
Query Optimization for Massively Parallel Data Processing

Sai Wu #1, Feng Li #2, Sharad Mehrotra §3, Beng Chin Ooi #4

#School of Computing, National University of Singapore, Singapore, 117590
1,2,4{wusai, li-feng, ooibc}@comp.nus.edu.sg

§School of Information and Computer Science, University of California at Irvine
3sharad@ics.uci.edu

ABSTRACT
MapReduce has been widely recognized as an efficient tool for
large-scale data analysis. It achieves high performance by exploit-
ing parallelism among processing nodes while providing a sim-
ple interface for upper-layer applications. Some vendors have en-
hanced their data warehouse systems by integrating MapReduce
into the systems. However, existing MapReduce-based query pro-
cessing systems, such as Hive, fall short of the query optimization
and competency of conventional database systems. Given an SQL
query, Hive translates the query into a set of MapReduce jobs sen-
tence by sentence. This design assumes that the user can optimize
his query before submitting it to the system. Unfortunately, manual
query optimization is time consuming and difficult, even to an ex-
perienced database user or administrator. In this paper, we propose
a query optimization scheme for MapReduce-based processing sys-
tems. Specifically, we embed into Hive a query optimizer which is
designed to generate an efficient query plan based on our proposed
cost model. Experiments carried out on our in-house cluster con-
firm the effectiveness of our query optimizer.

Categories and Subject Descriptors
H.2.4 [DatabaseManagement]: Systems—parallel databases, query
processing

General Terms
Algorithms, Design

Keywords
MapReduce, Hive, Query Optimization, Multi-way Join

1. INTRODUCTION
MapReduce [15] has been widely recognized as an efficient tool

for large-scale data analysis. It achieves high performance by ex-
ploiting parallelism among a set of nodes. Massively Parallel Pro-
cessing (MPP) data warehouse systems, such as Aster [3] and Green-
plum [4], have recently integrated MapReduce into their systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC 2011 Cascais, Portugal
Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

Experiments in [17] show that combining MapReduce and data
warehouse systems produces better performance. Besides efficiency,
MapReduce simplifies the deployment of MPP systems by provid-
ing two user-friendly interfaces: map and reduce. Applications
implemented through the extension of the framework are naturally
parallelizable and fault-tolerant.
To build applications on MapReduce, users must transform and

code them as customized map and reduce functions. One major
weakness of MapReduce is its lack of high-level declarative lan-
guages. In comparison, SQL, which is supported by most DBMSs,
hides implementation details (e.g., access method and plan opti-
mization), thereby simplifying application programming. Recently,
some high-level languages have been proposed for MapReduce,
such as Pig [24] and Hive [28, 29]. These languages resemble
SQL in many ways and are thus familiar to database users. Given a
query, they automatically transform the query into a set of MapRe-
duce jobs. Compared to the original MapReduce system, such sys-
tems are more suited forMPP data warehousing applications. Users
can leverage them to process their data without having to model
their application as a sequence of MapReduce operators.
Although the syntax and grammar of these systems are similar to

SQL, such systems interpret declarative queries procedurally and
strictly follow the processing logic specified by users in generating
the corresponding map and reduce operations [2, 24]. For example,
consider the following Hive query for the TPC-H [5] schema:

SELECT avg(quantity), avg(totalprice), nationkey
FROM (

SELECT temp.quantity, temp.totalprice, c.nationkey
FROM (

SELECT l.quantity, o.totalprice, o.custkey
FROM lineitem l JOIN orders o
ON (l.orderkey=o.orderkey)

) temp JOIN customer c ON (temp.custkey=c.custkey)
) finaltable GROUP BY nationkey

There are three candidate query plans: P1, P2 and P3. P1 is the
default plan of Hive, and it translates the query into three MapRe-
duce jobs. The first job processes temp = lineitem !" orders;
the second job handles finaltable = temp !" customer; and the
third job computes the aggregation results for table finaltable. P1

is an inefficient plan, as its first job generates a large intermediate
table temp 1, which will be written back to HDFS and read by the
second job. To avoid high I/O costs, P2 changes the orders of jobs.
Its first job performs customer !" orders and the join operation
involving table lineitem is delayed to the second job. The third
1This is because lineitem and orders are the two largest tables
in TPC-H. Also, each tuple of orders can join with four tuples of
lineitem.

job of P2 is similar to P1’s last job, where the aggregation result
is computed. Unlike P1 and P2, P3 applies the replicated hash
join scheme [6] and only one MapReduce job is required to pro-
cess lineitem !" orders !" customer. It reduces the overhead
of initializing MapReduce jobs. However, it incurs more shuffling
costs, as data need to be replicated among the reducers. Therefore,
depending on the data distribution, P3 may be superior to P1 and
P2.
As has been well recognized in conventional query processing,

good plans can indeed improve query performance by orders of
magnitude. In current systems, such as Pig [24] and Hive [28, 29],
users submit their queries in the corresponding query language sup-
ported by the system. The query specification to a large degree fixes
the specific query plans used by the underlying system to evalu-
ate the queries. Therefore, as in conventional database systems,
a query optimizer is needed to produce near-optimal query execu-
tion plans. In this paper, we propose AQUA (Automatic QUery
Analyzer), a query optimization method designed for MapReduce-
based MPP systems. Based on our experience of query processing
in Hive, we find that the performance bottleneck of a MapReduce-
based system is the cost of saving intermediate results. In MapRe-
duce systems, to provide fine-grained fault tolerance, the results of
each job are flushed back to the DFS (Distributed File System) as
a backup. The consecutive job reads results of the previous job to
continue with the processing. The I/O cost of DFS is significantly
higher than that of the local storage system as network cost is in-
curred and multiple replicas are usually kept. An efficient MapRe-
duce query plan should therefore avoid generating too many inter-
mediate results.
To address the above requirement, AQUA adopts a two-phase

query optimizer. In phase 1, the user’s query is parsed into a join
graph, based on which we adaptively group the join operators. Each
group may contain more than one join operator, which will be eval-
uated by a single MapReduce job. In this way, the total number of
MapReduce jobs and the intermediate results that need to be writ-
ten back to DFS are reduced. In phase 2, the intermediate results of
groups are joined together to generate the final query results. We
examine all plausibly good plans and select the one that minimizes
processing cost. The second phase is similar to a conventional cost-
based query optimizer in DBMS.
To facilitate our cost estimation, we design a cost model to ana-

lyze relational operators in MapReduce jobs. Just as in traditional
query optimization, the system maintains statistics about the un-
derlying database to enable the optimizer to estimate the cost of
various query plans. After a plan is selected, the expression tree
is changed adaptively and translated into a set of MapReduce jobs.
In current implementation, AQUA is designed to optimize an indi-
vidual query on a dedicated computer cluster. We will extend it to
support concurrent query optimizations in our future work.
We believe that ours is the first paper that systematically explores

how query optimization can be seamlessly embedded into MapRe-
duce systems. The specific contributions of this paper include:
1. Design and implementation of an efficient and novel opti-
mizer tailored for the MapReduce framework. The optimizer
identifies and exploits a variety of characteristics of theMapRe-
duce framework to improve query performance.

2. An adaptive replicated join scheme to reduce I/O cost and
MapReduce initialization cost. Based on the cost estima-
tion, join operators are organized into several groups and one
MapReduce job is created for each group.

3. A heuristics plan generator to reduce the cost of query opti-
mization. The heuristics generator avoids plans that are ob-

viously bad as early as possible and adopts shared scan to
improve the performance.

4. Extensive experiments on our in-house cluster show that AQUA
produces more efficient query plans than Hive [28] and Pig
[24].

We have developed AQUA as an optimization module of epiC
[8][11] (elastic power-aware data intensive Cloud) system by re-
designing the underlying DFS and up-layer processing engine to
support various types of database applications. epiC supports the
distributed indices to facilitate efficient query processing [12], as
well as, both row-wise and column-wise storage models. AQUA is
used in epiC to support query optimization for the row-wise engine,
while a custom designed optimizer is used for the column-wise en-
gine (entitled Llama [22]). We note that the design of AQUA is in-
dependent of the processing engine. In this paper, we demonstrate
the ideas behind AQUA using Hadoop and Hive as the underlying
engine since these systems are well known in the research commu-
nity. In epiC, AQUA is implemented on top of the E3 engine [10].
For more information about the epiC project, please refer to the
project website2.
The rest of this paper is organized as follows: Section 2 gives

a brief review of recent works on MapReduce and MPP systems.
Section 3 formalizes the optimization problem and discusses two
join algorithms. The details of our query optimizer is presented
in Section 4. In Section 5, we introduce our cost-model, designed
for the relational operators in MapReduce. We evaluate the per-
formance of our proposed approach in Section 6. We conclude the
paper in Section 7.

2. RELATED WORK
Cluster-based solutions are widely accepted in current data ware-

house systems as centralized servers do not provide scalable perfor-
mance in the face of data explosion. In cluster-based systems, per-
formance is improved by exploiting the parallelism. MapReduce
[15] is a new framework that simplifies the development of parallel
applications. In this paper, we adopt an open-source MapReduce
implementation, Hadoop [1], as our processing engine.
Aster [3] and Greenplum [4] are two commercial systems that in-

tegrate the MapReduce framework. In these systems, MapReduce
is used to implement user-defined functions which lack efficient
support in conventional parallel database systems. In [17], Green-
plum shows how the MapReduce operator and other relational op-
erators are combined for superior performance. Unlike the above
approaches, Pig-Latin [24] and Hive [28] provide a pure MapRe-
duce solution. They define an SQL-like high-level language for
processing large-scale analytic workloads. The queries expressed
in the high-level languages are transformed into a set of MapRe-
duce jobs which are submitted to Hadoop [1]. All processing logic
is implemented in the MapReduce framework, which makes the
system easy to deploy. A performance comparison is conducted in
[27], and it shows that Hive is more efficient than Pig. In Hive, a
rule-based query optimization is applied [28] to push down the se-
lections/projections and to generate map-side join. The rule-based
optimizer focuses on optimizing the processing of a single MapRe-
duce job, while in our approach, a cost-based optimizer is applied to
optimize multiple jobs together. Recently, in [23], a work-sharing
framework is proposed for Hive, which merges jobs from different
queries into shared work. In AQUA, we improve the performance
by adopting a similar idea, the inner query sharing.

2http://www.comp.nus.edu.sg/∼epic/

In general, AQUA follows the principles of conventional query
optimization approaches, as query optimization in traditional database
systems [19, 9], parallel database systems [18] and distributed database
systems [7] has been studied for years, and many state-of-the-art
solutions have been proposed. However, query optimization in
MapReduce-based system is significantly different from conven-
tional query optimization in the following three ways: 1) MapRe-
duce is a block operator, with all internal results required to be
physically materialized; 2) MapReduce adopts scanning as pro-
cessing strategy and no pipeline is supported; and 3) Data are shuf-
fled between mappers and reducers. Therefore, we propose a cost
model tailored for the MapReduce framework, based on which an
optimizer is built to prune bad plans.

3. BACKGROUND
In this section, we first discuss how to process SQL queries in

the MapReduce framework. And then, we propose our query opti-
mization problem.

3.1 MapReduce Query Processing
MapReduce was proposed by Google as a new processing tech-

nique for handling large-scale data analysis jobs. It operates on top
of the distributed file system (DFS). To facilitate parallel process-
ing, data in DFS are partitioned into equal-size chunks.
MapReduce splits the development of parallel programs into two

phases, map and reduce. In the map phase, each mapper loads a
data chunk fromDFS and transforms it into a list of key-value pairs.
The key-value pairs are buffered as r local files, where r is the
number of reducers. All key-value files are sorted by keys. When
mappers finish their processing, the reduce phase starts. The key-
value files are shuffled to the reducers, where files from different
mappers are combined together. For values with the same key, the
user-defined processing logic is applied by the reducer and a new
key-value pair is generated as the result. Finally, the results are
written back to DFS. To summarize, the map and reduce interfaces
can be abstracted as:

map(K1, V1) → list(K2, V2)
reduce(K2, list(V2)) → (K3, V3)

For most SQL queries, we can translate them into a set ofMapRe-
duce jobs. For example, consider the following non-nested query:

SELECTA FROM T1, T2,...,Tn

WHERE P GROUP BY G

where A denotes the required columns and aggregations, P is the
predicate for selection/join and G is the set of attributes for group-
ing. To process the above query, n jobs are generated in Hive [28]
and Pig [24]. The first n − 1 jobs are used to process the join op-
erations. And the last job is employed to compute the aggregation
result. The basic translation rules are

1. For each join operator, a MapReduce job is created. Suppose
we are processing Ti !" Tj . For all predicates of Ti and
Tj in P , we will rewrite them as filters in the map phase.
Only the tuples satisfying the filters will be processed and the
rest are pruned. After the pruning, for each tuple, mappers
perform a projection on attribute set S , where S = A∪P∪G.
Namely, only attributes involved in the query processing are
kept. In the reduce phase, tuples from different tables are
joined together by simulating the symmetric hash join.

2. For all group by operators, only one MapReduce job is re-
quired. In the map phase, we generate a composite key <

T1

T2

T3

1

2

3

4

k1k2 0 1

0

1

1 2

3 4

mappers reducers

Figure 1: Replicated Join

k1, k2, ..., km >, where ki ∈ G and
S

{ki} = G. In the
reduce phase, the aggregation defined in A is processed and
the results are written to DFS.

Similar to the query processing problem in the centralized DBMS,
the main challenge of MapReduce-based query processing is how
to process join. The challenge is two-fold. First, we need to design
a good join algorithm and second, we should generate a proper join
sequence to reduce the cost. In the rest of the discussion, we briefly
introduce the join algorithms in the MapReduce framework, while
the second problem will be addressed by our query optimizer.

3.1.1 Join Algorithms in MapReduce
The default join algorithms in Hive are map-side join and sym-

metric hash join. Suppose we are processing Ti !"Ti .k1=Tj .k2
Tj ,

map-side join can be applied if 1) Ti or Tj is small in size and can
be fully cached in memory; or 2) Ti and Tj are co-partitioned by
k1 and k2. In the first case, the mappers fully load the small table
(suppose it is Ti) into memory and scan the other table Tj . For ev-
ery incoming tuple of Tj , we perform an in-memory hash join with
Ti. After the whole table has been scanned, we get the complete
join results. In the second case, each mapper loads a co-partition
of Ti and Tj and performs a local symmetric hash join. As the tu-
ples that can be joined together reside in the same co-partition, the
mappers can process the join individually.
If map-side join cannot be applied, the distributed symmetric

hash join is used instead. In particular, a hash function h is defined
for all mappers and reducers. In the map phase, each mapper reads
a data chunk of either Ti or Tj . And it generates keys as h(Ti.k1)
or h(Tj .k2). In this way, all joinable tuples are shuffled to the same
reducer, where an in-memory hash join is used to generate the final
results.
In default join algorithms, one MapReduce job is created for a

specific join operator. This strategy may incur high I/O costs for
queries involving multiple joins, as the intermediate join results are
written back to the DFS and subsequently read out by the next job.
To reduce the I/O costs, in [6], a replicated join algorithm is pro-
posed. Given a query Q = T1 !" T2 !" ... !" Tn, let A denote the
set of join attributes. In that case, we consider the two attributes,
ax and ay, as equivalent attribute and only keep one copy in A. In
the replicated join algorithm, we create n types ofmappers, one for
each table. In particular, type-i mappers scan table Ti and shuffle
the data to reducers adaptively.
Suppose we havem reducers and |A| = k. To enable replicated

join, we setm = c1 × c2 × ... × ck , where cx is an integer, denot-
ing the number of reducers for attribute ax in A. In mappers, we
generate a set of composite keys for each tuple. The composite key
follows the format of < v1, v2, ..., vk >, where vx is generated for
attribute ax inA. The composite keys are generated in the partition
function of the map phase.

Algorithm 1 Partition(AttributeSet A, Tuple t)
1: KeySet S = initial()
2: for i = 0 to |A|-1 do
3: Attribute ai = A.nextAttribute()
4: if ai is an attribute of t then
5: for j = 0 to S.size-1 do
6: Key keyj = S.nextKey();
7: keyj .vi = hash(t.ai)%ci

8: else
9: KeySet S′ = initial()
10: for j = 0 to S.size-1 do
11: for x = 0 to ci-1 do
12: Key newkey = S.nextKey()
13: newkey.vi = x
14: S′.add(newkey)
15: S = S′

16: Shuffle t by keys in S

Algorithm 1 shows the details of partition function in replicated
join. In line 1, we initialize the key set to contain one random
key. And then, we iterate all join attributes in A. Suppose the next
attribute is ai. If ai is an attribute of the tuple t, we set the ith
values in current keys to hash(t.ai)%ci (line 4 to 7), where hash
is a predefined hash function. Otherwise, for each existing key, we
extend it to ci composite keys by varying the ith values from 0 to
ci-1 (line 9 to 15). When all join attributes are processed, we use
the key set to shuffle the tuple to multiple reducers.
The value of ci affects the performance of replicated join. For an

attribute of a large table, we need to assign more reducers, as more
tuples need to be processed. In [6], a sophisticated model is applied
to estimate the optimal assignment of reducers. In this paper, to
reduce the overhead of query optimization, a heuristic approach
is adopted. Suppose attribute ax belongs to table Ti, we define
function f(ax) to return the size of Ti. Given two attributes ax

and ay, we assign cx and cy reducers for them respectively, where
cx

cy
= f(ax)

f(ay) . Namely, the number of reducers for an attribute is
proportional to the size of the corresponding table.
Figure 1 shows an example of processing query T1 !"T1 .k1=T2.k1

T2 !"T2 .k2=T3.k2
T3. Suppose we have three mappers and four re-

ducers. Each mapper scans a specific table. We have two join
attributes, k1 and k2. Suppose c1 = c2 = 2. Given a value of k1 or
k2, the predefined hash function will map it to 0 or 1. For a tuple t
of T1, we generate two composite keys,< hash(t.k1)%2, 0 > and
< hash(t.k1)%2, 1 >. Similarly, we also generate two composite
keys,< 0, hash(t′.k2)%2 > and< 1, hash(t′.k2)%2 >, for a tu-
ple t′ of T3. However, only one key (< hash(t′′.k1), hash(t′′.k2) >)
is created for a tuple t′′ of T2, as T2 contains both join attributes.
In this way, each tuple of T1 or T3 will be shuffled to two reducers.
And all reducers can process their local joins individually.
Compared to the default join algorithms in Hive, the replicated

join algorithm reduces the I/O costs by avoiding writing intermedi-
ate results to the DFS (in our implementation, we use HDFS). But
it also incurs more shuffling costs by forwarding a tuple to multiple
reducers. In our optimizer, join operators are grouped adaptively
and one replicated join job is generated for each group.

3.2 Query Optimization in MapReduce
The intuition of AQUA is to adjust a query plan to improve the

performance of large-scale data analysis jobs in MapReduce. In
AQUA, we use Query Plan to denote a sequence of MapReduce
jobs. These jobs are used to process a single SQL-like query.

DEFINITION 1. Query Plan

Given a query Q in SQL-like format, the query plan is a set of
MapReduce jobs P = {j0, j1, ..., jk−1}. ji is submitted to the pro-
cessing engine after ji−1 completes. And after jk−1 is processed,
the final results of Q are cached in the DFS.

Given a query, different query plans may use different numbers
of MapReduce jobs. To measure the efficiency of a query plan, we
define the cost of a query plan as the sum of all its jobs’ costs. Let
C(P) andC(ji) denote the costs of plan P and job ji, respectively.
We have:

C(P) =
k−1
X

i=0

C(ji)

DEFINITION 2. Query Optimization
Given a query Q, the query optimization problem is to find a query
plan with least cost. Namely, the optimizer needs to return a se-
quence of MapReduce jobs {j0, j1, ..., jk−1}, where

Pk−1
i=0 C(ji)

is minimized among all valid plans.

To improve the accuracy of estimation, some pre-computed his-
tograms are built and maintained in DFS (HDFS in our implemen-
tation). We propose a cost model to estimate the efficiency of a
query plan and build an optimizer on top of Hive to select a near-
optimal plan.

4. QUERY OPTIMIZATION
AQUA performs query optimization in two phases. In the first

phase, the optimizer partitions the tables into join groups. Each
join group is processed by a single MapReduce job. In the second
phase, the optimizer searches for the best plan to generate the final
results by combining the join groups. In this section, we present
the details of our query optimizer and the cost model is discussed
in the next section.

4.1 Phase 1: Selecting Join Strategy
As mentioned before, the replicated join may lead to a better

performance by reducing I/O costs in HDFS. But given a query
involving multiple joins, the optimizer needs to figure out when
and how to use the replicated join. In [6], all joins are grouped
together and a single MapReduce job is used to process the query.
This is not always the optimal solution, as replicated join increases
the shuffling cost. In our optimizer, an adaptive join approach is
used. To simplify the discussion, we define a joining graph for
queries.

DEFINITION 3. Joining Graph
Given a query Q, its joining graph is defined as GQ = (V, E),
where

• If table Ti is involved in Q, we have a node ni in V that
denotes the table.

• If Ti !"Ti .k=Tj .k Tj is a join operation in Q, we create an
undirected edge e = (ni, nj) and e’s label is set as k.

Figure 2 shows the joining graph for TPC-H [5] Q9, where 6
tables are involved. The edge (PartSupp, Lineitem) is labeled as
“PartKey, SuppKey", as the join is performed on two attributes.
One possible join strategy can be represented as a covering set

of the graph, which is defined as:

DEFINITION 4. Covering Set of Joining Graph
Given a joining graph GQ = (V, E), its covering set S is a set of
graphs, satisfying:

Part

PartSupp

Supplier

Lineitem Orders

Nation

partkey

suppkey
suppkey

nationkey

orderkey
partkey

suppkey
partkey

Figure 2: Joining Graph For TPC-H Q9

• ∀Gi ∈ S , Gi is a sub-graph of GQ. Namely, given a node
nx in Gi and an edge ey in Gi, nx ∈ V and ey ∈ E.

• ∀Gi ∈ S , if nx and ny are two nodes of Gi, there must be a
path inGi that connects nx with ny .

• GQ.V =
S

∀Gi∈S Gi.V .

• ∀Gi, Gj ∈ S → Gi.V ∩ Gj .V = ∅. Namely, subgraphs do
not share a common node.

Based on the definition, all the nodes in the joining graph are in-
cluded in the covering set, while only a portion of edges are se-
lected. The remaining edges, in fact, define the join operations
between sub-graphs in the covering set. There is a special covering
set S0, where ∀Gi ∈ S0, |Gi.V | = 1 (we use |A| to denote the
number of elements in a set A) and Gi.E = ∅. S0 is used as the
initial state of our query optimization.
For a sub-graph Gi in the covering set S , depending on its node

number, we have the following join strategies. If |Gi.V | = 1, no
join is defined. If |Gi.V | = 2, the default symmetric hash join is
used. Otherwise, if |Gi.V | > 2, we adopt the replicated join for
Gi. When |Gi.V | > 2, we define the cost saving as:

Cs(Gi) = Crjoin(Gi) − Chjoin(Gi)

where Crjoin(Gi) denotes the cost of replicated join for Gi and
Chjoin(Gi) is the estimated costs of the best plan using symmetric
hash join to process Gi. If |Gi.V | <= 2, the cost saving is defined
as 0. The intuition is to select the plan with maximal cost savings.
In fact, we can iterate all possible covering sets by adaptively

linking the sub-graphs.

DEFINITION 5. Graph Linking
Given two sub-graph Gi and Gj of GQ, let e = (nx, ny) be an
edge in GQ, satisfying nx ∈ Gi.V and ny ∈ Gj .V . We can
link Gi by Gj via e. The result is a new sub-graph Gij , where
Gij .V = Gi.V ∪ Gj .V and Gij .E = Gi.E ∪ Gj .E ∪ {e}.

By linking two graphs, we generate a new graph. For any two
nodes in the graph, there is a path connecting the nodes. Algo-
rithm 2 shows how to iterate all possible covering sets by linking
graphs. The special covering set S0 is used as the initial state (line
1). Then, we iterate all possible combinations of picking i edges
from the joining graph (line 4). For a specific combination, we can
generate a joining plan, temp, which is initialized as S0. The se-
lected edges are used to link sub-graphs in temp (line 7-13). Given
a node and a plan, function getGraph returns the subgraph con-
taining the node. The resulted covering set is stored as a candidate
plan (line 14). After all plans are generated, the one with maximal

Algorithm 2 JoinPlans(QueryGraph GQ)
1: S0= createInitialState(GQ)
2: PlanSet SP = ∅
3: for i=1 to |GQ.V | do
4: EdgeSets SE= getAllCombination(GQ.E, i)
5: for ∀E ∈ SE do
6: Plan temp = S0

7: for ∀ edges e ∈ E do
8: Graph Gi=getGraph(e.start, temp)
9: Graph Gj=getGraph(e.end, temp)
10: if Gi *= Gj then
11: Graph Gnew=link(Gi, Gj , e)
12: temp.remove(Gi), temp.remove(Gj)
13: temp.add(Gnew)
14: SP .add(temp)
15: return optimal plan in SP

P

PS L

S N

O

T

(a) Joining Strategy
S N

T

O

S N T O
(b) Possible Plans

Figure 3: Plan Selection

savings is selected as our join plan (line 15). Algorithm 2 searches
for all possible plans. Therefore, the complexity is estimated as

cost =
C
X

i=1

C
i

!

= 2C − 1 (1)

where C = |GQ.E|. In most cases, only a few tables participate
in a join and hence, C is a small value. We show the cost of query
optimization in the experiments.
Algorithm 2 can be invoked recursively. After Algorithm 2 com-

pletes, the tables in the generated plan can be further grouped by
using the result tables as the input to Algorithm 2. However, the
replicated join benefits only if there are some small tables that can
be replicated to multiple reducers. In our experiments, we find that
most small tables are already grouped into the replicated join in the
first iteration and the rest iterations are not necessary. Therefore, in
phase 1, we only invoke Algorithm 2 once.

4.2 Phase 2: Generating Optimal Query Plan
In phase 1, the optimizer selectively groups some nodes into sub-

graphs and generates a single MapReduce job to process each sub-
graph. Figure 3(a) shows a possible result for Figure 2. To sim-
plify the notation, we use L, O, N , P , PS, S to represent table
Lineitem, Orders, Nation, Part, PartSupp and Supplier,
respectively. In Figure 3(a), P , PS and L are put into a MapRe-
duce job and we use T to denote the intermediate results. We need
to join T with the remaining tables to generate the query results.
Figure 3(b) lists two possible query plans, which have significantly
different processing costs. Suppose the optimal covering set gener-
ated in phase 1 is S , the optimizer needs to find an efficient query
plan in phase 2 to join the sub-graphs in S . For each Gi in S , Gi

denotes an input table in phase 2. If |Gi.V | = 1, the input table is
a base table. Otherwise, the input table is an intermediate result of
a MapReduce job.
In our query optimization, we consider both left-deep and bushy

T R1

R2 T

R1 R2

Figure 4: Basic Tree Transformation

plans. As a matter of fact, in [16], Franklin et. al show the bushy
plan is always the best plan in the distributed environment, and
bushy plans are also used in parallel database systems [13]. We
observe that MapReduce systems, by design, are more amenable to
bushy query plan optimization. However, iterating all query plans
incur too much overhead. For a K table join, the complexity of
searching all query plans is O(K2K), even if only the left-deep
plans are considered [25]. Therefore, a heuristic approach is em-
ployed to prune the search space. The intuition here is similar to
the query optimizer in conventional databases, namely, avoiding
bad plans instead of searching for the optimal one. In the following
discussion, we show the general ideas of how to iterate query plans
and how to prune the search space.

4.2.1 Left-Deep VS Bushy Plans
As the plan space is extremely large for a complex query, most

relational database systems only consider the left-deep plan in query
optimization [9]. This strategy works well in many real applica-
tions. However, it may lead to an inferior plan for MapReduce-
based query processing. This is because a MapReduce job needs to
materialize the internal results of sub-queries.
In Figure 3(b), we show two plans for processing S !" N !"

T !" O. In a conventional DBMS, the left-deep plan is preferred
because it simplifies pipeline processing as at least one data source
is the base table. After a result is produced for S !" N , it is pushed
to the next operator to join with T . In the bushy plan, data sources
in the last join are both internal results. Without fully materializing
the internal results, it is difficult to provide the correct results.
A significant difference between MapReduce-based query pro-

cessing and the traditional query processing is that a MapReduce
job will materialize its outputs in the DFS for fault tolerance (In
[14], MapReduce is extended to support pipelining between the
mappers and reducers. However, it significantly complicates the
fail recovery mechanism and provides marginal performance im-
provement for batch-based processing). For example, in the left-
deep plan, a MapReduce job is used to perform S !" N , and the
results are written back to HDFS after the job is done. Then, a sec-
ond job is initiated to join the results of the first job with T . After
the second job is done, the results of S !" N !" T are written back
to HDFS. Namely, the internal results are written back to HDFS in
the previous MapReduce job and read out in the sub-sequential job.
As a matter of fact, HDFS I/O dominates the cost of processing a
query. If a large number of internal results are generated, the plan
turns out to be inferior.
In the left-deep plan, we need to write and read the results of

S !" N and S !" N !" T , while in the bushy plan, we need to
write and read the results of S !" N and T !" O. In most cases,
we can determine which plan is better by comparing the sizes of
S !" N !" T and T !" O.

4.2.2 Pruning of Optimization Space
We apply a recursive algorithm to iterate all possible query plans.

Figure 4 shows two basic plan variants. Suppose T represents a
sub-plan. The left plan denotes a left-deep plan while the right plan

is a right-deep plan. Actually, if T = R3 !" R4, the right plan
becomes a bushy plan. The recursive algorithm works from the
bottom to the top. It first iterates over all possible sub-plans, and
then for each sub-plan, it tries the left-deep and right-deep combi-
nations.
In our query optimizer, we also support bushy plans and this re-

sults in a larger optimization space. Therefore, we apply heuristics
to reduce the search space and prune inefficient plans as early as
possible. The idea of the pruning approach is summarized as fol-
lows:

1. We do not generate equivalent sub-plans. For example, plan
R1 !" R2 is equivalent to plan R2 !" R1 and plan R1 !"
(R2 !" R3) is equivalent to plan (R2 !" R3) !" R1. For
equivalent sub-plans, we only select one to expand in our
recursive algorithm.

2. We prune inefficient plans as early as possible. For example,
if R1 !" R2 generates significantly more (e.g., an order of
magnitude more) results than R2 !" R3, we remove (R1 !"
R2) !" R3 from the sub-plan set. This can be done by a
rough estimation based on the corresponding histograms. In
this way, the less effective sub-plan will not appear in the
final query plan.

3. We avoid the “low-utility plan". The performance gain of
MapReduce comes mainly from parallelism. However, some
query plans contradict this principle. As an example, plan
((lineitem !" orders) !" customer) !" nation is not a
good plan because customer joins nation on nationkey,
and there are in total 25 distinct nationkey in the TPC-H
schema. If we have more than 25 reducers available, the
above plan cannot fully exploit them. We call such a plan
a “low-utility plan". Low-utility plans inevitably incur sig-
nificant performance penalty. Therefore, the query optimizer
needs to avoid such plans. When building histograms, we
also record the number of unique values in each bucket, and
based on which, we can estimate the maximal number of us-
able reducers.

4.2.3 Query Plan Iteration Algorithms
Algorithm 3 shows the pseudo code of our query plan genera-

tor. The query plan generator transforms the expression tree of the
query to generate all possible plans. The input parameter is the
root node of the expression tree. If the expression tree node has left
child or right child, we first try to generate variants of the subtrees
(line 2-5). Then, for each pair of variants, we generate an expres-
sion tree, which denotes a possible plan (line 8). The plan denoted
by the expression tree is then pruned by the heuristic algorithm.
To iterate all possible plans, the basic transformation in Figure 4 is
performed for the tree (line 12). The operators in the left and right
sub-trees may be exchanged with each other, which results in a new
tree. And the variants will be added to the result (line 13-20). After
Algorithm 4 returns, we apply the histograms to estimate the cost
of each plan and select the optimized one as our execution plan.
Algorithm 4 shows the basic idea of the heuristic pruning al-

gorithm. First, we check whether the generated plan is actually
equivalent to an existing one (line 1 and 2). Then, if the root oper-
ator cannot exploit all possible reducers, we discard the plan (line
4-6). Finally, we estimate the size of intermediate results of the root
operator (line 8-14). If it generates significantly more results than
the alternative join operators, we do not adopt the plan. θ is a prede-
fined threshold, which controls the tradeoff between optimization
cost and accuracy.

Algorithm 3 IterativeGenerator(ExpressionTreeNode
curOp)
1: Vector result = NULL
2: if currentOp.leftchild*= NULL then
3: Array l_variant= IterativeGenerator(curOp.leftchild)
4: if currentOp.rightchild*= NULL then
5: Array r_variant= IterativeGenerator(curOp.rightchild)
6: for i=0 to l_variant.size() do
7: for j=0 to r_variant.size() do
8: ExpressionTree tree = NewTree(curOp,

l_variant.get(i), r_variant.get(j))
9: if HeuristicPruning(tree) then
10: continue
11: result.add(tree)
12: tree=basicTransformation(tree)
13: Array l_variant′= IterativeGenerator(tree.root.leftchild)
14: Array r_variant′= IterativeGenerator(tree.root.rightchild)
15: for x=0 to l_variant′.size() do
16: for y=0 to r_variant′.size() do
17: ExpressionTree tree′ = NewTree(tree.root,

l_variant′.get(x), r_variant′.get(y))
18: if !HeuristicPruning(tree) then
19: result.add(tree′)
20: return result

Algorithm 4 HeuristicPruning(ExpressionTree tree)
1: if tree is equivalent to an existing plan then
2: return true
3: else
4: if tree.root is an operator that cannot exploit all reducers

then
5: if tree have equivalent transformation then
6: return true
7: else
8: R=tree.root.getLeftTable()
9: S=tree.root.getRightTable()
10: size=estimatedSizeOf(R !" S)
11: size1=estimatedMinSizeOf(R, getJoinableTable(R)-

{S})
12: size2=estimatedMinSizeOf(S, getJoinableTable(S)-

{R})
13: if size − size1 > θ or size − size2 > θ then
14: return true
15: return false

4.3 Query Plan Refinement
After a plan is selected as the execution plan, it is further refined

by our optimizer to reduce the processing cost. Two approaches are
applied in this stage, sharing table scans and submitting concurrent
MapReduce jobs.

4.3.1 Sharing Table Scan in Map Phase
An inter-query sharing framework is proposed in [23], where

queries with the same MapReduce jobs are grouped and processed
together. This work is orthogonal to ours, as we exploit the pos-
sibilities of sharing data among different MapReduce jobs of the
same query.
Considering the following query for the TPC-D schema:

q0: SELECT l0.extendedprice, o0.shippriority
FROM lineitem as l0, orders as o0

WHERE l0.orderkey = o0.orderkey and l0.extendedprice >
(SELECT max(avg(l1.extendedprice))
FROM lineitem as l1
WHERE l0.linestatus = l1.linestatus
GROUP BY l1.returnflag)

lineitem appears in both the outer query and the inner subquery.

map
lineitem

reduce

key:linestatus, returnflag average
extendedprice

map reduce

key:linestatusaverage
extendedprice

maximal average
extendedprice

map reduce

lineitem join orders lineitem

orders
key:orderkey

map reducelineitem join orders
key:linestatus

maximal average
extendedprice final result

1

2

3

4

Figure 5: MapReduce Jobs of Query q0

map
lineitem

reduce

key:linestatus, returnflag average
extendedprice

map reduce

lineitem join orders
orders

key:orderkey

1

3

Figure 6: Shared Table Scan in Query q0

The subquery is correlated with the outer query. In real systems,
such queries are not uncommon. In the TPC-D benchmark, more
than 60% queries contain at least one table with multiple instances.
Lacking an index, MapReduce scans the whole dataset when

processing queries. Figure 5 shows the MapReduce jobs for q0. In
Figure 5, table lineitem is scanned twice, once for computing the
average extendedprice and another for joining with table orders.
In the corresponding MapReduce jobs, mappers perform the same
I/O operations, namely, loading tuples of lineitem from HDFS. If
the results of the last scan can be reused, we avoid repeatedly read-
ing the same table. Therefore, we propose a shared-scan approach
to reduce I/O cost in consecutive MapReduce jobs.
The shared-scan approach generates all required key-value pairs

in the first MapReduce job, which can be loaded by the sequential
jobs from HDFS. For q0, the first MapReduce scans table lineitem
and applies the composite key (linestatus, returnflag) to gener-
ate the average extendedprice. To share the table scan, in the map
phase, we also generate key-value pairs for the third MapReduce
job. Namely, two key-value pairs, ((linestatus, returnflag), t)
and (orderkey, t), are created for each tuple t of lineitem. ((lines-
tatus, returnflag), t) is sent to the reducers for computing the aver-
age extendedprice while (orderkey, t) is cached as a temporary
file in HDFS. In the third MapReduce job, the mappers only scan
table orders and the reducers load key-value pairs of lineitem
from HDFS. Figure 6 shows the idea of sharing table scan in query
q0. In this way, we avoid repeatedly scanning table lineitem.
The same strategy can be applied to multiple queries, if they

are being processed concurrently and share some common expres-
sions. For example, many TPC-H queries have the sub-expression
lineitem !" orders. By sharing the common results between
queries, we can significantly reduce the I/O costs. In our future
work, we will examine how to combine multi-query optimizations
into our system. Specifically, when sharing sub-query results is
possible, a new query plan can be generated to exploit the features.

4.3.2 Concurrent MapReduce Jobs
In the original Hive implementation, the MapReduce jobs are

submitted sequentially. However, based on our experience in the
parallel database, some sub-queries can be processed concurrently.
For example, in the second plan of Figure 3(b), sub-queries S !" N
and T !" O are independent and can be processed in parallel.
In Hadoop, concurrent MapReduce jobs are supported, but they

C

O

L

P

S

N

N R

C

L P

O

S

N

N R

Plan of HIVE Plan of AQUA

Figure 7: Optimized Plan for TPC-H Q8

may lead to a worse performance, as jobs will compete for com-
puting resources. Therefore, we perform a simple analysis to de-
cide whether we submit multiple MapReduce jobs simutanesouly.
Given a job set P = {j0, j1, ..., jk−1}, we will process them con-
currently, if

1. ∀jx∀jy ∈ P , jx is independent of jy (namely, jx and jy

involve different tables and do not depend on each other’s
results).

2. Suppose we have N compute nodes and each node has α
CPUs (or cores) and β disks. Letm(ji) and r(ji) denote the
numbers of mappers and reducers of each job, respectively.
We require

Pk−1
i=0 m(ji) ≤ min(αN, βN) and

Pk−1
i=0 r(ji) ≤

min(αN, βN).

The above criteria guarantees that concurrent jobs will not com-
pete for the resources. In this paper, we apply the above strategy
to improve the parallelism. In fact, how to schedule multiple con-
current jobs is a very challenging problem and beyond the scope of
this paper. Interested readers can refer to [30] for more details.
After a query plan P = {j0, j1, ..., jk−1} is generated, we first

retrieve all independent jobs P ′. Based on the available resource,
we partition jobs in P ′ into a set of subsets, P0, P1, ..., Pn. Jobs in
each subset Pi are submitted to Hadoop together. And Pi+1 is pro-
cessed after all jobs in Pi are complete. If only limited computing
nodes are available or the jobs are too expensive, each subset may
only contain one MapReduce job.

4.4 An Optimization Example
In this section, we show a concrete example of how AQUA’s op-

timizer works. For comparison purpose, we use the query plans
in Hive’s Benchmark [20] as our baseline. Note that plans in [20]
are not the default plans of Hive. Instead, they have been manually
optimized to avoid ineffective plans.
In Figure 7, we show two possible plans for TPC-H Q8. The left

plan is given by [20] and is a left-deep plan. It starts by joining
the smallest base tables to avoid high I/O costs. However, as each
job can only perform a two-way join, it generates 8 MapReduce
jobs (7 for joins and 1 for aggregation). Based on the observation
of [21], the initialization cost of MapReduce job cannot be ignored
and will increase as more nodes are involved. By transforming the
query into 8 jobs, the left plan incurs a significant initialization cost
and hence, is not cost-effective.

The right plan is the plan adopted byAQUA. It generates 5MapRe-
duce jobs, among which two jobs are created for the replicated joins
(e.g. N !" R !" C and L !" P !" O), two jobs are used to do the
two-way joins and one is used to compute the aggregation results.
Compared to the left plan, AQUA’s plan has the following advan-
tages:

• AQUA reduces the number ofMapReduce jobs by using repli-
cated joins.

• AQUA avoids generating large volumes of intermediate re-
sults by adopting replicated joins and considering bushy plans.

• AQUA adjusts the join sequences by using a cost-based opti-
mizer.

The above advantages of AQUA are further verified by our exper-
iments. A significant performance boost is observed for various
types of queries.

4.5 Implementation Details
In our system, the plan is represented as an expression tree. The

expression tree is forwarded to Hive’s analyzer, which applies the
metadata of tables to translate the tree into a set of MapReduce
jobs. Those jobs (their java classes) are serialized into an XML
file, which can be submitted to the process engine for processing.
Shared table scan is implemented by modifying the MapReduce

jobs generated by Hive. First, we modify the job description of the
first MapReduce job by replacing its key-value pairs with compos-
ite key-value pairs. Second, two new operators are implemented
for Hive. One is designed for mappers to write back key-value
pairs to HDFS and the other one is used in reducers to load key-
value pairs from HDFS. Those operators are serialized and embed-
ded into the original job description. When shared scan is applied,
the cost model is modified with the inclusion of the cost of writing
back key-value pairs to HDFS.

5. COST MODEL
To evaluate the performance of a specific plan, we propose a cost

model tailored for the MapReduce framework. For efficiency, the
cost model applies some pre-computed histograms to estimate the
selectivity of predicates and joins. Before we present the details of
our cost model, we first discuss how to efficiently build histograms
in MapReduce framework.

5.1 Building Histogram
Given a table T , a special MapReduce job is submitted to build

histograms for all its columns. Suppose a0, a1, ..., an−1 are columns
of table T and [li, ui] is ai’s domain. We build an equal-width his-
togram for each column. Namely, we split [li, ui] intoK cells, and
in each cell, we record the number of tuples within the cell and
assume the data follow uniform distribution.
One naive approach to build a histogram is to apply n MapRe-

duce jobs, one for each column. In the map phase, we scan the table
and partition tuples according to their values in a specific column.
In the reduce phase, each reducer generates a cell for the column’s
histogram. The cells are then inserted into HDFS. The query op-
timizer can ask HDFS to retrieve the whole histogram of the col-
umn. Although simple, the naive approach repeatedly scans a table
in multiple MapReduce jobs, which actually can be avoided. In our
approach, a single MapReduce job is used to build histograms for
all columns within a table.
To build histograms, we generate a composite key for each tuple

in the map phase. Suppose we build a histogram with K equal-
width buckets for column ai. Let the domain of ai be [li, ui]. The

jth bucket covers the range [li + j(ui−li)
K

, li + (j+1)(ui−li)
K

]. In
the map phase, we generate a composite key for each tuple. Key-
value pairs follow the format of < (columnID, bucketID), 1 >,
where columnID is the unique ID of the column and bucketID
is the bucket ID of the corresponding value. When comparing two
keys, we first compare their columnIDs and then the bucketID.
Therefore, if the size of T is m, mappers actually generate n × m
key-value pairs, where n is the number of columns involved in his-
togram building. To reduce shuffling cost, pre-aggregation is per-
formed in the map phase. The partition function in the map phase
is implemented as mapping data within the same bucket to the same
reducer. We customize the combiner function to aggregate key-
value pairs within the same bucket. In this way, each mapper only
generates at most one key-value pair for a bucket, which reduces
shuffling cost.
In the reduce phase, we classify key-value pairs by their columnID

and combine the results from multiple mappers. In the end, the
metadata of a histogram bucket (table name, column name, bucket
range and bucket value) are written back to HDFS. To efficiently
locate a histogram, histograms are maintained as a directory tree
in HDFS. The histogram for column ai of table T is stored in
“/user/hive/histogram/T/ai".
Algorithm 5 and 6 illustrate the presudo code of building his-

tograms. In Algorithm 5, we scan a table stored in HDFS. The
tuples of the table are stored as strings. Hence, we need to parse
the string into individual attributes (line 1). For each attribute, we
generate a key-value pair by using the attribute ID and its corre-
sponding bucket ID as the composite key (lines 2-6). Given a
value data[i] of ith column, suppose low[i] and up[i] denote the
column’s domain, function getBucketID returns the histogram
bucket ID that the value falls in. In the reduce phase, we first re-
trieve the column ID and the bucket ID from the key (lines 1 and
2 in Algorithm 6). Then, the statistics from multiple mappers are
combined together (lines 3 and 4). When the reduce phase com-
pletes, the histograms are written back to HDFS. Multiple reducers
may write statistics about the same bucket. A file lock is applied to
guarantee consistency. To reduce shuffling cost, before key-value
pairs are shuffled to reducers, pre-aggregation is performed with
the use of the same reduce function defined in Algorithm 6.

Algorithm 5 map(Object key, Text value, Context
context)
//value: serialized string of a tuple
1: Object[] data = parse(value)
2: for i=0 to data.length do
3: if need to build histograms for column i then
4: int bucketID = getBucketID(i, data[i], low[i], up[i])
5: CompositeKey newKey = new CompositeKey(i,

bucketID)
6: context.collect(newkey, 1)

Algorithm 6 reduce(Key key, Iterable values,
Context context)
1: int id = key.first()
2: int bucketID = key.second()
3: for IntWritable val : values do
4: histogram[id][bucketID]+= val //combining the values

from mappers

In current implementation, we build equal-width histograms for
each column individually. Though simple, the histograms can pro-
vide good enough estimations for us to avoid obviously bad plans.

Table 1: Parameters
Parameter Definition
rl cost ratio of local disk reads
wl cost ratio of local disk writes
rh cost ratio of HDFS reads
wh cost ratio of HDFS writes
µ cost ratio of Network I/O
ν cost ratio of CPU computation
b size of mapper’s memory buffer
d size of data chunk in HDFS
|T | number of tuples in table T
f(T) size of T ’s tuple (in bytes)
g(T,S) join selectivity of table T and S

Database systems, often use more complex histograms (e.g., V-
optimal, maxdiff [26]) that provide better selectivity estimation. To
build more sophisticated histograms, we can extend getBucketID
in the map phase and rewrite the combining algorithm in reducers.
For example, to support MaxDiff histograms, two MapReduce jobs
are generaed. In first job, we partition the values into buckets of
equal-length. If the final histogram composes of k buckets, in first
job, we will generate ck buckets, where c is a constant. In this way,
we generate more buckets than necessary. In second job, all buck-
ets are sent to the same reducer for combining. The reducer applies
a local MaxDiff algorithm to combine the small buckets into larger
ones. When only k buckets left, the process terminates and the his-
togram is written back to HDFS. Techniques to map algorithms to
construct such histograms to the MapReduce framework will be a
significant deviation from the main contributions of this paper and
hence are relegated to future work.

5.2 Evaluating Cost of MapReduce Job
After a query plan is transformed into a set of MapReduce jobs,

we assume these MapReduce jobs are processed by the same set
of nodes. For a MapReduce job, the number of mappers is equal
to the number of data chunks to be processed, while the number
of reducers is configured correspondingly. Suppose we have N
compute nodes and each node has α CPUs (or cores) and β disks.
To avoid contention, the maximal number of allowed reducers is
θ = min(αN, βN). Let K denote the maximal number of keys
generated in the map phase. If K ≥ θ, θ reducers are created.
Otherwise,K reducers are created.
In the cost model, we consider two types of costs: I/O costs

(including local disk I/O and network I/O) and CPU costs. The total
cost of processing a MapReduce job is used as the metric. Note that
the cost model does not provide an accurate estimation. Instead,
the approximate approach is applied to simplify computation. The
intuition is to avoid bad plans instead of searching for the optimal
one. Table 1 shows the parameters used in the analysis.
Basically, there are two types of MapReduce jobs: map-only jobs

and map-reduce jobs. For single table select and map-side join,
Hive creates a map-only job. For join and aggregation operations,
a map-reduce job is generated. We handle them differently in the
cost model.

5.2.1 Map-Only Jobs
In Hive, single table scan and map-side join are transformed into

map-only jobs. These jobs can be processed by each mapper indi-
vidually. Therefore, we do not need to consider the cost incurred
during the reduce phase.
For a select query, if it only retrieves data from a single table

T and does not perform aggregations, it can be processed by map-
only jobs. To handle the select query, all tuples of table T are
retrieved from HDFS, which incurs |T |f(T)rh cost. The predi-
cates defined in the query are used as a filter to prune unqualified
tuples. Only the necessary columns are output as results. Suppose
the selectivity of the ith filter is αi and there are k filters for table
T , we use α (α =

Qk
i=1 αi) to denote the accumulative selectiv-

ity. Let the projection selectivity be β (after ruling out unnecessary
columns, the tuple size is reduced to β×100% of its original size).
It costs αβ|T |f(T)wh I/O to write the results back to HDFS. α is
estimated by histograms while β is computed based on the meta-
data of the table. For each input tuple, it is compared with k filters.
Hence, the expected number of comparisons is

p(T, k) =
k
X

i=1

(i × (1 − αi) × (
i−1
Y

j=1

αj)) + k ×
k
Y

i=1

αi (2)

In summary, a single table select query incurs a cost of

Cselect = |T |f(T)rh + αβ|T |f(T)wh + νp(T, k)|T | (3)

In Hive, a map-side join can be used in two cases: 1) one table
can be fully buffered in memory; and 2) both tables are partitioned
by the join attribute. For example, if both Lineitem and Orders
are partitioned by orderkey, we can apply the map-side join to
process Lineitem !"Lineitem.orderkey=Orders.orderkey Orders.
Suppose two tables T and S participate in a map-side join. If T
can be fully buffered in memory, T will be read n = |S|f(S)

d
times,

where n is the number of mappers. In this case, the cost of the
map-side join is estimated as:

Cmemory_join = (
|S|f(S)|T |f(T)

d
+ |S|f(S))rh + (4)

αα′g(T,S)|T ||S|(βf(T) + β′f(S))wh +

ν(αα′|T ||S| + p(T, k)|T | + p(S, k′)|S|)

where α, β, α′ and β′ denote the accumulative filter selectivity
and projection selectivity of T and S respectively, and k and k′

represent the number of predicates for T and S respectively. The
first term gives the I/O cost of reading table T and S. The second
term estimates the result size and the cost of writing back results
to HDFS. The last term calculates CPU cost (composed of join
cost and filter cost). On the other hand, if neither T nor S can
be buffered in memory and both of them are partitioned based on
the join attribute, we simply replace the first term of Equation 4 to
(|T |f(T) + |S|f(S))rh.

5.2.2 Map-Reduce Job
To process join or aggregations, a full MapReduce job is created

in Hive. Compared to a map-only job, a map-reduce job is more
costly as it triggers sort operations at both the map and reduce sides,
and it shuffles data files between mappers and reducers.
Given an equal-join query T !" S, suppose neither T nor S can

be buffered in memory, and at least one table is not partitioned by
the join attribute, a map-reduce job is established to process the
query. In the map phase, the data of two tables are loaded from
HDFS, which incurs (|T |f(T)+|S|f(S))rh cost. The input tuples
are pruned via corresponding filters. If the tuple passes the filter, a
key-value pair is generated and buffered in memory. We estimate
the CPU cost to be ν(p(T, k)|T | + p(S, k′)|S|), where k and k′

are the numbers of predicates for table T and table S, respectively.
Let α, β, α′ and β′ denote the accumulative filter selectivity and
projection selectivity of T and S, respectively. Suppose the size of
the key is about δ bytes. The sizes of key-value pairs are estimated
as βf(T) + δ and β′f(S) + δ for table T and S, respectively.

The total numbers of key-value pairs generated for T and S are
α|T | and α′|S|, respectively. When the memory buffer is full, the
mapper applies quick-sort algorithms to sort the key-value pairs
and writes them as a local file. After all key-value pairs have been
generated, the local files are merged together. Suppose the size
of the memory buffer is b, there will be x = b

βf(T)+δ
key-value

pairs for T in the buffer, and the total size of key-value pairs of
T is y = α|T |(βf(T) + δ). We estimate the cost of sorting and
merging for table T as:

C(T)sort = να|T | log2 x + ywl + y(wl + rl) (5)

where the first term represents the quick-sort cost in the memory
buffer, the second term denotes the I/O cost of flushing data from
buffer to disk, and the last term is the I/O cost of merge-sort. Actu-
ally, mappers do not perform full merge-sort as each mapper only
reads a data chunk. C(T)sort actually includes the sort cost in the
reducer part. In the same way, we can estimate the sort cost of table
S, C(S)sort. Therefore, the total cost in the map phase is:

Cmap = (|T |f(T) + |S|f(S))rh + ν(p(T, k)|T |

+p(S, k′)|S|) + C(T)sort + C(S)sort (6)

When the mapping phase completes, the reducers will pull data
files from the mappers. The network cost is computed as

Cshuffle = µ(α|T |(βf(T) + δ) + α′|S|(β′f(S) + δ)) (7)

After that, a multi-way merge-sort is applied. As sorting cost has
already been computed in the map phase, we do not consider it
in the reduce phase. For tuples of the same key, an in-memory
join is performed, and z = αα′|T ||S|g(T, S) results are gener-
ated. Each result refers to a comparison operation of the in-memory
join. Therefore, the CPU cost of the in-memory join is estimated
as zν. Finally, all the results are written back to HDFS, which in-
curs z(βf(T) + β′f(S))wh cost. In summary, the total cost in the
reduce phase is:

Creduce = Cshuffle + z(ν + (βf(T) + β′f(S))wh) (8)

The above analysis is based on a two-way join. For a replicated
join involving k tables (T1, T2, ..., Tk), we can perform a similar
estimation as Equation 6 and 8. The only difference is the shuffling
cost. Suppose the tables are joined on an attribute set A, where
|A| = n, and we havem reducers. We use cx to denote the number
of reducers for attribute ax. Therefore, we have

m = Πn
x=1cx (9)

As mentioned before, to improve the performance, the number of
required reducers is set to be proportional to the size of correspond-
ing table. If ax is an attribute of table Ti, we use f(ax) to denote
the size of Ti. Therefore, we compute cx as

cx =
axδ

Πn
i=1f(ai)

(10)

After combining Equation 9 and 10, we can estimate the value of δ
and the number of required reducers for each attribute.
For table Ti, if it contains a join attribute set A′ (A′ ∈ A) , we

need to replicate its data to ri reducers, where

ri = Π∀ax %∈A′∧ax∈Acx (11)

Therefore, the shuffling cost is computed as:

C′
shuffle = µ

k
X

i=1

(αiri|Ti|(βif(Ti) + δi)) (12)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

Q3 Q5 Q8 Q9 Q10

Pr
oc

es
sin

g
Ti

m
e

(s
ec

)

Query ID

PIG-MO
HIVE-UO
HIVE-MO

AQUA-
AQUA

Figure 8: Query Performance

 0

 100

 200

 300

 400

 500

 600

Q3 Q5 Q8 Q9 Q10

Pr
oc

es
sin

g
Ti

m
e

(s
ec

)

Query ID

processing cost
optimization cost

Figure 9: Optimization Cost

 0

 200

 400

 600

 800

 1000

 1200

0 1 2 3 4
 0

 1

 2

 3

 4

Pr
oc

es
sin

g
Ti

m
e

(s
ec

)

Es
tim

at
io

n
I/O

+C
PU

 C
os

t(x
E1

1)

Plan ID

estimated cost
real processing time

Figure 10: Accuracy of Optimizer

 0
 50

 100
 150
 200
 250
 300
 350
 400

10 20 30 40 50

Pr
oc

es
sin

g
Ti

m
e

(s
ec

)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 11: TPC-H Q3

 0

 100

 200

 300

 400

 500

 600

10 20 30 40 50

Pr
oc

es
sin

g
Ti

m
e

(s
ec

)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 12: TPC-H Q5

 0

 200

 400

 600

 800

 1000

 1200

 1400

10 20 30 40 50

Pr
oc

es
sin

g
Ti

m
e

(s
ec

)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 13: TPC-H Q8

where αi, βi and δi denote the accumulative filter selectivity, pro-
jection selectivity and the size of keys of table Ti, respectively.
Compared to join, aggregation is much more similar to a map-

only job. In the map phase, we scan the corresponding table and
use the “group by" attributes as the key. In the reduce phase, ag-
gregations are computed for each key. For table T , the map phase
incurs a cost of

Cmap = |T |f(T)rh + p(T, k)|T |ν +

α|T |ν log2 x + ywl + y(wl + rl) (13)

where x and y are defined as in Equation 5, and the cost of the
reduce phase is estimated as:

Creduce = µα|T |(βf(T) + δ) + α|T |ν + γhwh (14)

where α|T |ν denotes the CPU cost of aggregations, γ denotes the
number of keys (groups) and h is the size (in bytes) of the result
tuple.

5.2.3 Cost Model Based on Query Response Time
The cost model can be also configured to use the query response

time as the metric to measure how good a query plan is. The anal-
ysis is similar to the model based on the I/O cost. However, due to
not all mappers and reducers start concurrently, precisely estimat-
ing the processing time is far more complex. If we haveN compute
nodes and each node has α CPUs (or cores) and β disks, to avoid
the contention, each node is configured to run min(α, β) mappers
concurrently. Therefore, if the job requires more thanmin(α, β)N
mappers, themap phase will run in several iterations. The total pro-
cessing time should be computed by aggregating the cost of each
iteration. The same rule applies to the reduce phase as well. The
detailed mathematical formulas are discarded in the paper.
An interesting observation in our experiments reveals that even

the model based on query response time is more complex, it does
not improve the accuracy of estimation too much. Specifically,

given two plans pi and pj , we define function ω as

ω(pi, pj) =



0 if cost(pi) ≤ cost(pj) in both models
1 otherwise

The difference of two models can be evaluated as
P

∀pi,pj

ω(pi,pj)

|P| ,
where P denotes all possible plan pairs. Table 2 shows the differ-
ences of two cost models for some TPC-H queries. In most cases,
the plan will get a similar rank in both models. Therefore, in our
implementation, we apply the I/O based model for its simplicity.

Table 2: Plan Comparison
Query P Difference
Q3 10 0%
Q5 231 2.6%
Q8 2158003 2.49%
Q9 9003646 1.53%

6. EXPERIMENTAL EVALUATION
We evaluate the effectiveness of AQUA on our in-house cluster,

Awan (http://awan.ddns.comp.nus.edu.sg/ganglia/), which contains
72 cluster nodes. The nodes are connected via three high-speed
switches. Each node is equipped with Intel X3430 2.4 GHz pro-
cessor, 8 GB of memory, 2x500GB SATA disks, gigabit ethernet,
and operates CentOS 5.5. The cluster nodes are evenly divided into
three racks. For the experiments, 50 nodes of Awan are reversed
and each node generates 2G TPC-H data. The detail configuration
of the cluster is listed in table 3.
We run some simple read and write benchmark jobs in the clus-

ter to test I/O performance. Specifically, in our cost model, we set
the cost ratio of table 1 as follows: local read (rl) = 1, local write
(wl) =1.2, HDFS read (rh)=1.2, HDFS write (wh)=2 and network

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

10 20 30 40 50

Pr
oc

es
sin

g
Ti

m
e

(s
ec

)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 14: TPC-H Q9

 0
 50

 100
 150
 200
 250
 300
 350
 400

10 20 30 40 50

Pr
oc

es
sin

g
Ti

m
e

(s
ec

)

Number of Nodes

HIVE-UO
HIVE-MO

AQUA

Figure 15: TPC-H Q10

 0
 50

 100
 150
 200
 250
 300
 350
 400

10 20 30 40 50

Pr
oc

es
sin

g
Ti

m
e

(s
ec

)

Number of Nodes

HIVE-MO
AQUA

Figure 16: Performance of Shared Scan

Table 3: Cluster Settings
Parameter Value
Size of Data Chunk 512M
Reducers per Node 1
Maximal Concurrent Mappers 2
Maximal Memory 4G
Replication Factor 3
Default Node Number 50
Data per Node 2G

I/O (µ)=1.2. CPU ratio (ν) is set to 0 in these experiments as most
TPC-H queries are I/O intensive jobs. In our experiments, the clus-
ter is reserved exclusively and therefore, we assume the I/O perfor-
mance is consistent. In the public Cloud, such as Amazon EC2, the
optimizer runs the benchmarks periodically to collect the real-time
I/O performance.
For comparison purposes, we list the performances of three plans:

HIV E−MO (Hive-Manually Optimized) denotes the plans adopted
by Hive’s Benchmark [20], where all queries have been manu-
ally optimized for better performance; AQUA represents the best
plan generated by our query optimizer; and HIV E − UO (Hive-
Unoptimized) is the worst plan based on our cost model. We test
all the TPC-H queries and list the results of query Q3, Q5, Q8, Q9
and Q10. These queries provide the representative results. The rest
of the queries either show a similar performance or are too simple
to optimize, such as Q1 and Q6. Each query is run 10 times and we
compute the average performance.

6.1 Effect of Query Optimization
Figure 8 lists the overall performance of selected queries. In this

figure, we also show the performance of Pig [24], which is denoted
by PIG − MO. In our settings, Pig translates TPC-H queries
into MapReduce jobs using the same plans as HIV E − MO. We
find that PIG − MO performs worse than HIV E − MO for all
queries, which is also verified by [27]. Therefore, in the remaining
experiments, we omit the results of PIG − MO.
In all cases, AQUA performs the best, which shows the effec-

tiveness of our query optimization. For simple queries such as Q3
and Q10, AQUA generates two MapReduce jobs. One job per-
forms the replicated join to process all the join operations, while
the other job is used to do the “group by" and aggregations. For
Q5, HIV E − UO results in an “out of memory" exception for
Hive, but before it triggers the exception, its running time is much
longer than that of other schemes. In fact, HIV E − UO gener-
ates some bad plans that cannot exploit all processing nodes (see
section 4.2.2). For Q8 and Q9, AQUA performs significantly better

than HIV E − MO, because both queries are complex (involving
eight and six tables, respectively). In that case, it is difficult to man-
ually optimize the query plan, while our query optimizer is able to
deliver its superior performance.
To illustrate the effect of replicated join, in AQUA-, we do not

perform the first phase of our optimization. Namely, the optimizer
just tries to generate a plan with the optimized join order. AQUA
performs much better than AQUA− for all queries, which verifies
that the replicated join can significantly reduce the processing cost.
Figure 9 shows the cost of query optimization. For all the TPC-H

queries, our optimizer can complete its plan selection within sec-
onds. Compared to the query processing cost, optimization cost is
negligible.
Figure 10 shows the accuracy of our query optimizer. We pick

the first five query plans output by our optimizer for Q5 and show
the plan’s estimated cost and processing time. The optimizer em-
ploys a cost model to evaluate the costs of relational operators in
the MapReduce framework, which considers both I/O cost and net-
work cost. The estimated cost is used to predict the efficiency of
a query plan and the optimizer selects the plan with minimal esti-
mated cost to execute a query. In Figure 10, we observe that when a
plan has a higher estimated cost, it always requires more processing
time, which verifies the accuracy of our optimizer.

6.2 Effect of Scalability
In this experiment, we evaluate the scalability of different schemes.

In Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15, the
number of nodes varies from 10 to 50, and correspondingly, the
total size of the data increases from 20G to 100G. The figures re-
spectively show the performance of Q3, Q5, Q8, Q9 and Q10.
In our experiments, AQUA andHIV E −MO show linear scal-

ability for all queries. But HIV E − UO results in an “out of
memory" exception for TPC-H Q5. This is caused by a plan that
shuffles most intermedia results to a few reducers. When data size
keeps increasing, the memory will become insufficient for some
reducers eventually. Therefore, selecting good plans is extremely
important for large-scale datasets.
AQUA performs better thanHIV E−MO for different reasons.

For Q3 and Q10, as mentioned before, AQUA generates a single job
to process all join operations. This strategy avoids repeatedly writ-
ing and reading data from HDFS. For Q5, AQUA adopts a similar
plan as HIV E − MO, except that it processes N !" R !" S in a
single job. However, as nation and region are two smallest tables
in TPC-H, AQUA achieves less improvement by applying the repli-
cated join. The biggest performance gap is observed in Q8 and Q9.
For these two queries, AQUA’s plans are quite different from those
of HIV E − MO. AQUA generates two replicated joins for each
query and adopts the bushy plans to combine the results. Com-

pared to HIV E − MO, the space of candidate plans in AQUA
is extended to include more possible plans. Therefore, AQUA can
perform better than HIV E − MO.
Figure 16 shows the effect of shared scan approach. We use Q17

in TPC-H as an example. Q17 accesses lineitem in the outer query
and the inner nested query. By applying shared scan strategy, we
only need to scan lineitem once, which can greatly reduce the I/O
costs and hence improve the performance.

7. CONCLUSION
In this paper, we have presented the design and implementation

of our query optimizer, AQUA, for MapReduce-based data ware-
house systems. Given an SQL-like query, AQUA generates a se-
quence of MapReduce jobs, which minimizes the cost query pro-
cessing. AQUA adopts a two-phase optimization scheme. In the
first phase, join operators are organized into various groups and one
MapReduce job is generated for each group. In the second phase,
a cost-based scheme is employed to search for an optimized plan
that combines the results of different join groups. To reduce the
search space, AQUA applies the features of the MapReduce frame-
work to prune the search space. In particular, we consider both the
left-deep and bushy plans. Also, we avoid generating a plan that
under-utilizes computing resources. We evaluate our approach by
running TPC-H queries on our in-house cluster. The result verifies
the effectiveness of our proposed query optimizer.

8. ACKNOWLEDGEMENTS
The work of Sai Wu, Feng Li and Beng Chin Ooi are supported

in part by the Ministry of Education of Singapore (Grant No. R-
252-000-394-112). We also thank the anonymous reviewers for
their insightful comments.

9. REFERENCES
[1] http://hadoop.apache.org.
[2] http://wiki.apache.org/hadoop/hive/languagemanual/ joins.
[3] http://www.aster.com.
[4] http://www.greenplum.com.
[5] http://www.tpc.org/tpch/.
[6] F. N. Afrati and J. D. Ullman. Optimizing joins in a

map-reduce environment. EDBT, 2009.
[7] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and

J. B. Rothnie, Jr. Query processing in a system for distributed
databases (sdd-1). ACM Trans. Database Syst.,
6(4):602–625, 1981.

[8] Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H. T.
Vo, S. Wu, and Q. Xu. Es2: A cloud data storage system for
supporting both oltp and olap. In ICDE, pages 291–302,
2011.

[9] S. Chaudhuri. An overview of query optimization in
relational systems. In PODS, pages 34–43, 1998.

[10] C. Chen, G. Chen, D. Jiang, B. C. Ooi, L. Shi, H. T. Vo, and
S. Wu. E3: an elastic execution engine for scalable data
processing. Technical Report, National University of
Singapore, School of Computing. TRA07/11, 2011.

[11] C. Chen, G. Chen, D. Jiang, B. C. Ooi, H. T. Vo, S. Wu, and
Q. Xu. Providing scalable database services on the cloud. In
WISE, pages 1–19, 2010.

[12] G. Chen, H. T. Vo, S. Wu, B. C. Ooi, and M. T. Özsu. A
framework for supporting dbms-like indexes in the cloud. In
VLDB, 2011.

[13] M.-S. Chen, P. S. Yu, and K.-L. Wu. Optimization of parallel
execution for multi-join queries. IEEE Trans. on Knowl. and
Data Eng., 8(3):416–428, 1996.

[14] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. Mapreduce online. Technical
report, EECS Department, University of California,
Berkeley, Oct 2009.

[15] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. pages 137–150.

[16] M. J. Franklin, B. T. Jónsson, and D. Kossmann.
Performance tradeoffs for client-server query processing.
SIGMOD Rec., 25(2):149–160, 1996.

[17] E. Friedman, P. Pawlowski, and J. Cieslewicz.
Sql/mapreduce: a practical approach to self-describing,
polymorphic, and parallelizable user-defined functions.
VLDB, 2009.

[18] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query
optimization for parallel execution. SIGMOD Rec., 21(2),
1992.

[19] M. Jarke and J. Koch. Query optimization in database
systems. ACM Comput. Surv., 16(2):111–152, 1984.

[20] Y. Jia. Running tpc-h queries on hive. In
http://issues.apache.org/jira/browse/HIVE-600, 2009.

[21] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of
mapreduce: An in-depth study. PVLDB, 3(1):472–483, 2010.

[22] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu. Llama:
leveraging columnar storage for scalable join processing in
the mapreduce framework. In SIGMOD Conference, pages
961–972, 2011.

[23] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas. Mrshare: Sharing across multiple queries in
mapreduce. In VLDB, 2010.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In SIGMOD, 2008.

[25] K. Ono and G. M. Lohman. Measuring the complexity of
join enumeration in query optimization. In VLDB, pages
314–325, 1990.

[26] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita.
Improved histograms for selectivity estimation of range
predicates. SIGMOD Rec., 25(2), 1996.

[27] R. Stewart. Performance and programmability comparison
mapreduce query languages. In Master Thesis, Heriot-Watt
University, 2010.

[28] A. Thusoo, R. Murthy, J. S. Sarma, Z. Shao, N. Jain,
P. Chakka, S. Anthony, H. Liu, and N. Zhang. Hive - a
petabyte scale data warehousing using hadoop. In ICDE,
2010.

[29] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wychoff, and R. Murthy. Hive - a
warehousing solution over a map-reduce framework. In
VLDB, 2009.

[30] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Job scheduling for multi-user
mapreduce clusters. In Technical Report,
UCB/EECS-2009-55, University of California at Berkeley,
2009.

