).
Worker groups run asynchronously over different data partitions
(data parallelism) to improve the convergence rate, and workers
within a group run synchronously over one model replica (model

parallelism) to improve the efficiency of each iteration. SINGA en-
ables users to find an optimal cluster setting (e.g., group size) that
trades off between the convergence rate and efficiency to minimize
the training time to reach certain accuracy.

In summary, this paper makes the following contributions:

1. We present a distributed platform called SINGA which is
designed to train deep learning models for multimedia and
other applications. SINGA offers a simple and intuitive pro-
gramming model based on the layer abstraction.

2. We describe SINGA’s distributed architecture which runs on
commodity servers. The architecture achieves scalability via
hybrid parallelism. SINGA runtime handles the communica-
tion and synchronization between nodes transparently.

2http://singa.incubator.apache.org/,
http://www.comp.nus.edu.sg/~dbsystem/singa/
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Figure 2: Flow of stochastic gradient descent algorithm.

3. We demonstrate SINGA’s usability by describing the imple-
mentation of three multimedia applications: multi-modal re-
trieval, dimensionality reduction and language modelling.

4. We evaluate SINGA’s performance by comparing with other
open-source systems. The results show that SINGA is scal-
able and it outperforms other systems with respect to training
time.

The rest of this paper is organized as follows. Section 2 provides
the background on training deep learning models. An overview
of SINGA as a platform follows in Section 3. The programming
model is discussed in Section 4. Section 5 describes the implemen-
tations of multimedia applications in SINGA. We discuss SINGA
architecture in Section 6, and the model partitioning in Section 7.
The experimental study and related works are presented in Sec-
tion 8 and Section 9 respectively before we conclude in Section 10.

2. DEEP LEARNING
Deep learning is considered as a feature learning technique. One

deep learning model typically consists of multiple layers, each as-
sociated with a feature transformation function. After going through
all layers, raw input features (e.g., pixels of images) are converted
into high-level features that are used for tasks such as classification.

We group popular deep learning models into three categories
based on the connection types between layers, as shown in Fig-
ure 1. Category A consists of feed-forward models wherein the lay-
ers are directly connected. The extracted features at higher layers
are fed into prediction or classification tasks, e.g., image classifi-
cation [14]. Example models in this category include Multi-Layer
Perceptron (MLP), Convolution Neural Network (CNN) and Auto-
Encoders. Category B contains models whose layer connections
are undirected. These models are often used to pre-train other mod-
els [10], e.g., feed-forward models. Deep Belief Network (DBN),
Deep Boltzmann Machine (DBM) and Restricted Boltzmann Ma-
chine (RBM) are examples of such models. Category C comprises
models that have recurrent connections. These models are called
Recurrent Neutral Networks (RNN). They are widely used for mod-
elling sequential data in which prediction of the next position is af-
fected by previous positions. Language modelling [17] is a popular
application of RNN.

A deep learning model has to be trained to find the optimal pa-
rameters for the transformation functions. The training quality is
measured by a loss function (e.g., cross-entropy loss) for each spe-
cific task. Since the loss functions are usually non-linear and non-
convex, it is difficult to get closed-form solutions. A common ap-
proach is to use the Stochastic Gradient Descent (SGD) algorithm
shown in Figure 2. SGD initializes the parameters with random
values, and then iteratively refines them to reduce the loss based
on the computed gradients. There are three typical algorithms for
gradient computation corresponding to the three model categories
above: Back-Propagation (BP), Contrastive Divergence (CD) and
Back-Propagation Through Time (BPTT).
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(b) NeuralNet configuration.

Blob feature, gradient 

Param W, b 

 

Func ComputeFeature() { 

  feature = logistic(dot(srclayers[0].feature, W.data)+b.data);  

} 

Func ComputeGradient() { 

  Blob tmp = feature * (1-feature); 

  srclayers[0].gradient = tmp*dot(gradient, W.data.transpose()); 

  W.gradient = tmp*dot(src[0].data.transpose(), gradient); 

  b.gradient = tmp * gradient; 

} 

  

 
(c) Hidden layer implementation.

Figure 4: Running example using an MLP.
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Figure 3: SINGA overview.

3. OVERVIEW
SINGA trains deep learning models using SGD over the worker-

server architecture, as shown in Figure 3. Workers compute param-
eter gradients and servers perform parameter updates. To start a
training job, the user (or programmer) submits a job configuration
specifies the following four components:

• A NeuralNet describing the neural network (or neural net)
structure with the detailed layers and their connections. SINGA
comes with many built-in layers (Section 4.1.2), and users
can also implement their own layers.

• A TrainOneBatch algorithm for training the model. SINGA
implements different algorithms (Section 4.1.3) for all three
model categories.

• An Updater defining the protocol for updating parameters at
the servers (Section 4.1.4).

• A Cluster Topology specifying the distributed architecture of
workers and servers. SINGA’s architecture is flexible and can
support both synchronous and asynchronous training (Sec-
tion 6).

Given a job configuration, SINGA distributes the training tasks
over the cluster and coordinates the training. In each iteration,
every worker calls TrainOneBatch function to compute parameter
gradients. TrainOneBatch takes a NeuralNet object representing
the neural net, and it visits (part of) the model layers in an order
specific to the model category. The resultant gradients are sent to
the corresponding servers for updating. Workers then fetch the up-
dated parameters at the next iteration.

(a) Convert undirected connection. (b) Unroll recurrent connection. 

Figure 5: Unified representation of connections.

4. PROGRAMMING MODEL
This section describes SINGA’s programming model, particu-

larly the main components of a SINGA job. We use the MLP
model for image classification (Figure 4a) as a running example.
The model consists of an input layer, a hidden feature transforma-
tion layer and a Softmax output layer.

4.1 Programming Abstractions

4.1.1 NeuralNet

NeuralNet represents a neural net instance in SINGA. It com-
prises a set of unidirectionally connected layers. Properties and
connections of layers are specified by users. The NeuralNet object
is passed as an argument to the TrainOneBatch function.

Layer connections in NeuralNet are not represented explicitly;
instead each layer records its own source layers as specified by
users (Figure 4b). Recall that different model categories have dif-
ferent types of layer connections. However, they can be unified
using directed edges as follows. For feed-forward models, noth-
ing needs to be done as their connections are already directed. For
undirected models, users need to replace each edge with two di-
rected edges, as shown in Figure 5a. For recurrent models, users
can unroll a recurrent layer into directed-connecting sub-layers, as
shown in Figure 5b.

4.1.2 Layer

Layer is a core abstraction in SINGA. Different layer implemen-
tations perform different feature transformations to extract high-
level features. In every SGD iteration, all layers in the NeuralNet

are visited by the TrainOneBatch function during the process of
computing parameter gradients.

Figure 6 shows the definition of a base layer. It has two fields
and two functions. The srclayer field represents in-coming edges
to the layer. The feature field is a set of feature vectors (blob) com-
puted from the source layers. Some layers may require parameters
(e.g., a weight matrix) for their feature transformation functions. In
this case, these parameters are represented by a Param object con-
taining a data field for the parameter values and a gradient field for
the gradients. The ComputeFeature function evaluates the feature
blob by transforming features from the source layers. The Com-
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Figure 6: Layer abstraction.

puteGradient function computes the gradients associated with this
layer. These two functions are invoked by the TrainOneBatch func-
tion during training (Section 4.1.3).

SINGA provides a variety of built-in layers to help users build
their models. Table 1 lists the layer categories in SINGA. For ex-
ample, the data layer loads a mini-batch of records via the Com-

puteFeature function in each iteration. Users can also define their
own layers for their specific requirements. Figure 4c shows an ex-
ample of implementing the hidden layer h in the MLP. In this ex-
ample, besides the basic feature blob there is another gradient blob
storing the loss gradients with respect to the feature blob. There
are two Param objects: the weight matrix W and the bias vector
b. The ComputeFeature function rotates (multiply W ) , shifts (plus
b) the input features and then applies non-linear (logistic) transfor-
mations. The ComputeGradient function computes the layer’s pa-
rameter gradients, as well as the source layer’s gradients that will
be used for evaluating the source layer’s parameter gradients.

Table 1: Layer categories.

Category Description

Data layers Load records from file, database or HDFS.

Parser layers Parse features from records, e.g., pixels.

Neuron layers Feature transformation, e.g., convolution.

Loss layers Compute objective loss, e.g., cross-entropy loss.

Other layers Connect layers when neural net is partitioned.

4.1.3 TrainOneBatch

The TrainOneBatch function determines the sequence of invok-
ing ComputeFeature and ComputeGradient functions in all lay-
ers during each SGD iteration. SINGA implements two Train-

OneBatch algorithms for the three model categories. For feed-
forward and recurrent models, the BP algorithm is provided. For
undirected modes (e.g., RBM), the CD algorithm is provided. Users
simply select the corresponding algorithm in the job configuration.
Should there be specific requirements for the training workflow,
users can define their own TrainOneBatch function following a
template shown in Algorithm 1. Algorithm 1 implements the BP
algorithm which takes a NeuralNet object as input. The first loop
visits each layer and computes their features, and the second loop
visits each layer in the reverse order and computes parameter gra-
dients. More details on applying BP for RNN models (i.e., BPTT),
and the CD algorithm are available in [19].

4.1.4 Updater

Once the parameter gradients are computed, workers send these
values to servers to update the parameters. SINGA implements sev-
eral parameter updating protocols, such as AdaGrad[8]. Users can
also define their own updating protocols by overriding the Update

function.
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Figure 7: Structure of MDNN.

4.2 MLP Example
To train the MLP model shown in Figure 4a, the first step is to

prepare a training dataset and the corresponding layers, e.g., the
data layer and parser layer. Since all layers used by the MLP ex-
ample are provided as built-in layers in SINGA, users do not need
to implement them on their own. Next, the neural net should be
configured to connect all layers as shown in Figure 4b. After con-
figuring the TrainOneBatch function using BP and the updater us-
ing AdaGrad, users can submit the job for single node training. In
Section 6, we shall discuss how to configure SINGA for distributed
training.

Algorithm 1: BPTrainOneBatch

Input: net
1 foreach layer in net.layers do

2 Collect(layer.params()) // receive parameters

3 layer.ComputeFeature() // forward prop

4 foreach layer in reverse(net.layers) do

5 layer.ComputeGradient()// backward prop

6 Update(layer.params())// send gradients

5. MULTIMEDIA APPLICATIONS
This section demonstrates the use of SINGA for multimedia ap-

plications. We discuss the training of three deep learning models
for three different applications: a multi-modal deep neural network
(MDNN) for multi-modal retrieval, a RBM for dimensionality re-
duction, and a RNN for language modelling.

5.1 MDNN for Multi-modal Retrieval
Feed-forward models such as CNN and MLP are widely used

to learn high-level features in multimedia applications, especially
for image classification [14]. Here, we demonstrate the training of
the MDNN [26], which combines a CNN and a MLP. MDNN is
used for extracting features for the multi-modal retrieval task [25,
9, 22] that searches objects from different modalities. In MDNN,
the CNN [14] is used to extract image features, and the MLP is
used to extract text features. The training objective is to minimize
a weighted sum of (1) the error of predicting the labels of image
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Figure 8: Structure of RBM and deep auto-encoder.

and text documents using extracted features and (2) the distance
between features of relevant image and text objects. As a result,
the learned features of semantically relevant objects from differ-
ent modalities are similar. After training, multi-modal retrieval is
conducted using the learned features.

Figure 7 depicts the user configured neural net of MDNN model
in SINGA. We can see that there are two parallel paths: one for text
modality and the other for image modality. The data layer reads in
records of semantically relevant image-text pairs. The image layer,
text layer and label layer then parse the visual feature, text feature
(e.g., tags of the image) and labels respectively from the records.
The image path consists of layers from DCNN [14], e.g., the convo-
lution layer and pooling layer. The text path includes inner-product
(or fully connected) layer, logistic layer and loss layer. The Eu-
clidean loss layer measures the distance of the feature vectors ex-
tracted from these two paths. All except the parser layers, which are
application specific, are SINGA’s built-in layers. Since this model
is a feed-forward model, the BP algorithm should be selected for
the TrainOneBatch function.

5.2 RBM for Dimensionality Reduction
RBM is often employed to pre-train parameters for other mod-

els. In this example application, we use RBM to pre-train a deep
auto-encoder [10] for dimensionality reduction. Multimedia ap-
plications typically operate with high-dimensional feature vectors,
which demands large computing resources. Dimensionality reduc-
tion techniques, such as Principal Component Analysis (PCA), are
commonly applied in the pre-processing step. Deep auto-encoder
is reported [10] to have better performance than PCA.

Generally, the deep auto-encoder is trained to reconstruct the in-
put feature using the feature of the top layer. Hinton et al. [10] use
RBM to pre-train the parameters for each layer, and fine-tune them
to minimize the reconstruction error. Figure 8 shows the model
structure (with parser layer and data layer omitted) in SINGA. The
parameters trained from the first RBM (RBM 1) in step 1 are ported
(through checkpoint) into step 2 wherein the extracted features are
used to train the next model (RBM 2). Once pre-training is finished,
the deep auto-encoder is unfolded for fine-tuning. SINGA applies
the contrastive divergence (CD) algorithm for training RBM and
back-propagation (BP) algorithm for fine-tuning the deep auto-encoder.

5.3 RNN for Language Modelling
RNN models are good at modelling sequential data (e.g., mu-

sic, videos and text sentences) in multimedia applications. We use
SINGA to train the RNN model [17] for language modelling, which
can then be exploited to learn word embedding, generate sentences,
etc.

The model structure (i.e., NeuralNet) of the RNN is configured
as shown in Figure 9. This model is trained to predict the next word
in a sentence given its previous words. Each sentence is parsed as a
sequence of word indices in the parser layer. The embedding layer
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Figure 9: Structure of RNN for language modelling.
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Figure 10: Logical architecture of SINGA.

outputs the feature vector of each word. The hidden feature of each
word is computed from the word feature and the hidden feature of
the previous word. The label layer passes the word indices into the
loss layer which calculates the prediction error. In each iteration,
the BP algorithm forwards and backwards through all layers. The
ComputeFeature function of the recurrent layer evaluates all un-
rolled features in time-order, while the ComputeGradient function
computes the gradients in a reverse time-order. Consequently, the
training is conducted as the BPTT algorithm.

6. DISTRIBUTED TRAINING
In this section, we introduce SINGA’s architecture, and discuss

how it supports a variety of distributed training frameworks.

6.1 System Architecture
Figure 10 shows the logical architecture. The architecture con-

sists of multiple server groups and worker groups, and each worker
group communicates with only one server group. Each server group
maintains a complete replica of the model parameters, and is re-
sponsible for handling requests (e.g., get or update parameters)
from worker groups. Neighboring server groups synchronize their
parameters periodically. Typically, a server group contains a num-
ber of servers, and each server manages a partition of model param-
eters. Each worker group trains a complete model replica against
a partition of the training dataset (i.e. data parallelism), and is re-
sponsible for computing parameter gradients. All worker groups
run and communicate with the corresponding server groups asyn-
chronously. However, inside each worker group, the workers syn-
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Figure 11: Training frameworks in SINGA.

chronously compute parameter updates for the model replica. There
are two strategies to distribute the training workload among work-
ers within a group: by model or by data. More specifically, each
worker can compute a subset of parameters against all data par-
titioned to the group (i.e., model parallelism), or all parameters
against a subset of data (i.e., data parallelism). SINGA also sup-
ports hybrid parallelism (Section 7).

In SINGA, servers and workers are execution units running in
separate threads. They communicate through messages. Every
process runs the main thread as a stub that aggregates local mes-
sages and forwards them to corresponding (remote) receivers. If
two units manage the same parameter partition and they are in the
same process, it is possible for them to leverage the shared memory
to reduce communication cost, as discussed later in Section 6.3.

6.2 Training Frameworks
In SINGA, worker groups run asynchronously and workers within

one group run synchronously. Users can leverage this general de-
sign to run both synchronous and asynchronous training frame-
works. In specific, users control the training framework by config-
uring the cluster topology, i.e., the number of worker (resp. server)
groups and worker (resp. server) group size. In the following para-
graphs, we will discuss the realization of popular distributed train-
ing frameworks in SINGA, including Sandblaster and Downpour
from Google’s DistBelief system [6], AllReduce in Baidu’s Deep-
Image system [28] and the distributed Hogwild implementation in
Caffe [11].

6.2.1 Synchronous Training

A synchronous framework is realized by configuring the cluster
topology with only one worker group and one server group. The
training convergence rate is the same as that on a single node.

Figure 11a shows the Sandblaster framework implemented in
SINGA. A single server group is configured to handle all requests
from workers. A worker computes on its partition of the model,
and only communicates with servers handling related parameters.
Figure 11b shows the AllReduce framework in SINGA, in which
we bind each worker with a server on the same node, so that each
node is responsible for maintaining a partition of parameters and
collecting updates from all other nodes.

The synchronous training is typically limited to a small or medium
size cluster , e.g. fewer than 100 nodes. When the cluster size is
large, the synchronization delay is likely to be larger than the com-
putation time. Consequently, the training cannot scale well.

6.2.2 Asynchronous Training

An asynchronous framework is implemented by configuring the
cluster topology with more than one worker group. The training
convergence is likely to be different from single-node training, be-
cause multiple worker groups are working on different versions of
parameters [32].

Figure 11c shows the Downpour [6] framework implemented in
SINGA. Similar to the synchronous Sandblaster, all workers send
requests to a global server group. We divide workers into several
worker groups, each running independently and working on pa-
rameters from the last update response. Figure 11d shows the dis-
tributed Hogwild framework, in which each node contains a com-
plete server group and a complete worker group. Parameter updates
are done locally, so that communication cost during each training
step is minimized. However, the server group must periodically
synchronize with neighboring groups to improve the training con-
vergence. The topology (connections) of server groups can be cus-
tomized by users (the default topology is all-to-all connection).

Asynchronous training can improve the convergence rate to some
degree. But the improvement typically decreases when there are
more and more model replicas. A more scalable training frame-
work should combine both the synchronous and asynchronous train-
ing. In SINGA, users can run a hybrid training framework by
launching multiple worker groups that run asynchronously to im-
prove the convergence rate. Within each worker group, multiple
workers run synchronously to accelerate one training iteration. Given
a fixed budget (e.g., number of nodes in a cluster), there lies the op-
portunity to find one optimal hybrid training framework that trades
off between the convergence rate and efficiency to achieve the min-
imal training time.

6.3 Parameter Sharing
In SINGA, each server group and worker group have a ParamShard

object representing a complete model replica. If workers and servers
resident in the same process, their ParamShard (partitions) can
be configured to share the same memory space. In this case, the
messages transferred between different execution units just contain
pointers to the data, which reduces the communication cost. For
other cases, the messages have to include the parameter values (or
gradients).

7. NEURAL NETWORK PARTITIONING
In this section, we describe how SINGA partitions the neural net

to support data parallelism, model parallelism, and hybrid paral-
lelism within one worker group.

SINGA partitions a neural net at the granularity of layer. Every
layer’s feature blob is considered a matrix whose rows are feature
vectors. Thus, the layer can be split on two dimensions. Partition-
ing on dimension 0 (also called batch dimension) slices the feature
matrix by rows. For instance, if the mini-batch size is 256 and the
layer is partitioned into 2 sub-layers, each sub-layer would have
128 feature vectors in its feature blob. Partitioning on this dimen-
sion has no effect on the parameters, as every Param object is repli-
cated in the sub-layers. Partitioning on dimension 1 (also called
feature dimension) slices the feature matrix by columns. For ex-
ample, suppose the original feature vector has 50 units, after parti-
tioning into 2 sub-layers, each sub-layer would have 25 units. This
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Figure 12: Partition the hidden layer in Figure 4a.

partitioning may result in Param object being split, as shown in
Figure 12. Both the bias vector and weight matrix are partitioned
into two sub-layers (workers).

SINGA partitions the layers when creating the NeuralNet in-
stance. Each sub-layer is assigned a location ID, based on which
it is dispatched to one worker. Some connection layers are auto-
matically inserted to connect the sub-layers. For instance, if two
connected sub-layers are located at two different workers, then a
pair of bridge layers is inserted to transfer the feature (and gradi-
ent) blob between them. When two layers are partitioned on differ-
ent dimensions, a concatenation layer which concatenates feature
rows (or columns) and a slice layer which slices feature rows (or
columns) would be inserted. These connection layers help making
the network communication and synchronization transparent to the
users.

Users can specify the partition decision in two places. The first
is in the neural net configuration. A partition_dim field determines
the partition dimension for every layer. The second place is in the
layer configuration which overwrites the partition_dim in the neu-
ral net configuration. Advanced users can also directly specify the
location ID for each layer to control the dispatching of layers to
workers. For the MDNN model in Figure 7, users can configure
the layers in the image path with location ID 0 and the layers in the
text path with location ID 1, making the two paths run in parallel.

When every worker computes the gradients of the entire model
parameters, we refer to this process as data parallelism. When dif-
ferent workers compute the gradients of different parameters, we
call this process model parallelism. Particularly, partitioning on di-
mension 0 results in data parallelism, while partitioning on dimen-
sion 1 results in model parallelism. SINGA supports hybrid par-
allelism wherein some workers compute the gradients of the same
subset of model parameters while other workers compute on dif-
ferent model parameters. For example, to implement the hybrid
parallelism in [13] for the CNN model, we set partition_dim = 0

for lower layers and partition_dim = 1 for higher layers.

8. EXPERIMENTAL STUDY
We evaluated SINGA with real-life multimedia applications. Specif-

ically, we used SINGA to train the models discussed in Section 5,
which requires little effort since SINGA comes with many built-in
layers and algorithms. We then examined SINGA’s training per-
formance in terms of efficiency and scalability. SINGA is more
efficient than three other open-source systems, and it is scalable for
both synchronous and asynchronous training.

8.1 Applications of SINGA
We implemented the multi-modal retrieval and dimensionality

reduction applications using SINGA. Due to space constraint, we
omit the experiment for language modelling.

Multi-modal Retrieval. We trained the MDNN model for multi-
modal retrieval application as described in Section 5.1. We used
NUS-WIDE dataset [2], which has roughly 180,000 images af-
ter removing images without tags or from non-popular categories.

(a) Bottom RBM weight matrix. (b) Top layer features.

Figure 14: Visualization of the weight matrix in the bottom RBM
and top layer features in the deep auto-encoder.

Each image is associated with several tags. We used Word2Vec [18]
to learn a word embedding for each tag and aggregated the embed-
dings of all the tags from the same image as a text feature. Figure 13
shows sample search results. We first used images as queries to re-
trieve similar images and text documents. It can be seen that image
results are more relevant to the queries. For instance, the first image
result of the first query is relevant because both images are about
architecture, but the text results are not very relevant. This can be
attributed to the large semantic gap between different modalities,
making it difficult to locate semantically relevant objects in the la-
tent (representation) space.

Dimensionality Reduction. We trained RBM models to initial-
ize the deep auto-encoder for dimensionality reduction as discussed
in Section 5.2. We used the MNIST3 dataset consisting of 70,000
images of hand-written digits. Following the configuration used in
[10], we set the size of each layer as 784→1000→500→250→2.
Figure 14a visualizes sample columns of the weight matrix of the
bottom (first) RBM. We can see that Gabor-like filters are learned.
Figure 14b depicts the features extracted from the top-layer of the
auto-encoder, wherein one point represents one image. Different
colors represent different digits. We can see that most images are
well clustered according to the ground truth, except for images of
digit ’4’ and ’9’ (central part) which have some overlap (in practice,
handwritten ’4’ and ’9’ digits are fairly similar in shape).

8.2 Training Performance Evaluation
This section presents SINGA’s performance in terms of its effi-

ciency and scalability for distributed training. We evaluated both
synchronous and asynchronous training frameworks on a single
multi-core node and a commodity cluster.

8.2.1 Methodologies

The deep convolution neural network4 for image classification
was used as the training model for benchmarking. The training was
conducted over the CIFAR10 dataset5 which has 50,000 training
images and 10,000 test images.

For the single-node setting, we used a 24-core server with 500GB
memory. The 24 cores are distributed into 4 NUMA nodes (Intel
Xeon 7540). Hyper-threading is turned on. For the multi-node set-
ting, we used a 32-node cluster. Each cluster node is equipped with
a quad-core Intel Xeon 3.1 GHz CPU and 8GB memory. The clus-
ter nodes are connected by a 1Gbps switch.

SINGA uses Mshadow6 and OpenBlas7 to accelerate linear al-
gebra operations (e.g., matrix multiplication). Caffe’s im2col and
pooling code [11] is adopted to accelerate the convolution and pool-

3http://yann.lecun.com/exdb/mnist/
4https://code.google.com/p/cuda-convnet/
5http://www.cs.toronto.edu/ kriz/cifar.html
6https://github.com/dmlc/mshadow
7http://www.openblas.net/
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Figure 13: Multi-Modal Retrieval. Top 5 similar text documents (one line per document) and images are displayed.
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Figure 15: Synchronous training.

ing operations. We compiled SINGA using GCC with optimization
level O2.

8.2.2 Synchronous training

We compared SINGA with CXXNET8 and Caffe [11]. Both sys-
tems were compiled using their default optimization levels: O3 for
CXXNET and O2 for Caffe. Since synchronous training has the
same convergence rate as sequential SGD, all systems would run
the same number of iterations (i.e., mini-batches) to converge. The
difference of total training time between different systems lies in
the efficiency of a single iteration. Thus, the efficiency comparison
was conducted against the training time for one iteration. For each
system, we ran 100 iterations and averaged the time over 50 itera-
tions, i.e., from 30th to 80th, to avoid the influence of starting and
ending phases.

8https://github.com/dmlc/cxxnet

We first conducted the training on the 24-core single node with
256 images per mini-batch. All three systems use OpenBlas to ac-
celerate matrix multiplications. We varied the number of threads
used by OpenBlas as shown in Figure 15a. SINGA-dist denotes
the running of SINGA by setting the number of OpenBlas threads
to 19; SINGA-dist was configured with the cluster topology as one
server group with four servers and one worker group with vary-
ing number of worker threads (Figure 15a). Consequently, SINGA
ran as the in-memory Sandblaster framework. We can observe that
SINGA-dist has the best overall performance: it is the fastest for
each number of threads, and it is also the most scalable. All sys-
tems using multi-threading OpenBlas have poor scalability. This is
because OpenBlas has little awareness of the application, and hence
cannot be fully optimized. For example, it may only parallelize op-
erations such large matrix multiplications. In contrast, SINGA-dist
partitions the 256 images in one mini-batch equally. Workers run
in parallel for the whole iteration, instead of only for some ma-
trix multiplication operations. Another limitation of OpenBlas, as
shown in Figure 15a, is that when the number of threads is larger
than 8, the overhead caused by cross-CPU memory access starts to
affect the training performance.

Next, we performed experiments on a 32-node cluster comparing
with Petuum [5]. Petuum is a distributed machine learning frame-
work. It runs Caffe as an application to train deep learning models.
It implements a parameter server to conduct updates from workers
(clients), while all workers run synchronously. We used a larger
mini-batch size (512) and disabled OpenBlas multi-threading. We
configured the cluster topology to realize the AllReduce framework
for SINGA. Specifically, there is one worker group and one server

9OPENBLAS_NUM_THREADS=1
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Figure 16: Asynchronous training.

group, and in each node there are 4 workers and 1 server. We varied
the size of worker group from 4 to 128, and the server group size
from 1 to 32. Figure 15b shows that SINGA achieves almost linear
scalability. Petuum scales up to 64 workers, but becomes slower
when 128 workers are launched. It might be caused by the commu-
nication overhead in the parameter server as well as the synchro-
nization delays among workers. One drawback of the synchronous
distributed training is that it cannot scale to too many nodes because
the mini-batch size is typically fewer than 1024. Consequently, we
cannot launch more than 1024 workers (nodes); otherwise some
workers will not be assigned any image to train.

8.2.3 Asynchronous training

Both SINGA and Caffe support in-memory asynchronous train-
ing. Particularly, Caffe implements the in-memory Hogwild [21]
framework, and SINGA implements the in-memory Downpour frame-
work. Their main difference is that parameter updates are done by
workers in Caffe and by a single server (thread) in SINGA. Fig-
ure 16a and Figure 16b show the model accuracy versus training
time for Caffe and SINGA with different numbers of worker groups
(i.e. model replicas). Every worker processes 16 images per itera-
tion, for a total of 60,000 iterations. It can be seen that SINGA is
faster than Caffe. Both systems scale well as the number of workers
increases, with respect to (1) the time to reach the same accuracy
and (2) the final converged accuracy. Another observation is that
the training takes longer with more workers. This is because the
context-switching overhead increases when there are more threads
(workers). Finally, the performance difference becomes smaller
when the cluster size (i.e., the number of model replicas) reaches
16. This implies that there would be little benefit in having too
many model replicas. Thus, we fixed the number of model repli-
cas (i.e., worker groups) to 32 in the following experiments for the
distributed asynchronous training.

For the multi-node setting, we still used mini-batch of 16 images
per worker group and 60,000 training iterations. The distributed
Downpour framework was configured: there were 32 worker groups,
32 servers per server group (one server thread per node). We varied
the number of workers within one group as shown in Figure 16c.
We can see that with more workers, the training is faster, since
each worker processes fewer images. However, the training is not
as stable as in the single-node setting. This may be attributed to
the delay of parameter synchronization between workers. Whereas
in single-node training, each worker’s update is immediately visi-
ble to other workers as they share the memory. The final stage of
training (i.e., last few points of each line) is stable because there is
only one worker group running during that time, namely the testing
group. We note that using a warm-up stage, which trains the model

using a single worker group at the beginning, may help to stabilize
the training as reported in Google’s DistBelief system [6].

9. RELATED WORK
Due to its outstanding capabilities in capturing complex regu-

larities of multimedia data (e.g., image and video), deep learning
techniques are being adopted by more and more multimedia ap-
plications. It has been shown that deep learning models can learn
high-level semantic features from raw image data [15]. Based on
this, Ji and et al. [24] apply deep learning techniques to learn high-
level image features to bridge the ‘semantic gap’ that exists be-
tween the high-level semantic concepts perceived by human and
low-level image pixels captured by machines. The learned features
are effective for content-based image retrieval. Zhang et al. [33]
also exploit deep learning to learn the high-level, shared represen-
tations across textual and visual modalities. The learned repre-
sentations encode strong visual and semantic evidence for visual
attributes discovery. Other applications of deep learning include
language modelling [17] , and multi-modal retrieval [26, 25], etc.
(Section 5).

Different applications use different deep learning models. It is
essential to provide a general deep learning system for non-experts
to implement their models without much effort. In addition, deep
learning training requires a huge amount of computing resources to
process large scale multimedia data. Hence, a general distributed
deep learning training system is essential. Recently, some dis-
tributed training approaches have been proposed, for examples [20,
30, 13]. They are specifically optimized for training the AlexNet
model [14], thus cannot generalize well to other models. The gen-
eral distributed deep learning platforms [6, 4, 1] exploit deep learn-
ing specific optimizations and hence are able to achieve a high
training throughput. However, they are closed-source and there are
no details of the programming model, rendering them unusable to
developers.

10. CONCLUSION
In this paper, we proposed a distributed deep learning platform,

called SINGA, for supporting multimedia applications. SINGA of-
fers a simple and intuitive programming model, making it accessi-
ble to even non-experts. SINGA is extensible and able to support
a wide range of multimedia applications requiring different deep
learning models. The flexible training architecture gives the user
the chance to balance the trade-off between the training efficiency
and convergence rate. We demonstrated the use of SINGA for rep-
resentative multimedia applications, and showed that the platform
is both usable and scalable.
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