
SINGA: A Distributed Deep Learning Platform

Beng Chin Ooi†, Kian-Lee Tan†, Sheng Wang†, Wei Wang†, Qingchao Cai†,
Gang Chen§, Jinyang Gao†, Zhaojing Luo†, Anthony K. H. Tung†, Yuan Wang‡, Zhongle Xie†,

Meihui Zhang¶, Kaiping Zheng†

†National University of Singapore, §Zhejiang University, China, ‡NetEase, Inc., China,
¶ Singapore University of Technology and Design

†{ooibc, tankl, wangsh, wangwei, caiqc, jinyang.gao, zhaojing, atung, zhongle,
kaiping}@comp.nus.edu.sg, §cg@zju.edu.cn,

‡wangyuan@corp.netease.com, ¶meihui_zhang@sutd.edu.sg

ABSTRACT
Deep learning has shown outstanding performance in var-
ious machine learning tasks. However, the deep complex
model structure and massive training data make it expen-
sive to train. In this paper, we present a distributed deep
learning system, called SINGA, for training big models over
large datasets. An intuitive programming model based on
the layer abstraction is provided, which supports a variety
of popular deep learning models. SINGA architecture sup-
ports both synchronous and asynchronous training frame-
works. Hybrid training frameworks can also be customized
to achieve good scalability. SINGA provides different neural
net partitioning schemes for training large models. SINGA
is an Apache Incubator project released under Apache Li-
cense 2.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—Neural Nets; H.3.4
[Information Storage and Retrieval]: Systems and Soft-
ware—Distributed System

General Terms
Design, Experimentation, Performance

Keywords
Deep learning; Distributed training

1. INTRODUCTION
There has been a surge of interests, from both industry

and academia, in deep learning. On one hand, deep learning
has been shown to achieve (and even surpass) the accuracy of
state-of-the-art algorithms in a variety of tasks, e.g., image
classification [4] and multi-modal data analysis [9, 10]. On
the other hand, to improve runtime performance, distributed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MM’15, October 26–30, 2015, Brisbane, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3459-4/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2733373.2807410 .

training systems have also been proposed in recent years,
e.g., Google’s DistBelief [1], Torch used by Facebook [7],
Baidu’s DeepImage [11], Caffe [3] and Purine [6]. These
studies showed that deep learning models can benefit from
deeper structures and larger training datasets.

However, there are two major challenges to develop a dis-
tributed deep learning system. First, deep learning models
have a large number of parameters, which would incur huge
amount of communication overhead to synchronize nodes
when these are updated. Consequently, the scalability in
terms of training time to reach certain accuracy is a chal-
lenge. Second, it is non-trivial for programmers to develop
and train models with deep and complex model structures.
Distributed training further increases the burden of pro-
grammers, e.g., data and model partitioning, and network
communication. This problem is exacerbated if data scien-
tists with little deep learning background are expected to
work with deep learning models.

In this paper, we present SINGA1, a general distributed
deep learning platform. SINGA is designed with an intu-
itive programming model that supports a variety of popular
deep learning models, namely feed-forward models includ-
ing convolution neural networks (CNN), energy models like
restricted Boltzmann machine (RBM), and recurrent neu-
ral networks (RNN). Many built-in layers are provided for
training popular deep learning models. SINGA architecture
is sufficiently flexible to run synchronous, asynchronous and
hybrid training frameworks. Synchronous training improves
the efficiency of one iteration, and asynchronous training
improves the convergence rate. Given a fixed budget (e.g.,
cluster size), users can run a hybrid framework that max-
imizes the scalability by trading off between the efficiency
and convergence rate. SINGA also supports different neural
net partitioning schemes to parallelize the training of large
models, namely partitioning on batch dimension, feature di-
mension or hybrid partitioning. GPU support and integra-
tion with cluster management software like Mesos will be
added in near future.

2. OVERVIEW
The stochastic gradient descent (SGD) algorithm is used

in SINGA to train parameters of deep learning models. The
training workload is distributed over worker and server units
as shown in Figure 1. In each iteration, every worker calls
TrainOneBatch function to compute parameter gradients.

1http://www.comp.nus.edu.sg/~dbsystem/singa

Computing Nodes

Ethernet

Linux OS

Memory Blobs

Layer

NeuralNet

Param

Message Passing

TrainO
neBatc
h

User Interface (e.g. Python Binding)

Updat
er

Message Passing

Worker

Stub

Server

Parameters

Layer

NeuralNet/Layer

TrainOneBatch
Updater

Figure 1: SINGA software stack.

TrainOneBatch takes a NeuralNet object representing the
neural net, and visits layers of the NeuralNet in certain or-
der. The resultant gradients are sent to the local stub that
aggregates the requests and forwards them to corresponding
servers for updating. Servers reply to workers with the up-
dated parameters for the next iteration. To start a training
job, users submit a job configuration consisting of four com-
ponents: 1) a NeuralNet describing the neural net structure
with the detailed layer setting and their connections (Sec-
tion 3.1); 2) a TrainOneBatch algorithm which is tailored
for different model categories (Section 3.2); 3) an Updater
defining the protocol for updating parameters at the server
side (Section 3.3); 4) a Cluster Topology specifying the dis-
tributed architecture (Section 4) of workers and servers.

3. PROGRAMMING MODEL
In this section, we describe the first three components

of the job configuration. SINGA has provided many built-
in implementations for these components. They are also
modular and extensible for customization. Users can submit
their training job on a single node after configuring these
three parts. To conduct distributed training, users need to
set the cluster topology as discussed in Section 4.

3.1 NeuralNet
Neural net representation. SINGA represents a neu-

ral net using a data structure called NeuralNet, which con-
sists of a set of unidirectionally connected layers. Users con-
figure the NeuralNet by listing all layers of the neural net
and specifying each layer’s source layer names. This rep-
resentation is natural for feed-forward models, e.g., CNN
and MLP. For energy models including RBM, DBM, etc.,
their connections are undirected. To represent these models
using NeuralNet, users can simply replace each connection
with two directed connections. In other words, for each pair
of connected layers, their source layer field should include
each other’s name. For recurrent neural networks, users can
remove the recurrent connections by unrolling the recurrent
layer. For example, in Figure 2, the original layer is unrolled
into a new layer with 4 layers managed inside the new layer.
In this way, the model is like a normal feed-forward model,
thus can be configured similarly. When SINGA creates the
NeuralNet instance, it also partitions the original neural net
according to user’s configuration to support parallel training
of large models. Partitioning strategies include:

1. Partitioning all layers into different subsets.

(a): convert RBM to directed connections (b): unroll RNN (remove cyclic connections)
Figure 2: Unroll a recurrent layer into 4 (internal) layers.

Layer:
Vector<Layer> srclayer
Blob feature
Func ComputeFeature(phase)
Func ComputeGradient()

Param:
Blob data, gradient

Figure 3: Base layer class.

2. Partitioning each singe layer into sub-layers on batch
dimension.

3. Partitioning each singe layer into sub-layers on feature
dimension.

4. Hybrid partitioning of strategy 1, 2 and 3.

More details on partitioning are discussed in [8].
Layer. Layers of a neural net are represented by instances

of Layer classes. Figure 3 shows the base layer class which
includes two fields and two functions. The srclayer vec-
tor records all source layers. The feature blob consists of
a set of feature vectors, e.g., one vector per image, com-
puted from the source layers. For a recurrent layer in RNN,
the feature blob contains one vector per internal layer. If
a layer has parameters, these parameters are declared using
type Param which consists of a data and a gradient blob
for parameter values and gradients respectively. The Com-
puteFeature function evaluates the feature blob by trans-
forming (e.g. convolution and pooling) features from the
source layers. ComputeGradient computes the gradients of
parameters associated with this layer. These two functions
are invoked by the TrainOneBatch function during training
(Section 3.2). SINGA has provided many built-in layers,
which can be used directly to create neural nets. Users can
also extend the layer class to implement their own feature
transformation logics as long as the two base functions are
overridden to be consistent with the TrainOneBatch func-
tion. Besides the common fields like name and type, layer
configuration contains some specific fields as well, e.g. file
path for data layers. The layers in SINGA are categorized
as follows according to their functionalities,

• Data layers for loading records (e.g., images) from
disk, HDFS or network into memory.

• Parser layers for parsing features, labels, etc. from
records.

• Neuron layers for feature transformation, e.g., convo-
lution, pooling, dropout, etc.

• Loss layers for measuring the training objective loss,
e.g., cross entropy-loss or Euclidean loss.

• Output layers for outputting the prediction results (e.g.,
probabilities of each category) onto disk or network.

• Connection layers for connecting layers when the neu-
ral net is partitioned.

3.2 TrainOneBatch
For each SGD iteration, every worker calls the Train-

OneBatch function to compute gradients of parameters asso-
ciated with local layers (i.e., layers dispatched to it). SINGA
has implemented two algorithms for the TrainOneBatch func-
tion. Users select the corresponding algorithm for their
model in the configuration. Algorithm 1 shows the back-
propagation (BP) algorithm [5] for feed-forward models and
recurrent neural networks. It forwards (Line 1-3) features
through all local layers and backwards gradients in the re-
verse order (Line 4-6). Since RNN models are unrolled into
feed-forward models (ComputeFeature and ComputeGradi-
ent functions compute for all internal layers), Algorithm 1
runs as the back-propagation through time (BPTT) algo-
rithm for them. Algorithm 2 illustrates the contrastive di-
vergence (CD) algorithm [2] for energy models. Parameter
gradients are computed (Line 7-9) after the positive phase
(Line 1-3) and negative phase (Line 4-6). kCD controls the
number of Gibbs sampling iterations in the negative phase.
In both algorithms, the Collect function is blocked until the
parameters are fetched from servers. The Update function
returns immediately after sending the gradients.

Algorithm 1: BPTrainOneBatch

Input: net
1 foreach layer in net.local layers do
2 Collect(layer.params()) // receive parameters

3 layer.ComputeFeature(kFprop) // forward prop

4 foreach layer in reverse(net.local layers) do
5 layer.ComputeGradient()// backward prop

6 Update(layer.params())// send gradients

3.3 Updater
SINGA comes with many popular protocols for updating

parameter values based on gradients. If users want to im-
plement their own updating protocols, they can extend the
base Updater to override the Update function.

4. DISTRIBUTED TRAINING

4.1 System Architecture
The logical system architecture is shown in Fig. 4. There

are two types of execution units, namely workers and servers.
Workers compute the parameter updates (e.g., the gradi-
ents), while servers maintain up-to-date parameters and han-
dle get/update requests from workers. In each iteration,
workers collect fresh parameters from servers and issue up-
date requests to servers after the computation. A number
of workers/servers are logically grouped as a worker/server
group. A worker group loads a subset of the training data
and computes the parameter gradients for a complete model
replica, denoted as ParamShard. SINGA provides different
strategies (i.e., data parallelism, model parallelism and hy-
brid parallelism) to distribute the workload within a worker
group. Workers in the same group run synchronously, while

Worker

Pa
ra

m
 S

h
ar

d

Worker Group

Worker

Worker

Param Shard

Server Group

Server Server
Worker

Pa
ra

m
 S

h
ar

d

Worker Group

Worker

Worker

Server Group

Worker Group Worker Group

Server Group

Worker Group Worker Group

Figure 4: Logical architecture of SINGA.

different worker groups run asynchronously. A server group
maintains one replica of the full model parameters (i.e., a
ParamShard), handling requests from multiple worker groups.
Neighboring server groups synchronize their parameters pe-
riodically.

Algorithm 2: CDTrainOneBatch

Input: net, kCD
1 foreach layer in net.local layers do
2 Collect(layer.params()) // receive parameters

3 layer.ComputeFeature(kPostive)// pos phase

4 foreach k in 1...kCD do
5 foreach layer in net.local layers do
6 layer.ComputeFeature(kNegative) // neg phase

7 foreach layer in net.local layers do
8 layer.ComputeGradient();
9 Update(layer.params())// send gradients

4.2 System Implementation
In SINGA implementation, each execution unit (worker

or server) is a thread. As a process may contain multiple
threads, there could be multiple (worker/server) groups in
one process. It is also possible that one group spans across
multiple processes. When starting up a SINGA process, af-
ter all execution units are launched, the main thread runs as
a stub thread as shown in Figure 1, which aggregates local
requests and sends them to remote stubs. Hence, each unit
only sends and receives messages from its local stub. SINGA
defines general communication APIs on top of ZeroMQ2 and
MPI. Users can choose the underlying implementation (Ze-
roMQ or MPI) at compile time. If two execution units man-
age the same parameter partition and they are in the same
process, SINGA can leverage the shared memory to reduce
communication cost.

4.3 Training Frameworks
SINGA supports various synchronous and asynchronous

training frameworks. Users can change the cluster topology
configuration to run different frameworks. Here we illustrate
how users can train with SINGA using popular distributed
training frameworks.

2http://zeromq.org/

Sandblaster. This is a synchronous framework used by
Google Brain [1]. The training dataset is partitioned into
multiple nodes. In one iteration, all nodes fetch up-to-date
parameters from parameter servers and sends requests back
to update parameters. To run this framework with n nodes,
we configure SINGA as follows:

• A single worker group with x workers.

• A single server group with n− x servers.

AllReduce. This is a synchronous framework used by
Baidu’s DeepImage [11]. There is no concept of server. Each
worker computes gradients of one model replica and main-
tains a subset of parameters. In one iteration, every node
fetches up-to-date parameters from all other nodes and sends
parameter gradients back to corresponding nodes. To run
this framework with n nodes, we configure SINGA as fol-
lows:

• A single worker group with n workers.

• A single server group with n servers.

• One worker and one server in each node/process.

Downpour. This is an asynchronous framework used by
Google Brain [1]. The training process is similar to Sand-
blaster. One major difference is that there are multiple
groups running asynchronously. Each group of nodes run
without awareness of other groups. To run this framework
with n nodes, we configure SINGA as follows:

• x worker groups, each with y workers.

• A single server group with n− x · y servers.

Distributed Hogwild. This is an asynchronous frame-
work used by Caffe [3]. Each node maintains a local replica
of parameters. In an iteration, each node computes gradi-
ents for one model replica and updates them locally. To
ensure accuracy and convergence, nodes must exchange up-
dates with others periodically. To run this framework with
n nodes, we configure SINGA as follows:

• n worker groups, each with one worker.

• n server groups, each with one server.

• One worker and one server in each node/process.

All training frameworks have their own advantages and
limitations. Synchronous training can accelerate the speed
for one iteration as the workload is distributed to multiple
workers. However, it is limited to small or medium size
clusters, because the synchronization delay is large as the
cluster size increases. Asynchronous training can improve
the convergence rate to some degree, but the improvement
becomes small when there are too many model replicas.

SINGA provides users a unified platform for verifying the
performance of different frameworks (e.g., convergence rate,
computation time) under the same environmental setting.
Moreover, users can run hybrid training by launching mul-
tiple server groups and worker groups: using multiple server
(groups) can alleviate the communication bottleneck at server
sides; using multiple worker groups can improve the conver-
gence rate; using multiple workers in a group can accelerate
each training iteration. Given a fixed budget (e.g., number
of nodes in a cluster), there lies the opportunity to find the
optimal hybrid training framework that trades off between
the convergence rate and efficiency to achieve the minimal
training time.

5. AVAILABILITY
The code and documentation of SINGA is available on

the incubator website3 under Apache License 2. Installation
guide and quick start examples are also provided. Sample
applications and extensive performance evaluations are pre-
sented in [8].

6. ACKNOWLEDGMENTS
This work was in part supported by the National Research

Foundation, Prime Minister’s Office, Singapore under its
Competitive Research Programme (CRP Award No. NRF-
CRP8-2011-08) and A*STAR project 1321202073. Gang
Chen’s work was supported by National Natural Science
Foundation of China (NSFC) Grant No. 61472348. We
would like to thank the SINGA team members and NetEase
for their contributions to the implementation of the Apache
SINGA system, and the anonymous reviewers for their in-
sightful and constructive comments.

7. REFERENCES
[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,

Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A.
Tucker, K. Yang, and A. Y. Ng. Large scale
distributed deep networks. In NIPS, pages 1232–1240,
2012.

[2] G. E. Hinton. Training products of experts by
minimizing contrastive divergence. Neural
Computation, 14(8):1771–1800, 2002.

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In NIPS, pages 1106–1114, 2012.

[5] Y. LeCun, L. Bottou, G. B. Orr, and K. Müller.
Effiicient backprop. In Neural Networks: Tricks of the
Trade, pages 9–50, 1996.

[6] M. Lin, S. Li, X. Luo, and S. Yan. Purine: A bi-graph
based deep learning framework. CoRR, abs/1412.6249,
2014.

[7] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala,
S. Piantino, and Y. LeCun. Fast convolutional nets
with fbfft: A GPU performance evaluation. CoRR,
abs/1412.7580, 2014.

[8] W. Wang, G. Chen, T. T. A. Dinh, J. Gao, B. C. Ooi,
K.-L. Tan, and S. Wang. SINGA: Putting deep
learning in the hands of multimedia users. MM, 2015.

[9] W. Wang, B. C. Ooi, X. Yang, D. Zhang, and
Y. Zhuang. Effective multi-modal retrieval based on
stacked auto-encoders. PVLDB, 7(8):649–660, 2014.

[10] W. Wang, X. Yang, B. C. Ooi, D. Zhang, and
Y. Zhuang. Effective deep learning-based multi-modal
retrieval. The VLDB Journal, pages 1–23, 2015.

[11] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun. Deep
image: Scaling up image recognition. CoRR,
abs/1501.02876, 2015.

3http://singa.incubator.apache.org/

