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Abstract The Big Data problem is characterized by the so
called 3V features: Volume - a huge amount of data, Ve-
locity - a high data ingestion rate, and Variety - a mix of
structured data, semi-structured data, and unstructured data.
The state-of-the-art solutions to the Big Data problem are
largely based on the MapReduce framework (aka its open
source implementation Hadoop). Although Hadoop handles
the data volume challenge successfully, it does not deal with
the data variety well since the programming interfaces and
its associated data processing model is inconvenient and in-
efficient for handling structured data and graph data.

This paper presents epiC, an extensible system to tack-
le the Big Data’s data variety challenge. epiC introduces
a general Actor-like concurrent programming model, inde-
pendent of the data processing models, for specifying par-
allel computations. Users process multi-structured dataset-
s with appropriate epiC extensions, the implementation of
a data processing model best suited for the data type and
auxiliary code for mapping that data processing model into
epiC’s concurrent programming model. Like Hadoop, pro-
grams written in this way can be automatically parallelized
and the runtime system takes care of fault tolerance and
inter-machine communications. We present the design and
implementation of epiC’s concurrent programming model.
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We also present two customized data processing models,
an optimized MapReduce extension and a relational mod-
el, on top of epiC. We show how users can leverage epiC
to process heterogeneous data by linking different types of
operators together. To improve the performance of complex
analytic jobs, epiC supports a partition-based optimization
technique where data are streamed between the operators to
avoid the high I/O overheads. Experiments demonstrate the
effectiveness and efficiency of our proposed epiC.
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1 Introduction

Many of today’s enterprises are encountering the Big Data
problems. A Big Data problem has three distinct characteris-
tics (so called 3V features): the data volume is huge; the data
type is diverse (mixture of structured data, semi-structured
data and unstructured data); and the data producing velocity
is very high. These 3V features pose a grand challenge to
traditional data processing systems since these systems ei-
ther cannot scale to the huge data volume in a cost effective
way or fail to handle data with variety of types [3][7].

A popular approach to process Big Data is to use the
MapReduce programming model and its open source imple-
mentation Hadoop [8][1]. The advantage of MapReduce is
that the system tackles the data volume challenge success-
fully and is resilient to machine failures [8]. Unfortunately,
the MapReduce programming model does not handle the da-
ta variety problem well - while it manages certain unstruc-
tured data (e.g., plain text data) effectively, the programming
model and its associated data processing scheme is inconve-
nient and inefficient for processing structured data and graph
data that require DAG (Directed Acyclic Graph) like com-
putation and iterative computation [21,3,29,26,36]. Thus,
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systems like Dryad [18] and Pregel [26] are built to process
those kinds of analytical tasks.

As a result, to handle the data variety challenge, the state-
of-the-art approach favors a hybrid architecture [3,11]. The
approach employs a hybrid system to process multi-structured
datasets (i.e., datasets containing a variety of data types:
structured data, text, graph). The multi-structured dataset is
stored in a variety of systems based on types (e.g., struc-
tured data are stored in a database, unstructured data are
stored in Hadoop). Then, a split execution scheme is em-
ployed to process those data. The scheme splits the whole
data analytical job into sub-jobs and choose the appropriate
systems to perform those sub-jobs based on the data types.
For example, the scheme may choose MapReduce to pro-
cess text data, database systems to process relational da-
ta, and Pregel to process graph data. Finally, the output of
those sub-jobs will be loaded into a single system (Hadoop
or database) with proper data formation to produce the final
results. Even though the hybrid approach is able to employ
the right data processing system to process the right type of
data, it introduces complexity in maintaining several cluster-
s (i.e., Hadoop cluster, Pregel cluster, database cluster) and
the overhead of frequent data formation and data loading for
merging output of sub-jobs during data processing.

This paper presents a new system called epiC to tackle
the Big Data’s data variety challenge. The major contribu-
tion of this work is an architectural design that enables users
to handle multi-structured data in the most effective and effi-
cient way within a single system. We found that although d-
ifferent systems (Hadoop, Dryad, Database, Pregrel) are de-
signed for different types of data, they all share the same
shared-nothing architecture and decompose the whole com-
putation into independent computations for parallelization.
The differences between them are the types of independent
computation that these systems allow and the computation
patterns (intermediate data transmission) that they employ
to coordinate those independent computations. For exam-
ple, MapReduce only allows two kinds of independent com-
putations (i.e., map and reduce) and only allows transmit-
ting intermediate data between mappers and reducers. DAG
systems like Dryad allow arbitrary number of independent
computations and DAG-like data transmission. Graph pro-
cessing systems like Pregel employ recursive /iterative data
transmission. Therefore, if we can decompose the computa-
tion and communication pattern by building a common run-
time system for running independent computations and de-
veloping plug-ins for implementing specific communication
patterns, we are able to run all those kinds of computation-
s in a single system. To achieve this goal, epiC adopts an
extensible design. The core abstraction of epiC is an Actor-
like concurrent programming model which is able to execute
any number of independent computations (called units). On
top of it, epiC provides a set of extensions that enable users
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to process different types of data with different types of da-
ta processing models (MapReduce, DAG or Graph). In our
current implementation, epiC supports two data processing
models, namely MapReduce and relation database model.

The concrete design of epiC is summarized as follows.
The system employs a pure shared-nothing design. The un-
derlying storage system (e.g., DFS, key-value store or dis-
tributed database) is accessible to all processing units. The
unit performs its I/O operations and user-defined jobs inde-
pendently without communications with others. When the
job is done, it sends messages to the master network, which
helps disseminate them. Note that the message only contains
the control information and metadata of the intermediate re-
sults. In epiC, there is no shuffling phase, as all units access
the distributed storage system directly. Second, epiC does
not enforce units to communicate with each other through
a DAG (Directed Acyclic Graph). All units are equivalent,
except for their roles in processing. The processing flow is
represented as a message flow, which is handled by the mas-
ter network. This flexible design provides the users more
opportunities to customize their implementations for opti-
mal performance. The equal-join algorithm will be used to
illustrate this point.

The rest of the paper is organized as follows. Section 2
shows the overview of epiC and motivates our design with
an example. Section 3 presents the programming abstrac-
tions introduced in epiC, focusing on the concurrency pro-
gramming model and the MapReduce extension. In Section
4, we show how epiC can be extended to support the pro-
cessing of heterogeneous data, and in Section 5, we present
a novel optimization technique adopted in epiC. Section 6
presents the internals of epiC. Section 7 evaluates the per-
formance and scalability of epiC based on a selected bench-
mark of tasks. Section 8 presents related work. Finally, we
conclude this paper in Section 9.
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2 Overview of epiC

epiC adopts the Actor-like programming model. Each unit
applies the user-defined logic to process the data from the
underlying storage system independently in an asynchro-
nized way. The only way to communicate with the other u-
nits is through message passing. However, unlike existing
systems such as Dryad and Pregel [26], units cannot interact
directly in epiC. All their messages are sent to the master
network and then disseminated to the corresponding recipi-
ents. The master network is similar to the mail servers in the
email system. Figure 1 shows an overview of epiC.

2.1 Programming Model

From the point of view of a unit, it works in an isolated way.
A unit becomes activated when it receives a message from
the master network. Based on the message content, it adap-
tively loads data from the storage system and applies the
user-written codes to consume the data. After completing
the process, the unit writes the results back to the storage
system and the information of the intermediate results are
summarized in a message forwarded to the master network.
Then, the unit becomes inactive, waiting for the next mes-
sage. Units are not aware of the existence of each other. The
only way of communications is via the master network.

The master network consists of several synchronized mas-
ters, which are responsible for three services: naming ser-
vice, message service and schedule service. Naming ser-
vice assigns a unique namespace to each unit. In particular,
we maintain a two-level namespace. The first level names-
pace indicates a group of units running the same user code.
For example, in Figure 1, all units share the same first lev-
el namespace PageRank [28]. The second level namespace
distinguishes the unit from the others. epiC allows the users
to customize the second level namespace. Suppose we wan-
t to compute the PageRank values for a graph with 10,000
vertices. We can use the vertex ID range as the second lev-
el namespace. Namely, we evenly partition the vertex IDs
into small ranges. Each range is assigned to a unit. A possi-
ble full namespace may be “[0, 999]@PageRank”, where @
is used to concatenate the two namespaces. The master net-
work maintains a mapping relationship between the names-
pace and the IP address of the corresponding unit process.

Based on the naming service, the master network col-
lects and disseminates the messages to different units. The
workload is balanced among the masters and we keep the
replicas for the messages for fault tolerance. Note that in
epiC, the message only contains the meta-information of the
data. The units do not transfer the intermediate results via
the message channel as in the shuffle phase of MapReduce.
Therefore, the message service is a light-weight service with
low overhead.

The schedule service of master network monitors the s-
tatus of the units. If a failed unit is detected, a new unit will
be started to take over its job. On the other hand, the sched-
ule service also activates/deactivates units when they receive
new messages or complete the processing. When all units
become inactive and no more messages are maintained by
the master network, the scheduler terminates the job.

Formally, the programming model of epiC is defined by
a triple < M,U, S >, where M is the message set, U is
the unit set and S is the dataset. Let N and U denote the
universes of the namespace and data URIs. For a message
m ∈ M , m is expressed as:

m := {(ns, uri)|ns ∈ N ∧ uri ∈ U}

We define a projection π function for m as:

π(m,u) = {(ns, uri)|(ns, uri) ∈ m ∧ ns = u.ns}

Namely, π returns the message content sharing the same
namespace with u. π can be applied to M to recursively
perform the projection. Then, the processing logic of a unit
u in epiC can be expressed by function g as:

g := π(M,u)× u× S → mout × S′

S′ denotes the output data and mout is the message to the
master network satisfying:

∀s ∈ S′ ⇒ ∃(ns, uri) ∈ mout ∧ ρ(uri) = s

where ρ(uri) maps a URI to the data file. After the process-
ing, S is updated as S∪S′. As the behaviors of units running
the same code are only affected by their received messages,
we use (U, g) to denote a set of units running code g. Finally,
the job J of epiC is represented as:

J := (U, g)+ × Sin ⇒ Sout

Sin is the initial input data, while Sout is the result data.
The job J does not specify the order of execution of dif-
ferent units, which can be controlled by users for different
applications.

2.2 Comparison with Other Systems

To appreciate the workings of epiC, we compare the way the
PageRank algorithm is implemented in MapReduce (Figure
2), Pregel (Figure 3) and epiC (Figure 4). For simplicity,
we assume the graph data and score vector are maintained
in the DFS. Each line of the graph file represents a vertex
and its neighbors. Each line of the score vector records the
latest PageRank value of a vertex. The score vector is small
enough to be buffered in memory.

To compute the PageRank value, MapReduce requires a
set of jobs. Each mapper loads the score vector into memo-
ry and scans a chunk of the graph file. For each vertex, the
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mapper looks up its score from the score vector and then
distributes its scores to the neighbors. The intermediate re-
sults are key-value pairs, where key is the neighbor ID and
value is the score assigned to the neighbor. In the reduce
phase, we aggregate the scores of the same vertex and apply
the PageRank algorithm to generate the new score, which is
written to the DFS as the new score vector. When the cur-
rent job completes, a new job starts up to repeat the above
processing until the PageRank values converge.

Compared to MapReduce, Pregel is more effective in
handling iterative processing. The graph file is preloaded in
the initial process and the vertices are linked based on their
edges. In each super-step, the vertex gets the scores from it-
s incoming neighbors and applies the PageRank algorithm
to generate the new score, which is broadcast to the outgo-
ing neighbors. If the score of a vertex converges, it stops the
broadcasting. When all vertices stop sending messages, the
processing can be terminated.

The processing flow of epiC is similar to Pregel. The
master network sends messages to the unit to activate it. The
message contains the information of partitions of the graph
file and the score vectors generated by other units. The unit
scans a partition of the graph file based on its namespace to
compute the PageRank values. Moreover, it needs to load the
score vectors and merge them based on the vertex IDs. As
its namespace indicates, only a portion of the score vector
needs to be maintained in the computation. The new score
of the vertex is written back to the DFS as the new score vec-
tor and the unit sends messages about the newly generated
vector to the master network. The recipient is specified as
“*@PageRank”. Namely, the unit asks the master network
to broadcast the message to all units under the PageRank
namespace. Then, the master network can schedule other u-
nits to process the messages. Although epiC allows the u-
nits to run asynchronously, to guarantee the correctness of
PageRank value, we can intentionally ask the master net-
work to block the messages, until all units complete their
processing. In this way, we simulate the BSP (Bulk Syn-
chronous Parallel Model) as Pregel.

We use the above example to show the design philoso-
phy of epiC and why it performs better than the other two.

Flexibility MapReduce is not designed for such iterative job-
s. Users have to split their codes into the map and re-

duce functions. On the other hand, Pregel and epiC can
express the logic in a more natural way. The unit of
epiC is analogous to the worker in Pregel. Each unit
processes the computation for a set of vertices. How-
ever, Pregel requires to explicitly construct and main-
tain the graph, while epiC hides the graph structure by
namespace and message passing. We note that maintain-
ing the graph structure, in fact, consumes many system
resources, which can be avoided by epiC.

Optimization Both MapReduce and epiC allow customized
optimization. For example, the Haloop system [6] buffer-
s the intermediate files to reduce the I/O cost and the u-
nits in epiC can maintain their graph partitions to avoid
repeated scan. Such customized optimization is difficult
to implement in Pregel.

Extensibility In MapReduce and Pregel, the users must fol-
low the pre-defined programming model (e.g., map-reduce
model and vertex-centric model), whereas in epiC, the
users can design their customized programming model.
We will show how the MapReduce model and the rela-
tional model are implemented in epiC. Therefore, epiC
provides a more general platform for processing parallel
jobs.

3 The epiC Abstractions

epiC distinguishes two kinds of abstractions: a concurrent
programming model and a data processing model. A concur-
rent programming model defines a set of abstractions (i.e.,
interfaces) for users to specify parallel computations con-
sisting of independent computations and dependencies be-
tween those computations. A data processing model defines
a set of abstractions for users to specify data manipulation
operations. Figure 5 shows the programming stack of epiC.
Users write data processing programs with extensions. Each
extension of epiC provides a concrete data processing model
(e.g., MapReduce extension offers a MapReduce program-
ming interface) and auxiliary code (shown as a bridge in Fig-
ure 5) for running the written program on the epiC’s com-
mon concurrent runtime system.

We point out that the data processing model is problem
domain specific. For example, a MapReduce model is best
suited for processing unstructured data, a relational model
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Fig. 5 The Programming Stack of epiC

is best suited for structured data and a graph model is best
suited for graph data. The common requirement is that pro-
grams written with these models are all needed to be par-
allelized. Since Big Data is inherently multi-structured, we
build an Actor-like concurrent programming model for a
common runtime framework and offer epiC extensions for
users to specify domain specific data manipulation opera-
tions for each data type. In the previous section, we have
introduced the basic programming model of epiC. In this
section, we focus on two customized data processing model,
the MapReduce model and relational model. We will show
how to implement them on top of epiC.

3.1 The MapReduce Extension

We first consider the MapReduce framework, and extend it
to work with epiC’s runtime framework. The MapReduce
data processing model consists of two interfaces:

map (k1, v1) → list(k2, v2)
reduce (k2, list(v2)) → list(v2)

Our MapReduce extension reuses Hadoop’s implemen-
tation of these interfaces and other useful functions such as
the partition. This section only describes the auxiliary
support which enables users to run MapReduce programs on
epiC and our own optimizations which are not supported in
Hadoop.

3.1.1 General Abstractions

Running MapReduce on top of epiC is straightforward. We
first place the map() function in a map unit and the reduce()
function in a reduce unit. Then, we instantiate M map unit-
s and R reduce units. The master network assigns a unique
namespace to each map and reduce unit. In the simplest case,
the name addresses of the units are like “x@MapUnit” and
“y@ReduceUnit”, where 0 ≤ x < M and 0 ≤ y < R.

Based on the namespace, the MapUnit loads a partition
of input data and applies the customized map() function to
process it. The results are a set of key-value pairs. Here, a
partition() function is required to split the key-value
pairs into multiple HDFS files. Based on the application’s
requirement, the partition() can choose to sort the data
by keys. By default, the partition() simply applies the

hash function to generate R files and assigns a namespace
to each file. The meta-data of the HDFS files are composed
into a message, which is sent to the master network. The
recipient is specified as all the ReduceUnit.

The master network then collects the messages from al-
l MapUnits and broadcasts them to the ReduceUnit.
When a ReduceUnit starts up, it loads the HDFS files
that share the same namespace with it. A possible merge-
sort is required, if the results should be sorted. Then, the
customized reduce() function is invoked to generate the
final results.

class Map implements Mapper {
void map() {
}

}
class Reduce implements Reducer {
void reduce() {
}

}
class MapUnit implements Unit {
void run(LocalRuntime r, Input i, Output o) {

Message m = i.getMessage();
InputSplit s = m[r.getNameAddress()];
Reader reader = new HdfsReader(s);
MapRunner map = new MapRunner(reader, Map());
map.run();
o.sendMessage("*@ReduceUnit",

map.getOutputMessage());
}

}
class ReduceUnit implements Unit {
void run(LocalRuntime r, Input i, Output o) {

Message m = i.getMessage();
InputSplit s = m[r.getNameAddress()];
Reader in = new MapOutputReader(s);
ReduceRunner red = new ReduceRunner(in,

Reduce());
red.run();

}
}

Here, we highlight the advantage of our design deci-
sion to decouple the data processing model and the con-
current programming model. Suppose we want to extend
the MapReduce programming model to the Map-Reduce-
Merge programming model [36]. All we need to do is to
add a new unit mergeUnit() and modify the codes in
the ReduceUnit to send messages to the master network
for declaring its output files. Compared to this non-intrusive
scheme, Hadoop needs to make dramatic changes to its run-
time system to support the same functionality [36] since
Hadoop’s design bundles data processing model with con-
current programming model.

3.1.2 Optimizations for MapReduce

In addition to the basic MapReduce implementation which
is similar to Hadoop, we add an optimization for map unit
data processing. We found that the map unit computation is
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CPU-bound instead of I/O bound. The high CPU cost comes
from the final sorting phase.

The Map unit needs to sort the intermediate key-value
pairs since MapReduce requires the reduce function to pro-
cess key-value pairs in an increasing order. Sorting in MapRe-
duce is expensive since 1) the sorting algorithm (i.e., quick
sort) itself is CPU intensive and 2) the data de-serialization
cost is not negligible. We employ two techniques to improve
the map unit sorting performance: 1) order-preserving se-
rialization and 2) high performance string sort (i.e., burst
sort).

Definition 1 For a data type T , an order-preserving serial-
ization is an encoding scheme which serializes a variable
x ∈ T to a string sx such that, for any two variables x ∈ T
and y ∈ T , if x < y then sx < sy in string lexicographical
order.

In other words, the order-preserving serialization scheme
serializes keys so that the keys can be ordered by directly
sorting their serialized strings (in string lexicographical or-
der) without de-serialization. Note that the order-preserving
serialization scheme exists for all Java built-in data types.

We adopt burst sort algorithm to order the serialized strings.
We choose burst sort as our sorting technique since it is spe-
cially designed for sorting large string collections and has
been shown to be significantly faster than other candidates
[31]. We briefly outline the algorithm here. Interested read-
ers should refer to [31] for details. The burst sort technique
sorts a string collection in two passes. In the first pass, the
algorithm processes each input string and stores the pointer
of each string into a leaf node (bucket) in a burst trie. The
burst trie has a nice property that all leaf nodes (buckets) are
ordered. Thus, in the second pass, the algorithm processes
each bucket in order, applies a standard sorting technique
such as quick sort to sort strings, and produces the final
results. The original burst sort requires a lot of additional
memory to hold the trie structure and thus does not scale
well to a very large string collection. We, thus, developed a
memory efficient burst sort implementation which requires
only 2 bits of additional space for each key entry. We al-
so use the multi-key quick sort algorithm [5] to sort strings
resided in the same bucket.

Combining the two techniques (i.e., order-preserving se-
rialization and burst sort), our sorting scheme outperforms
Hadoop’s quick sort implementation by a factor of three to
four.

3.2 Relational Model Extension

As pointed out earlier, for structured data, the relational data
processing model is most suited. Like the MapReduce ex-
tensions, we can implement the relational model on top of
epiC.

SingleTableUnit SingleTableUnit SingleTableUnit
Relational Data of Customer/Orders/Lineitemselect c_custkey from Customer where c_mktsegment = ':1' select o_orderdate, o_custkey, o_orderkey, o_shippriority from Orders where o_orderdate < date ':2' select l_orderkey, l_extendedprice, l_discount from Lineitem where l_shipdate > date ':2'

Master networkPartition info of Customer Partition info of Orders Partition info of Lineitem
Fig. 6 Step 1 of Q3

3.2.1 General Abstractions

Currently, three core units (SingleTableUnit, JoinUnit
and AggregateUnit) are defined for the relational mod-
el. They are capable of handling non-nested SQL queries.
The SingleTableUnit processes queries that involve
only a partition of a single table. The JoinUnit reads par-
titions from two tables and merge them into one partition
of the join table. Finally, the AggregateUnit collects the
partitions of different groups and computes the aggregation
results for each group. The abstractions of these units are
shown below. Currently, we adopt the synchronization mod-
el as in MapReduce. Namely, we will start the next types of
units, only when all current units complete their processing.
We will study the possibility of creating a pipeline model in
future work. Due to space limitation, we only show the most
important part.

class SingleTableQuery implements DBQuery {
void getQuery() {
}

}
class JoinQuery implements DBQuery {
void getQuery() {
}

}
class AggregateQuery implements DBQuery {
void getQuery() {
}

}
class SingleTableUnit implements Unit {
void run(LocalRuntime r, Input i, Output o) {

Message m = i.getMessage();
InputSplit s = m[r.getNameAddress()];
Reader reader = new TableReader(s);
EmbededDBEngine e =

new EmbededDBEngine(reader, getQuery());
e.process();
o.sendMessage(r.getRecipient(),

e.getOutputMessage());
}

}
class JoinUnit implements Unit {
void run(LocalRuntime r, Input i, Output o) {

Message m = i.getMessage();
InputSplit s1 = m[r.getNameAddress(LEFT\_TABLE)];
InputSplit s2 = m[r.getNameAddress(RIGHT\_TABLE)];
Reader in1 = new MapOutputReader(s1);
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Create Partition JoinView1 as (Lineitem join Orders)
Partition info of the Partial Results of Lineitem and OrdersJoinUnit

Partial Results of Customer/Lineitem
Master network

Fig. 7 Step 2 of Q3

Create Partition JoinView2 as (Customer join JoinView1)
Partition info of the Partial Results of Customer and JoinView1JoinUnit

Partial Results of Customer/JoinView1
Master network

Fig. 8 Step 3 of Q3

Select * from JoinView2 Group By o_orderdate, o_shippriority
Partition info of the Partial Results of JoinView2SingleTableUnit

Partial Results of JoinView2
Master network

Fig. 9 Step 4 of Q3

AggregateUnit
Partial Results of Group ByCompute Aggregation Results for Each Group

Master networkPartition info of Groups

Fig. 10 Step 5 of Q3

Reader in2 = new MapOutputReader(s2);
EmbededDBEngine e =

new EmbededDBEngine(in1, in2, getQuery());
e.process();
o.sendMessage(r.getRecipient(),

e.getOutputMessage());
}

}
class AggregateUnit implements Unit {
void run(LocalRuntime r, Input i, Output o) {

Message m = i.getMessage();
InputSplit s = m[r.getNameAddress()];
Reader in = new MapOutputReader(s);
EmbededDBEngine e =

new EmbededDBEngine(in, getQuery());
e.process();

}
}

The abstractions are straightforward and we discard the
detailed discussion. In each unit, we embed a customized
query engine, which can process single table queries, join
queries and aggregations. We have not specified the recip-
ients of each message in the unit abstraction. This must be
implemented by users for different queries. However, as dis-
cussed later, we provide a query optimizer to automatically
fill in the recipients. To show how users can adopt the above
relational model to process queries, let us consider the fol-
lowing query (a variant of TPC-H Q3):

SELECT l orderkey, sum(l extendedprice*(1-l discount))
as revenue, o orderdate, o shippriority

FROM customer, orders, lineitem
WHERE c mktsegment = ’:1’ and c custkey = o custkey

and l orderkey = o orderkey and o orderdate
< date ’:2’ and l shipdate > date ’:2’

Group By o orderdate, o shippriority

Figure 6 to Figure 10 illustrate the processing of TPC-
H Q3 in epiC. In step 1 (Figure 6), three different types
of the SingleTableUnits are started to process the se-
lect/project operators of Lineitem, Orders and Customer re-
spectively. Note that those SingleTableUnits run the
same code. The only differences are their name addresses
and processed queries. The results are written back to the
storage system (either HDFS or distributed database). The
meta-data of the corresponding files are forwarded to the
JoinUnits.

In step 2 and step 3 (Figures 7 and 8), we apply the hash-
join approach to process the data. In previous step, the out-
put data are partitioned by the join keys. So the JoinUnit
can selectively load the paired partitions to perform the join.
We will discuss other possible join implementations in the
next section.

Finally, in step 4 (Figure 9), we perform the group opera-
tion for two attributes. As the join results are partitioned into
multiple chunks, one SingleTableUnit can only gener-
ate the grouping results for its own chunk. To produce the
complete grouping results, we merge groups generated by
different SingleTableUnits. Therefore, in step 5 (Fig-
ure 10), one AggregateUnit needs to load the partitions
generated by all SingleTableUnits for the same group
to compute the final aggregation results.

Our relational model simplifies the query processing, as
users only need to consider how to partition the tables by
the three units. Moreover, it also provides the flexibility of
customized optimization.

3.2.2 Optimizations for Relational Model

The relational model on epiC can be optimized in two layers,
the unit layer and the job layer.

In the unit layer, the user can adaptively combine the
units to implement different database operations. They can
even write their own units, such as ThetaJoinUnit, to
extend the functionality of our model. In this section, we use
the euqi-join as an example to illustrate the flexibility of the
model. Figure 11 shows how the basic equi-join (S ◃▹ T ) is
implemented in epiC. We first use the SingleTableUnit
to scan the corresponding tables and partition the tables by
join keys. Then, the JoinUnit loads the corresponding
partitions to generate the results. In fact, the same approach
is also used in processing Q3. We partition the tables by the
keys in step 1 (Figure 6). So the following JoinUnits can
perform the join correctly.

However, if most of the tuples in S do not match tuples
of T , semi-join is a better approach to reduce the overhead.
Figure 12 illustrates the idea. The first SingleTableUnit
scans table S and only outputs the keys as the results. The
keys are used in the next SingleTableUnit to filter the
tuples in T that cannot join with S. The intermediate results
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SingleTableUnit
Table S and T
Master network

SingleTableUnitselect * from S partitioned by S.key select * from T partitioned by T.foreignkey JoinUnit
Table S and T
Master network

select * from S, T where S.key=T.foreignkey
Fig. 11 Basic Join Operation

SingleTableUnit
Table S

Master network
Create Partition Tmp as (select key from S) SingleTableUnit

Table T and Tmp
Master network

Create Partition Tmp2 as(select * from T where T.foreignkey in (select * from Tmp)) JoinUnit
Table S and Tmp2

Master network
select * from S, Tmp2 where S.key =Tmp2.foreignkey

Fig. 12 Semi-Join Operation

are joined with S in the last JoinUnit to produce the final
results. As shown in the example, semi-join can be efficient-
ly implemented using our relational model.

In the job layer, we offer a general query optimizer to
translate the SQL queries into an epiC job. Users can lever-
age the optimizer to process their queries, instead of writing
the codes for the relational model by themselves. The op-
timizer works as a conventional database optimizer. It first
generates an operator expression tree for the SQL query and
then groups the operators into different units. The message
flow between units is also generated based on the expres-
sion tree. To avoid a bad query plan, the optimizer estimates
the cost of the units based on the histograms. Currently, we
only consider the I/O costs. The optimizer will iterate over
all variants of the expression trees and select the one with
the minimal estimated cost. The corresponding epiC job is
submitted to the processing engine for execution. Figure 13
shows how the expression tree is partitioned into units for
Q3.

The query optimizer acts as the AQUA [35] for MapRe-
duce or PACTs compiler in Nephele [4]. But in epiC, the
DAG between units are not used for data shuffling as in
Nephele. Instead, all relationships between units are main-
tained through the message passing and namespaces. All u-
nits fetch their data from the storage system directly. This
design follows the core concept of Actor model. The advan-
tage is three-fold: 1) we reduce the overhead of maintaining
the DAG; 2) we simplify the model as each unit runs in an
isolated way; 3) the model is more flexible to support com-
plex data manipulation jobs (either synchronized or asyn-
chronized).

lineitem ordersσ l_shipdate>date ‘:2’π (l_orderkey, l_extendedprice, l_discount)
σ o_orderdate<date ‘:2’π (o_orderkey, o_custkey, o_orderdate, o_shippriority) customerσ c_mktsegment=date ‘:1’π (c_custkey)

GroupByo_orderdaye, o_shippriorirysum(l_extendedprice * (1 - l_discount)) as revenue

SingleTableUnit SingleTableUnit SingleTableUnit

JoinUnit JoinUnitSingleTableUnitAggregateUnit

Fig. 13 Job Plan of Q3

Product Supplier

Customer Employee

provided by

report to

purchased by

Email

Served By

complain

Fig. 14 Data Analysis on Heterogeneous Data

4 Processing Heterogeneous data

Data is expected to grow by 800% over the next five years,
and 80% of it will be unstructured1. Most business infor-
mation are maintained in the unstructured form, such as e-
mail, phone record, PowerPoint slides and Word documents.
Compared to the structured data, which are well managed
and exploited, the similar analytical tool to process the un-
structured data is missing. Even though data mining algo-
rithms and machine learning models have been developed
for analyzing unstructured data, the main problem of corre-
lating the two kinds of datasets (i.e., structured dataset and
unstructured dataset) is still not solved. This is because the
unstructured data are handled separately from the structured
data in the database. To produce more insights, it is a must to
perform the data analytical job on top of the heterogeneous
dataset.

Figure 14 illustrates an example. This example demon-
strates a business with four entities: suppliers, products, em-

1 http://www.computerworld.com/s/article/352399/XP Deadline
Haunts IT?source=CTWNLE nlt msft 2010-10-25
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Table 1 Customer

UID Name City Age Gender Income($)
U10001 Jason Mraz New York 23 M 38,218
U10002 Tyler Perry Atlanta 30 M 22,308
U10003 Emily Lee Chicago 46 F 10,483
U10004 John Lewis L.A. 48 M 17,287
U10005 Lucy Chen New York 25 F 10,057

Table 2 Email

DocID Content
100001 Hi, I am Tyler Perry. You guys have built a great product...
100002 Dear Ms Lucy Chen, We are sorry for the disruption of our service...
100003 The service is not well designed, while my friend Emily said... regards Jason Mraz
100004 I am Emily Lee. Thanks for providing such a good product, but...
100005 Dear Mr Jasonn Marz, regarding to your problem, we...

ployees and customers. Suppliers provide products. Employ-
ees (our customer service representatives) report to their man-
agers and serve customers. Customers communicate with
customer service via emails for asking the support of specif-
ic products. The customer emails provide the detail informa-
tion of which customer complains about which product and
how the employees serve the customers. In the database, we
maintain the relational tables for customers, products, sup-
pliers and employees. . Emails are stored a separate file sys-
tem (outside the database). Table 1 and 2 show sample data
of customer table and emails. The customer opinions about
products are hidden in the emails which must be retrieved
using NLP techniques.

We consider the following two queries:

– Find the supplier whose products received the most com-
plains.

– Evaluate the customer satisfaction rate for each manag-
er’s group.

To answer such queries, we need NLP (National Language
Processing) technique to process the unstructured data (e-
mails) and database technique to handle the relational da-
ta. It is not a trivial task to integrate these two techniques
seamlessly into one system. However, due to the flexibili-
ty of epiC, we can effectively support such applications by
enhancing our relational model presented in Section 3.2.

4.1 NLP Operators

Let D denote the document set for processing. For each doc-
ument d, we represent it as a set of keywords d = {k0, ..., kn}.
To support text mining jobs, we implement NLP operators
as epiC units which can be classified as two categories. The
first type of operators are used to search the document set
D and locate the position of a specific keyword k which are
listed as below:

1. search(f , q, ϵ): Given a distant function f , return a doc-
ument set D′ ∈ D which satisfies that

∀di ∈ D′ → ∃kj ∈ di ∧ f(kj , q) < ϵ

If f is edit distance and ϵ = 0, this is exactly the key-
word search.

2. pos(id, f , q, ϵ): Given a document identified by its ID,
return all positions of the keywords that match q under
the distance function f and threshold ϵ.

3. get(id, p, offset): Given a document identified by its ID,
return a text string starting at the position p− offset to
p+ offset.

The second type of operators are used to perform the
complex model-based analysis. Currently, we implement t-
wo operators:

1. entity(id, type) : Given a document identified by its ID,
return all entities of a specific type (e.g., location or per-
son).

2. sentiment(s) : Given a text string, return its semantic
sentiment (e.g., positive, negative or neutral).

To use model-based operators, we must first train the cor-
responding models. In particular, we use CRF model [13]
for entity recognition and feature-based [17] model for sen-
timent analysis. We adopt the two models, as they are easy
to compute in parallel and also incur less storage overheads,
so every epiC unit can buffer those models in its memory.

4.2 Hybrid Join

To answer the example queries, we need to join the unstruc-
tured data with relational tables. We introduce the hybrid
join operator, ◃̄▹ to accomplish the requirement. The hybrid
join is defined as:

Definition 2 Hybrid Join
T ◃̄▹search(f,ci,ϵ)D is a hybrid join between table T and doc-
ument set D on condition |search(f, ci, ϵ)| > 0, where ci is
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Fig. 15 Trie Index

a column of T . For a tuple tj of T , its join result follows the
format of (tj , dx), where dx ∈ search(f, tj .ci, ϵ).

After integrating NLP operators into the relational mod-
el, we can write a hybrid join as:

SELECT count(*), name FROM customer, email
WHERE |email.search(editdis, name, 0)| > 0
GROUP BY name

The above query returns the number of emails which men-
tion the name of a specific customer.

4.2.1 Trie Index

Hybrid join is similar to the string similarity join [12][20][24].
However, we are now comparing two huge string sets (strings
in a column and all words appear in the document set). It is
very expensive to compare each string from one set to all the
strings in the other set. Therefore, we adopt an index-based
approach. Motivated by the idea of trie-join [12], we can
compute the edit distance between the strings with the help
of trie tree index, which is widely used in the string compar-
ison. Trie tree can be also used to compute the jaccard dis-
tance and hamming distance between strings. In the follow-
ing discussion, we will use the edit distance as our example
to illustrate the idea. Figure 15 shows the trie tree for string
set {ann, andy, aldon, emma, jim, jams, tom}. To speed up
the evaluation of NLP operators, the leaf node maintains an
inverted index for the corresponding keyword, recording the
documents containing the keyword and its positions in those
documents.

Trie tree index can be efficiently built via epiC units. Fig-
ure 16 shows how the trie tree of Figure 15 is built. We first
create some scan units which iterate all keywords in the doc-
uments. Then, keywords sharing the same prefix (e.g., {an,
al, em, ji, ja, to}) is shuffled to the same merge unit where
a local trie tree is built for each prefix. Finally, the roots of
local trie trees are forwarded to one merge unit which will
generate a global tree denoting all keywords in the document
set.

Scan Unit

Scan Unit

Scan Unit

...

ann

andy

aldon

emma

jim

james

tom

Merge Unit

Merge Unit

Merge Unit

Merge Unit

a

n

n d
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e

m

m

a

j

m
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Fig. 16 Index Construction

Algorithm 1 HybridJoin(Table T, int c idx,
DocumentSet D)
1: Set result = ∅
2: for ∀ti ∈ T do
3: TrieNode n = getTrieRoot(D)
4: Set Sindex = ∅
5: IndexSearch(n, ti[c idx], Sindex)
6: for IndexEntry e : Sindex do
7: result.add(new Tuple(ti, e.docID))
8: return result

Algorithm 2 IndexSearch(TrieNode n, String
s, Set Sindex)
1: if n.isLeaf and editdis(n, s) < ϵ then
2: Sindex.add(n.index)
3: else
4: for TrieNodeIter ni : n.Children do
5: if !pruneViaLength(ni, s.length) then
6: for i=1 to s.length do
7: string s′=s.substring(0, i)
8: if dist(ni, s

′) < ϵ then
9: IndexSearch(ni, s, Sindex)

10: break;

Algorithm 1 and 2 show how we progressively search
the trie index to process the hybrid join. In Algorithm 1, we
compare each tuple to the trie tree. If the returned inverted
index entries are not empty, we will assemble the join results
correspondingly. Algorithm 2 illustrates how we exploit the
trie index to search the document set. Starting from the root
node, we evaluate whether a child node is an active node of
the query to prune the subtrees (line 7-10). If the child n-
ode is not a leaf node, it will recursively explore the tree in
the same way. Otherwise, it returns the corresponding index-
es as the matching results. We also record the minimal and
maximal string lengths in each subtree and apply the length
filter to prune the subtrees that obviously cannot generate
any result (line 5).

Example 1 Suppose the query string is “ams” and we match
it again the trie tree in Figure 15. We set ϵ to 2. The first
level nodes {“a”, “e”, “j”, “t”} are active nodes for “ams”,
as their distances to the prefix “a” are at most 1. Because
“an” and “ja” are still active nodes to prefix “a”, the search
will continue in the corresponding two subtrees. “em” is the
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Fig. 17 Compression Strategy

active node of prefix “am” and hence, we forward the query
to its subtree. On the contrary, node “ji” and “to” are pruned.
In the next step, all subtrees are pruned, except “jam” which
is an active node of prefix “am”. Finally, we get the only
result “jams” when the search ends in the leaf level.

Ideally, if the trie tree is small, all epiC units can main-
tain a full copy of the index in memory. In that case, we can
directly apply Algorithm 1 to process the join. However, in
most cases, the size of trie tree is proportional to the size of
document set. So we adopt two techniques to reduce the s-
torage overhead, partitioning and compression. The idea of
partitioning is straightforward and similar to the one shown
in Figure 16. We use scan unit to retrieve all values in a col-
umn and then apply the hash function for the prefix to shuf-
fle data to the join unit. Based on the prefix, each join unit
only needs to load a subtree of the global tree into its mem-
ory to perform the string comparison. Hence, the memory
overhead is reduced.

The idea of compression is to transform the trie tree into
an approximate index. We show the details of compression
algorithm as below.

4.2.2 Index Compression

To compress the trie tree, we introduce a specific node, the
star node. The star node can match any character. For ex-
ample, in Figure 17(a), the subtree of node a represents the
string set {a*n, a*dy, a*don}. By introducing the star node,
we reduce the size of trie tree in two ways:

1. Given a node n, we can replace all its child nodes with
the star node. In this way, there is only one child of n, the
star node. The number of nodes in trie tree is reduced by
g(n)− 1, where g(n) is the number of child nodes of n.

2. All subtrees of n’s child nodes are inherited by the new
star node. Some subtrees share the same structure and
hence, can be merged to reduce the storage cost.

In Figure 17(a), the subtrees of node an and al are migrated
to the star node, a*. As the subtree dy and don share the
the same prefix d, we combine the subtrees in Figure 17(b).
The same rule is applied to node j*. However, to identify

that there is a leaf node j*m, we add an empty node to the
merged tree.

The star node can effectively reduce the size of trie tree.
In an extreme case, we only need an L-length string **...*
to denote the tree. L is the height of the tree. However, that
will make the index useless, as it cannot be used to estimate
the edit distance between strings. In other words, introduc-
ing the star nodes will generate false positives for the string
matching using the trie tree index. The effect of adding the
star node is described by the following theorem.

Theorem 1 Given a node n, let SL denote the strings in
n’s subtree (the leaf nodes of n). For a string s, we use
eidtdis(s, si) to represent the edit distance between s and a
string si ∈ SL. If we use a star node to replace n’s child n-
odes, si is changed to s′i. Let dist(s, s′i) be the new distance,
we have eidtdis(s, si)− eidtdis(s, s′i) ≤ 1.

Proof Let sprefix[c]ssuffix represent si , where sprefix and
ssuffix are substrings of si and c is a character between
the two substrings. si is changed to sprefix[∗]ssuffix, after
adding the star node. Based on how eidtdis(s, si) is com-
puted, we have three cases:

1. If c is removed in computing eidtdis(s, si), then we can
similarly remove the star character. Hence, eidtdis(s, si) =
eidtdis(s, s′i).

2. If c is matched to a character of s, the star character also
matches. We have eidtdis(s, si) = eidtdis(s, s′i).

3. If c is replaced with another character to match with s,
we do not need to modify s′, as star character can match
any character. We have eidtdis(s, si) = eidtdis(s, s′i)+

1.

Using the compression techniques, we can significant-
ly reduce the size of trie tree. However, the trade-off is the
computation cost for verifying the false positvies. To design
a good compression algorithm, we design a model to search
for the optimal compression ratio. This is beyond the scope
of this paper and hence, is discarded for space limitation.

4.3 Integrating with Relational Model

Using hybrid join, we can answer analytic queries for het-
erogeneous data. In particular, we implement our NLP oper-
ators and the hybrid join operator as the user-defined func-
tions in epiC’s relational model. As a result, our first exam-
ple query can be written as:

SELECT max(count(∗)), supplier.name
FROM product, supplier, email
WHERE sentiment(get(id, p, 100)) =′ Negative′ and

supplier.id = product.supplier
WITH id in email.search(editdis, product.name, 2) and

p in pos(id, editdis, product.name, 2)

GROUP BY supplier.name
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The idea is to perform the hybrid join between product names
and emails to locate where a specific product is mentioned
in the emails. We then retrieve the nearby text and apply the
sentiment analysis to get the users’ opinions. Finally, we join
the supplier table with the product table to find the supplier
with most complains.

Similarly, the second query is transformed into:

SELECT count(∗)
|email.search(editdis,E.name,2)| ,M.name

FROM employee E, employee M, email

WHERE sentiment(get(id, p, 100)) =′ Positive′ and
E.manager = M.id

WITH id in email.search(editdis, E.name, 2) and
p in pos(id, editdis, E.name, 2)

GROUP BY M.name

We apply the sentiment analysis for each email if it mentions
our customer service. Then the satisfaction rate is estimated
as the percentage of positive emails.

When users issue the above queries, we will parse them
into a set of epiC units and process them one by one. More
NLP operators are being implemented and this model allows
epiC to perform more complex mining jobs.

5 Partitioning-Based Optimization

In basic epiC framework, each unit is considered as an ac-
tor, interacting with other actors via “emails”, a predefined
message type between actors. The unit loads data from the
DFS based on the partitioning information specified in the
email. After it completes its processing, the intermediate re-
sults are flushed back to the DFS which may be used by
the other units as input. This design is very flexible, as the
storage layer is completely transparent to the processing lay-
er. However, it may also incur high I/O overheads, because
units repeatedly read/write data from/into the DFS. To ad-
dress this problem, we adopt an optimization technique by
grouping a set of Partitioning-Free units together.

5.1 Partitioning-Free Unit

A unit is a partitioning-free unit, if its result is not affected
by how data are partitioned among nodes. More formally,

Definition 3 Suppose unit U is deployed on N cluster n-
odes to process dataset D. Let p denote the partitioning func-
tion and we use U(p(D, i)) to represent the results of apply-
ing unit U to the partition of node i. Unit U is a partition-free
unit, if for any two random partitioning functions p1 and p2,

N−1∪
i=0

U(p1(D, i)) =

N−1∪
i=0

U(p2(D, i))

One property of partitioning-free units is that consecu-
tive partitioning-free units can be grouped together. So in-
stead of processing them one by one, we can link them to-
gether and apply the batch processing technique.

Theorem 2 Suppose U1 and U2 are two partitioning-free
units. For any two partitioning functions p1 and p2, we have

N−1∪
i=0

U1(U2(p1(D, i))) =
N−1∪
i=0

U1(U2((p2(D, i)))

Proof Based on the definition, we have

N−1∪
i=0

U2(p1(D, i)) =
N−1∪
i=0

U2(p2(D, i))

So

U1(

N−1∪
i=0

U2(p1(D, i))) = U1(

N−1∪
i=0

U2(p2(D, i)))

We define two new partitioning functions. The first partition-
s the data into

∪N−1
i=0 U2(p1(D, i)), ∅,...,∅. And the second

partitions the data into U2(p1(D, 0)), ..., U2(p1(D, N − 1)).
Applying the definition again, we have

U1(

N−1∪
i=0

U2(p1(D, i))) =

N−1∪
i=0

U1(U2(p1(D, i)))

Similarly,

U1(

N−1∪
i=0

U2(p2(D, i))) =

N−1∪
i=0

U1(U2(p2(D, i)))

So the theorem is correct.

For example, in relational model, select unit and project
unit are partitioning-free units, while aggregate unit is not,
because different partition strategies will generate different
aggregation results. In epiC, users can explicitly define a unit
as partitioning-free units. So the scheduler can apply more
aggressive plans. In particular, suppose U1, U2, ..., Uk are
consecutive partitioning-free units. Namely, Ui is processed
before Ui+1. Instead of scheduling each unit to a specific
node, we group all units together as Ū which is used as the
scheduling task by merging all the source codes of U1 to Uk.
The result of Ui is directly streamed to Ui+1 for processing.
We avoid the cost of writing back the internal results to the
DFS.
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5.2 Function Transformation

Most units are not partitioning-free units. However, we can
apply the function decomposition technique to transform a
unit into partitioning-free unit. Let f denote the processing
logic defined in the run function of a unit. We use x1,..,xn

to represent its input (the partition that assigns to the node).
We first show that if f is a symmetric rational func-

tion2, it can be represented by a set of symmetric polynomial
functions. Then, all symmetric polynomial functions can be
decomposed into some elementary functions, which can be
transformed into partitioning-free functions.

Theorem 3 The symmetric rational function f(x1, ..., xn)
can be represented as a fraction of two symmetric polyno-
mial functions.

Proof If function P (x1, ..., xn) is a symmetric polynomial
function, function Q(x1, ..., xn) must be a symmetric poly-
nomial function too and vice versa. Therefore, we consider
the case where both functions are not symmetric polynomial
functions. For all n variables, there are N = n! permutation-
s. let Qi denote function Q in the ith permutation. We have

f(x1, ..., xn) =
P (x1, ..., xn)Q1(x1, ..., xn)...QN−1(x1, ..., xn)

Q1(x1, ..., xn)Q2(x1, ..., xn)...QN (x1, ..., xn)

As the denominator covers all possible permutations, it is,
in fact, a symmetric polynomial function. Therefore, the nu-
merator must be a symmetric polynomial function, because
f is a symmetric rational function. In this way, f is repre-
sented as the fraction of two symmetric polynomial func-
tions.

One most important type of symmetric polynomial func-
tions are elementary symmetric polynomial functions. For a
symmetric polynomial function f with n variables, we de-
fine n + 1 elementary symmetric polynomial functions. In
particular, the ith function is represented as:

ei(x1, ..., xn) =
∑

1≤j1<j2<...<ji≤n

xj1xj2 ...xji

j1 to ji is an i-permutation for the variables. As an example,

e2(x1, ..., xn) =
∑

1≤j1<j2≤n

xj1xj2

To handle the special case, we also define e0(x1, ..., xn) = 1
and ej(x1, ..., xn) = 0 for j < 0.

It was proved that all symmetric polynomial function-
s can be transformed into the polynomial expressions with
elementary functions. The complete proof can be found in
[25]. We give a brief overview, as our function decomposi-
tion algorithm adopts the same technique in the proof.

Let (i1, i2, ..., in) and (j1, j2, ..., jn) denote two permu-
tations of the variables. We say (i1, i2, ..., in) > (j1, j2, ..., jn),

2 http://en.wikipedia.org/wiki/Symmetric polynomial

if the first non-zero difference in i1 − j1,...,in − jn is pos-
itive. We first define the degree of the polynomial function
as follows.

Definition 4 Degree of Polynomial Function
The degree of symmetric polynomial function f(x1, ..., xn)
(deg(f)) is defined as the largest permutation (i1, i2, ..., in),
satisfying that the co-efficient of xi1

1 xi2
2 ...xin

n is non-zero.

For example, deg(e1) = (1, 0, ..., 0), deg(e2) = (1, 1, ..., 0)
and deg(en) = (1, 1, ..., 1). It is easy to verify that

deg(e1 × e2) = deg(e1) + deg(e2)

The proof of symmetric polynomial function, in fact, tries to
show that we can always reduce the degree of the function
by decomposing it into some elementary functions.

Theorem 4 The symmetric polynomial function can be trans-
formed into the polynomial expressions via elementary func-
tions.

Proof Suppose the degree of a symmetric polynomial func-
tion f(x1, ..., xn) is (i1, ..., in). By the definition of degree,
we can find a term in f like axi1

1 ...xin
n (a ̸= 0). As f is sym-

metric, we can find all permutations of that term, which are
represented as a symmetric function p.

p(x1, ..., xn) = aei1−i2
1 ei2−i3

2 ...e
in−1−in
n−1 einn

The degree of p is computed as:

deg(p) = (i1 − i2)deg(e1) + (i2 − i3)deg(e2) + ...+ indeg(en)

= (i1 − i2, ..., 0) + (i2 − i3, i2 − i3, ..., 0) + ...+ (in, ..., in)

= (i1, ..., in)

Namely, p has the same degree as f . We can now transform
f into f̄ as:

f̄(x1, ..., xn) = f(x1, ..., xn)− p(x1, ..., xn)

As both f and p are symmetric polynomial functions, f ′ is
also a symmetric polynomial function. Moreover, because
p’s degree is equal to f ’s degree, f̄ ′s degree should be small-
er than f . In this way, we reduce the degree of a symmetric
function. If we recursively apply the above technique to f̄ ,
we can further reduce the degree. When the degree reaching
(0, 0, ..., 0), we have decomposed function f into a polyno-
mial expressions via the elementary symmetric polynomial
functions.

We now show that all elementary functions can be de-
composed. Recall that given a function f , we want to find a
set of functions satisfying

f(S0, S1) = h0(h1(S0), h2(S0), ..., hn(S0), S1)

S0 = {x1, ..., xk} and S1 = {xk+1, ..., xn} denote the two
random partitions, respectively. To simplify the problem, we
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study a special case, where S1 only contains one tuple xn

and all the rest are in S0.
If we consider the elementary function, the problem is

transformed into computing ei(x1, ..., xn) using functions
of x1, ..., xn−1. In fact, ei(x1, ..., xn) can be divided into
two parts, one with tuple xn and one without tuple xn.

ei(x1, ..., xn) =
∑

1≤j1<j2<...<ji≤n

xj1xj2 ...xji

=
∑

1≤j1<j2<...<ji−1<n,ji=n

xj1xj2 ...xji +∑
1≤j1<j2<...<ji≤n−1

xj1xj2 ...xji

= xnei−1(x1, ..., xn−1) + ei(x1, ..., xn−1)

Therefore, we create two function h1 and h2 as:

h1(x1, ..., xn−1) = ei−1(x1, ..., xn−1)

h2(x1, ..., xn−1) == ei(x1, ..., xn−1)

Correspondingly, let S0 = {x1, ..., xn−1}. h0 function is
defined as:

h0(h1(S0), h2(S0), {xn}) = xnh1(S0) + h2(S0)

In this way, given two random partitions S0 and S1 (S1 only
contains one element), we can successfully compute the fi-
nal results. So the elementary functions are partitioned-free
functions, if one partition only contains one element.

Now, let us consider the more complex case, where we
partition the data into two random sets with size n − k and
k. We have the following theorem:

Theorem 5 All elementary functions can be transformed in-
to their decomposed forms for two random partitions.

Proof Given an elementary function ei, suppose input data
is partitioned into {x1, ..., xn−k} and {xn−k+1, ..., xn}. We
can decompose ei as:

ei(x1, ..., xn) = xnei−1(x1, ..., xn−1) + ei(x1, ..., xn−1)

= xnxn−1ei−2(x1, ..., xn−2) + (xn + xn−1)

×ei−1(x1, ..., xn−2) + ei(x1, ..., xn−2)

= xnxn−1ei−2(x1, ..., xn−2) +

e1(xn−1, xn)ei−1(x1, ..., xn−2) +

e0(xn−1, xn)ei(x1, ..., xn−2)

= Πn
j=n−k+1xjei−k(x1, ..., xn−k) +

k−1∑
j=0

ei−j(x1, ..., xn−k)ej(xn−k+1, ..., xn)

To transform the function into the recursive form, we create
k + 1 functions. The jth function is defined as:

hj = ei−j+1(x1, ..., xn−k)

Fig. 18 The architecture of an epiC cluster

The combining function h0(h1, ..., hk+1, {xn−k+1, ..., xn})
is constructed as an expression of elementary functions:

Πn
j=n−k+1xjhk+1 +

k∑
j=1

hjej(xn−k+1, ..., xn)

In this way, we can generate the decomposed form for all
elementary functions.

Currently, we cannot automatically detect whether the
run function of a unit is a symmetric rational function. In-
stead, users are required to extend their units to implement
the symmetric rational function interface. Then, the system
can decompose the run function into elementary function-
s and consider the unit as partitioning-free unit, where the
optimized scheduling algorithm is applied.

6 Implementation Details

epiC is written in Java and built from scratch although we
reuse some Hadoop codes to implement a MapReduce ex-
tension. This section describes the internals of epiC.

Like Hadoop, epiC is expected to be deployed on a shared-
nothing cluster of commodity machines connected with a
switched Ethernet. It is designed to process data stored in
any data sources such as databases or distributed file sys-
tems. The epiC software mainly consists of three compo-
nents: master, worker tracker and worker process. The ar-
chitecture of epiC is shown in Figure 18. epiC adopts a s-
ingle master (this master is different from the servers in the
master network, which are mainly responsible for routing
messages and maintaining namespaces) multi-slaves archi-
tecture. There is only one master node in an epiC cluster,
running a master daemon. The main function of the master is
to command the worker trackers to execute jobs. The master
is also responsible for managing and monitoring the health
of the cluster. The master runs a HTTP server which hosts
such status information for human consumption. It commu-
nicates with worker trackers and worker processes through
remote procedure call (RPC).

Each slave node in an epiC cluster runs a worker track-
er daemon. The worker tracker manages a worker pool, a
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fixed number of worker processes, for running units. We run
each unit in a single worker process. We adopt this ‘pool-
ing’ process model instead of an on-demand process model
which launches worker processes on demand for two reason-
s. First, pre-launching a pool of worker processes reduces
the startup latency of job execution since launching a brand
new Java process introduces non-trivial startup costs (typi-
cally 2∼3 seconds). Second, the latest HotSpot Java Virtual
Machine (JVM) employs a Just-In-Time (JIT) compilation
technique to incrementally compile the Java byte codes into
native machine codes for better performance. To fully un-
leash the power of HotSpot JVM, one must run a Java pro-
gram for a long time so that every hot spot (a code segmen-
t, performing expensive computations) of the program can
be compiled by the JIT compiler. Therefore, a never-ending
worker process is the most appropriate one for this purpose.

Here, we will focus on two most important parts of the
implementations, the TTL RPC and the failure recovery.

6.1 The TTL RPC

The standard RPC scheme adopts a client-server request-
reply scheme to process RPC calls. In this scheme, a client
sends a RPC request to the server. The server processes this
request and returns its client with results. For example, when
a task completes, the worker tracker will perform a RPC cal-
l taskComplete(taskId) to the master, reporting the
completed task identity. The master will perform the call,
updating its status, and responds to the worker tracker.

This request-reply scheme is inefficient for client to con-
tinuously query information stored at the server. Consider
the example of task assignments. To get a new task for exe-
cution, the worker tracker must periodically make getTask()
RPC calls to the master since the master hosts all task in-
formation and the worker tracker has no idea of whether
there are pending tasks. This periodical-pulling scheme in-
troduces non-negligible delays to the job startup since users
may submit jobs at arbitrary time point but the task assign-
ment is only performed at the fixed time points. Suppose the
worker tracker queries a new task at time t0 and the query
interval is T , then all tasks of jobs submitted at t1 > t0 will
be delayed to t0 + T for task assignment.

Since continuously querying server-side information is a
common communication pattern in epiC, we develop a new
RPC scheme to eliminate the pulling interval in successive
RPC calls for low latency data processing.

Our approach is called the TTL RPC which is an exten-
sion of the standard RPC scheme by associating each RPC
call with a user specified Time To Live (TTL) parameter T .
The TTL parameter T captures the duration the RPC can live
on the server if no results are returned from the server; when
the TTL expires, the RPC is considered to have been served.

For example, suppose we call getTask() with T = 10s

(seconds), when there is no task to assign, instead of return-
ing a null task immediately, the master holds the call for
at most 10 seconds. During that period, if the master find-
s any pending tasks (e.g., due to new job submission), the
master returns the calling worker tracker with a new task.
Otherwise, if 10 seconds passed and there are still no tasks
to assign, the master returns a null task to the worker track-
er. The standard request-reply RPC can be implemented by
setting T = 0, namely no live.

We use a double-evaluation scheme to process a TTL-
RPC call. When the server receives a TTL-RPC call C, it
performs an initial evaluation of C by treating it as a stan-
dard RPC call. If this initial evaluation returns nothing, the
server puts C into a pending list. The TTL-RPC call will stay
in the pending list for at most T time. The server performs
a second evaluation of C if either 1) the information that C
queries changes or 2) T time has passed. The outcome of the
second evaluation is returned as the final result to the clien-
t. Using TTL-RPC, the client can continuously make RPC
calls to the server in a loop without pulling interval and thus
receives server-side information in real time. We found that
TTL-RPC significantly improves the performance of small
jobs and reduces startup costs.

Even though the TTL-RPC scheme is a simple extension
to the standard RPC scheme, the implementation of TTL-
RPC poses certain challenges for the threading model that
the classical Java network programs adopt. A typical Java
network program employs a per-thread per-request thread-
ing model. When a network connection is established, the
server serves the client by first picking up a thread from a
thread pool, then reading data from the socket, and final-
ly performing the appropriate computations and writing re-
sult back to the socket. The serving thread is returned to the
thread pool after the client is served. This per-thread per-
request threading model works well with the standard RPC
communication. But it is not appropriate for our TTL RPC
scheme since TTL RPC request will stay at the server for a
long time (We typically set T = 20 ∼ 30 seconds). When
multiple worker trackers make TTL RPC calls to the master,
the per-thread per-request threading model produces a large
number of hanging threads, quickly exhausting the thread
pool, and thus makes the master unable to respond.

We develop a pipeline threading model to fix the above
problems. The pipeline threading model uses a dedicated
thread to perform the network I/O (i.e., reading request from
and writing results to the socket) and a thread pool to per-
form the RPC calls. When the network I/O thread receives a
TTL RPC request, it notifies the server and keeps the estab-
lished connection to be opened. The server then picks up a
serving thread from the thread pool and performs the initial
evaluation. The serving thread will return to the thread pool
after the initial evaluation no matter whether the initial eval-
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uation produces the results or not. The server will re-pickup
a thread from the thread pool for the second evaluation, if
necessary, and notify the network I/O thread to complete the
client request by sending out the results of the second eval-
uation. Using the pipeline threading model, no thread (serv-
ing threads or network I/O thread) will be hanged during the
processing of TTL RPC call. Thus the threading model is
scalable to thousands of concurrent TTL RPC calls.

6.2 Fault Tolerance

Like all single master cluster architecture, epiC is designed
to be resilient to a large-scale slave machines failures. epiC
treats a slave machine failure as a network partition from
that slave machine to the master. To detect such a failure,
the master communicates with worker trackers running on
the slave machines by heartbeat RPCs. If the master can-
not receive heartbeat messages from a worker tracker many
times, it marks that worker tracker as dead and the machine
where that worker tracker runs on as “failed”.

When a worker tracker is marked as failed, the master
will determine whether the tasks that the worker tracker pro-
cessed need to be recovered. We assume that users persist
the output of an epiC job into a reliable storage system like
HDFS or databases. Therefore, all completed terminal tasks
(i.e., tasks hosting units in the terminal group) need not to be
recovered. We only recover in-progress terminal tasks and
all non-terminal tasks (no matter completed or in-progress).

We adopt task re-execution as the main technique for
task recovery and employ an asynchronous output backup
scheme to speedup the recovering process. The task re-execution
strategy is conceptually simple. However, to make it work,
we need to make some refinements to the basic design. The
problem is that, in some cases, the system may not find idle
worker processes for re-running the failed tasks.

For example, let us consider a user job that consists of
three unit groups: a map unit group M with two reduce
groups R1 and R2. The output of M is processed by R1

and the output of R1 is further processed by R2, the termi-
nal unit group for producing the final output. epiC evaluates
this job by placing three unit groups M , R1 and R2, in three
stages S1, S2 and S3 respectively. The system first launch-
es tasks in S1 and S2. When the tasks in S1 complete, the
system will launch tasks in S3, and at the same time, shuffle
data from S1’s units to S2’s units.

Suppose at this time, a work tracker failure causes a task
m’s (m ∈ M ) output to be lost, the master will fail to find an
idle worker process for re-executing that failed task. This is
because all worker processes are running tasks in S2 and S3

and the data lost introduced by m causes all tasks in S2 to
be stalled. Therefore, no worker process can complete and
go back to the idle state.

We introduce a preemption scheduling scheme to solve
the above deadlock problem. If a task A fails to fetch da-
ta produced by task B, the task A will notify the master
and update its state to in − stick. If the master cannot find
idle worker processes for recovering failed tasks for a giv-
en period of time, it will kill in − stick tasks by sending
killTask() RPCs to the corresponding worker trackers.
The worker trackers then kill the in − stick tasks and re-
lease the corresponding worker processes. Finally, the mas-
ter marks the killed in − stick tasks as failed and adds
them to the failed task list for scheduling. The preemption
scheduling scheme solves the deadlock problem since epiC
executes tasks based on the stage order. The released worker
processes will first execute predecessor failed tasks and then
the killed in− stick tasks.

Re-execution is the only approach for recovering in-progress
tasks. For completed tasks, we also adopt a task output back-
up strategy for recovering. This scheme works as follows.
Periodically, the master notifies the worker trackers to up-
load the output of completed tasks to HDFS. When the mas-
ter detects a worker tracker Wi fails, it first commands an-
other live worker tracker Wj to download Wi’s completed
tasks’ output and then notifies all in-progress tasks that Wj

will server Wi’s completed tasks’ output.
Backing up data to HDFS consumes network bandwidth.

So, the master decides to backup a completed task’s output
only if the output backup can yield better performance than
task re-execution recovery. To make such a decision, for a
completed task t, the master estimates two expected execu-
tion time ER and EB of t where ER is the expected execu-
tion time when the task re-execution scheme is adopted and
EB is the expected execution time when the output backup
strategy is chosen. ER and EB are computed as follows

ER = Tt × P + 2Tt × (1− P ) (1)

EB = (Tt + Tu)× P + Td × (1− P ) (2)

where P is the probability that the worker track is available
during the job execution; Tt is the execution time of t; Tu is
the elapsed time for uploading output to HDFS; and Td is the
elapsed time for downloading output from HDFS. The three
parameters Tt, Tu and Td are easily collected or estimated.
The parameter P is estimated by the availability of a worker
tracker in one day, namely we assume that each job can be
completed in 24 hours.

The master uses Alg. 3 for determining which completed
tasks should be backed up. The master iterates over each
worker tracker (line 1). For each worker tracker, the master
retrieves its completed task list (line 2). Then, for each task
in the completed task list, the master computes EB and ER

and adds the task t into the result list L if EB < ER (line 4
to line 5).
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Algorithm 3 Generate the list of completed tasks to backup
Require: the worker tracker list W
Ensure: the list of tasks L to backup
1: for each worker tracker w ∈W do
2: T ← the list of completed tasks performed by w
3: for each completed task t ∈ T do
4: if EB(t) < ER(t) then
5: L← L ∪ {t}

7 Experiments

We evaluate the performance of epiC on different kinds of
data processing tasks, including unstructured data process-
ing, relational data processing, graph processing and het-
erogenous data processing. We benchmark epiC against Hadoop,
AsterixDB and SparkSQL 3 for processing unstructured da-
ta (i.e., text data), relational data. We also benchmark epiC
with Hadoop for processing heterogenous data (i.e., mix-
ture of text data and relational data) and GPS [30], an open
source implementation of Pregel [26] for graph processing,
respectively. For all experiments, the results are reported by
averaging six runs.

7.1 Benchmark Environment

The experimental study is conducted on an in-house cluster,
consisting of 72 nodes hosted on two racks. The nodes with-
in each rack are connected by a 1 Gbps switch. The two rack-
s are connected by a 10 Gbps cluster switch. Each cluster n-
ode is equipped with a quad-core Intel Xeon 2.4GHz CPU,
8GB memory and two 500 GB SCSI disks. The hdparm u-
tility reports that the buffered read throughput of the disk is
roughly 110 MB/sec. However, due to the JVM costs, our
tested Java program can only read local files at 70 ∼ 80 M-
B/sec.

We choose 65 nodes out of the 72 nodes for our bench-
mark. For the 65-node cluster, one node acts as the master
node for all systems (i.e., Hadoop, Spark, AsterixDB, GPS
and epiC). The rest of other nodes act as slave/worker nodes.
For scalability benchmark, we vary the number of slave n-
odes from 1, 4, 16, to 64.

7.2 System Settings

In our experiments, we configure benchmark systems as fol-
lows:

1. The Hadoop settings consist of two parts: HDFS set-
tings and MapReduce settings. In HDFS settings, we
set the block size to be 512 MB. As indicated in [21],

3 SparkSQL is Spark’s module for performing SQL queries with S-
park execution engine.

this setting can significantly reduce Hadoop’s cost for
scheduling MapReduce tasks. We also set the I/O buffer
size to 128 KB and the replication factor of HDFS to
one (i.e., no replication). In MapReduce settings, each
slave is configured to run two concurrent map and re-
duce tasks. The JVM runs in the server mode with max-
imal 1.5 GB heap memory. The size of map task’s sort
buffer is 512 MB. We set the merge factor to be 500 and
turn off speculation scheduling. Finally, we enable com-
pression of Map output and set the JVM reuse number
to -1.

2. For SparkSQL, we configure Spark (i.e., the underline
execution engine) as follows. Each slave node runs a s-
ingle worker instance with 4 executors. The memory of
each executor is 5GB. We turn on compression for shuf-
fle, broadcast and RDD with lz4 compression algorithm.

3. For AsterixDB, we setup the system according to the in-
structions presented in its official website without fur-
ther tuning.

4. For each worker tracker in epiC, we set the size of the
worker pool to be four. In the worker pool, two workers
are current workers (running current units) and the re-
maining two workers are appending workers. Similar to
Hadoop’s setting, each worker process has 1.5 GB mem-
ory. For the MapReduce extension, we set the bucket
size of burst sort to be 8192 keys (string pointers).

5. For GPS, we employ the default settings of the system
without further tuning.

7.3 Benchmark Tasks and Datasets

7.3.1 Benchmark Tasks

The benchmark consists of six tasks: Grep, TeraSort, TPC-
H Q3 and Q5, PageRank and hybrid join. The Grep task and
TeraSort task are presented in the original MapReduce paper
for demonstrating the scalability and the efficiency of using
MapReduce for processing unstructured data (i.e., plain text
data). The Grep task requires us to check each record (i.e., a
line of text string) of the input dataset and output all records
containing a specific pattern string. The TeraSort task re-
quires the system to arrange the input records in an ascend-
ing order. The TPC-H Q3 and Q5 task is a standard bench-
mark query in TPC-H benchmark and is presented in Sec-
tion 3.2. The PageRank algorithm [28] is an iterative graph
processing algorithm. We refer the readers to the original
paper [28] for the details of the algorithm. The hybrid join
task joins a tweet dataset with a Item table (i.e., relation-
al table) using the techniques presented in Section 4.2. The
join task calculates the number of tweets containing negative
comments for each brand in Item table. For all benchmark
tasks, we generate data in HDFS in plain text format and



18 Dawei Jiang et al.

configure all systems to process those data in-place. For As-
terixDB and SparkSQL, this in-place processing is achieved
by using create external table statement. Unfor-
tunately, we cannot perform all benchmark tasks on every
system. For AsterixDB, the built-in create external
table statement cannot create tables for TeraSort and Grep
4 datasets. For SparkSQL, it fails to perform Q5 since the
query produces very large intermediate results which cannot
fit into memory. We further noticed, in a recent blog, that
the underline engine (i.e., Spark) is specially tuned and im-
proved for TeraSort benchmark 5. However, those improve-
ments are not available in the Spark’s current stable release
for the time being. Therefore, we intentionally remove the
results of aforementioned benchmark tasks for AsterixDB
and SparkSQL.

7.3.2 Datasets

We generate the Grep and TeraSort datasets according to the
original MapReduce paper published by Google. The gener-
ated datasets consists of N fixed length records. Each record
is a string and occupies a line in the input file with the first
10 bytes as a key and the remaining 90 bytes as a value. In
the Grep task, we are required to search the pattern in the
value part and in the TeraSort task, we sort the input records
based on their keys. We perform both scale up and speed up
benchmark for these two tasks. For scale up benchmark, we
generate two datasets: a small dataset of 1GB data per-node
and a large dataset of 10GB data per-node for each cluster
size (i.e., 1, 4, 16, 64). For speed up benchmark, we generate
a 64GB dataset for the whole cluster.

We generate the TPC-H dataset using the dbgen tool
shipped with TPC-H benchmark. We follow the benchmark
guide of Hive, a SQL engine built on top of Hadoop, and
generate 10GB data per node. For the PageRank task, we use
a real dataset from Twitter6. The user profiles were crawled
from July 6th to July 31st 2009. For our experiments, we
select 8 million vertices and their edges to construct a graph.

We use the data generator shipped with BigFrame bench-
mark 7 to generate the heterogenous dataset for hybrid join.
The data generator can generates both relational data and
text data. The relational data is compliant to the standard
TPC-DS benchmark dataset and the text data are syntacti-
cally generated tweets. We configure the data generator to
produce 10GB data per node. Among those data, 80% data
are tweets (i.e., text data) and 20% data are relational data.

4 This is because AsterixDB’s create table statement requires that
the input record contains a delimiter character to separate fields. How-
ever, all valid delimiter character may appear in the key field of Grep
and TeraSort.

5 http://databricks.com/blog/2014/11/05/spark-officially-sets-a-
new-record-in-large-scale-sorting.html

6 http://an.kaist.ac.kr/traces/WWW2010.html
7 https://github.com/bigframeteam/BigFrame

7.4 The Grep Task

Figure 19 and Figure 20 present the performance of employ-
ing epiC, SparkSQL and Hadoop for performing Grep task
with the cold file system cache and the warm file system
cache settings in 1GB per-node datasets, respectively.

In the cold file system cache setting (Figure 19), the
performance of epiC is similar to SparkSQL and is twice
faster than Hadoop in all cluster settings. The performance
gap between epiC and Hadoop is mainly due to the startup
costs. The heavy startup cost of Hadoop comes from two
factors. First, for each new MapReduce job, Hadoop must
launch brand new java processes for running the map tasks
and reduce tasks. The second, which is also the most impor-
tant factor, is the inefficient pulling mechanism introduced
by the RPC that Hadoop employed. In a 64-node cluster,
the pulling RPC takes about 10∼15 seconds for Hadoop to
assign tasks to all free map slots. epiC, however, uses the
worker pool technique to avoid launching java processes for
performing new jobs and employs TTL RPC scheme to as-
sign tasks in real time. We are aware that Google has re-
cently also adopted the worker pool technique to reduce the
startup latency of MapReduce [7].

In the warm file system cache setting (Figure 20), the
performance gap between epiC and Hadoop is even larg-
er, up to a factor of 4.5. We found that the performance of
Hadoop cannot benefit from warm file system cache. Even,
in the warm cache setting, the data is read from fast cache
memory instead of slow disks, the performance of Hadoop
is only improved by 10%. The reason of this problem is a-
gain due to the inefficient task assignments caused by RPC.
epiC, on the other hand, only takes about 4 seconds to com-
plete the Grep task in this setting, three times faster than
performing the same Grep task in cold cache setting. This
is because the bottleneck of epiC in performing the Grep
task is I/O. In the warm cache setting, the epiC Grep job
can read data from memory rather than disk. Thus, the per-
formance is approaching optimality. We also found epiC is
about 1.7 faster than SparkSQL. We again attribute the per-
formance improvements of epiC to its efficient task assign-
ment scheme.

Figure 21 shows the performance of employing three
systems to perform Grep task on 10GB data per-node set-
tings. The performance is similar for three systems. This is
because, in this setting, the startup cost is amortized by pro-
cessing large dataset. Figure 22 presents the results of speed
up benchmark for Grep task. In this benchmark, the size of
dataset is fixed to 64GB and we vary the number of process-
ing nodes to process the dataset. It can be seen from Fig-
ure 22 that all three systems can achieve near perfect linear
speed up in this task.
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Fig. 19 Grep task with cold file system cache
– 1GB per-node
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Fig. 21 Grep task – 10GB per-node
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Fig. 22 Grep task – 64GB
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Fig. 23 TeraSort task with cold file system
cache – 1GB per-node
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Fig. 24 TeraSort task with warm file system
cache – 1GB per-node
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Fig. 25 TeraSort task – 10GB per-node
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Fig. 26 TeraSort task – 64GB
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Fig. 27 Results of TPC-H Q3
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Fig. 28 Results of TPC-H Q5
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Fig. 29 Results of PageRank

7.5 The TeraSort Task

Figure 23 and Figure 24 show the performance of the two
systems (epiC and Hadoop) for performing TeraSort task on
1GB data per-node settings. Figure 25 presents the results
of employing the two systems on 10GB data per-node set-
ting where intermediate data cannot fit into memory. Figure
26 presents the results for speed up benchmark where the

two systems are employed to sort 64GB data with different
number of processing nodes. Overall, epiC beats Hadoop in
terms of performance by a factor of two. There are two rea-
sons for the performance gap. First, the map task of Hadoop
is CPU bound. On average, a map task takes about 7 seconds
to read off data from disk and then takes about 10 seconds
to sort the intermediate data. Finally, another 8 seconds are
required to write the intermediate data to local disks. Sort-
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ing approximately occupies 50% of the map execution time.
Second, due to the poor pulling RPC performance, the no-
tifications of map tasks cannot be propagated to the reduce
tasks in a timely manner. Therefore, there is a noticeable gap
between map completion and reduce shuffling.

epiC, however, has no such bottleneck. Equipped with
order-preserving encoding and burst sort technique, epiC,
on average, is able to sort the intermediate data at about 2.1
seconds, roughly five times faster than Hadoop. Also, epiC’s
TTL RPC scheme enables reduce units to receive map com-
pletion notifications in real time. epiC is able to start shuf-
fling 5∼8 seconds earlier than Hadoop.

Compared to the performance of cold cache setting (Fig-
ure 23), both epiC and Hadoop do not run much faster in the
warm cache setting (Figure 24); there is a 10% improvement
at most. This is because scanning data from disks is not the
bottleneck of performing the TeraSort task. For Hadoop, the
bottleneck is the map-side sorting and data shuffling. For
epiC, the bottleneck of the map unit is in persisting inter-
mediate data to disks and the bottleneck of the reduce unit
is in shuffling which is network bound. We are planning to
eliminate the map unit data persisting cost by building an
in-memory file system for holding and shuffling intermedi-
ate data.

7.6 The TPC-H Q3 Task

Figure 27 presents the results of employing epiC, AsterixD-
B, SparkSQL and Hadoop to perform TPC-H Q3 under cold
file system cache 8. For Hadoop, we first use Hive to gener-
ate the query plan. Then, according to the generated query
plan, we manually wrote MapReduce programs to perfor-
m this task. Our manually coded MapReduce program runs
30% faster than Hive’s native interpreter based evaluation
scheme. The MapReduce programs consist of five jobs. The
first job joins customer and orders and produces the
join results I1. The second job joins I1 with lineitem,
followed by aggregating, sorting, and limiting top ten results
performed by the remaining three jobs. The query plan and
unit implementation of epiC is presented in Section 3.2.

Figure 27 shows the results. The performance of epiC is
similar to AsterixDB and SparkSQL and is about 2.5 times
faster than Hadoop. This is because epiC uses fewer oper-
ations to evaluate the query (5 units vs. 5 maps and 5 re-
duces) than Hadoop and employs the asynchronous mech-
anism for running units. In Hadoop, the five jobs run se-
quentially. Thus, the down stream mappers must wait for
the completion of all up stream reducers to start. In epiC,
however, down stream units can start without waiting for the
completion of up stream units.

8 For TPC-H Q3 and Q5 task, PageRank task and the Hrbrid join
task, all systems cannot get a significant performance improvemen-
t from cache. Therefore, we remove warm cache results to save space.
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7.7 The TPC-H Q5 Task

Figure 28 presents the results of applying epiC, AsterixDB
and Hadoop to perform TPC-H Q5 task. SparkSQL fails to
complete this task since the intermediate results produced by
the query are too large to fit into memory. We found that S-
parkSQL repeatedly swaps RDD from memory into disk and
eventually fails after a number of retries. Disk-based system-
s (i.e., epiC, AsterixDB and Hadoop) complete the task since
their scalability is not constrained by available memory. The
performance of epiC and AsterixDB are very similar. In cer-
tain settings, AsterixDB is slightly faster. We attribute the
excellent performance of AsterixDB to its highly optimized
query plan. Both systems (epiC and AsterixDB) run about
twice faster than Hadoop.

7.8 The PageRank Task

This experiment compares three systems in performing the
PageRank task. The GPS implementation of PageRank al-
gorithm is identical to [26]. The epiC implementation of
PageRank algorithm consists of a single unit. The details
are discussed in Section 2.2. The Hadoop implementation
includes a series of iterative jobs. Each job reads the out-
put of the previous job to compute the new PageRank val-
ues. Similar to the unit of epiC, each mapper and reducer in
Hadoop will process a batch of vertices. In all experiments,
the PageRank algorithm terminates after 20 iterations. Fig-
ure 29 presents the results of the experiment. We find that
all systems can provide a scalable performance. However,
among the three, epiC has a better speedup. This is because
epiC adopts an asynchronous communication pattern based
on message passing, whereas GPS needs to synchronize the
processing nodes and Hadoop repeatedly creates new map-
pers and reducers for each job.

7.9 The Hybrid Join Task

This experiment evaluates the performance of employing
epiC and Hadoop to perform hybrid join. The hybrid join
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task calculates the number of tweets containing negative com-
ments for each brand in Item table. The SQL-like command
to illustrate the hybrid join task is as follows:

SELECT I.brand, count(T.tweetID)
FROM Tweet T, Item I
WHERE sentiment(T.text) =′ Negative′ and

T.search(editdis, I.product name, 0)
GROUP BY I.brand

The epiC job for this task consists of three units. The first
unit scan T and I , filtering positive and neutral tweets. The
second unit performs the join and the final unit conducts the
aggregation. We also implement the same evaluation scheme
using two MapReduce jobs on Hadoop.

Figure 30 presents the results of this experiment. The
performance gap between epiC and Hadoop is small, about
40% ∼ 50%. This is because the hybrid join task is both
CPU intensive and I/O intensive. We found that the CPU
cost of this task is dominated by evaluating sentiment of
tweets and joining tweets with Item records. Therefore, even
epiC is more efficient in scheduling and shuffling than Hadoop,
the overall performance of the two systems is similar.

7.10 Fault Tolerance

The final experiment studies the ability of epiC for han-
dling machine failures. In this experiment, both epiC and
Hadoop are employed for performing the TeraSort task. Dur-
ing the data processing, we simulate slave machine failures
by killing all daemon processes (TaskTracker, DataNode and
worker tracker) running on those machines. The replication
factor of HDFS is set to three, so that input data can be re-
silient to DataNode lost. Both systems (epiC and Hadoop)
adopt heartbeating for failure detection. The failure time-
out threshold is set to 1 minute. We configure epiC to use
task re-execution scheme for recovery. The experiment is
launched at a 16 node cluster. We simulate 4 machine fail-
ures at 50% job completion.

Figure 31 presents the results of this experiment. It can
be seen that machine failures slow down the data processing.

Both epiC and Hadoop experience 2X slowdown when 25%
of the nodes fail (H-Normal and E-Normal respectively de-
notes the normal execution time of Hadoop and epiC, while
H-Failure and E-Failure respectively denotes the execution
time when machine failures occur).

8 Related Work

Big Data processing systems can be classified into the fol-
lowing categories: 1) Parallel Databases, 2) MapReduce based
systems, 3) DAG based data processing systems, 4) Actor-
like systems and 5) hybrid systems. A comprehensive sur-
vey could be found in [23], and a new benchmark called
BigBench [15], was also recently proposed to evaluate and
compare the performance of different big data processing
systems.

The research on parallel databases started in the late 1980s
[10]. Pioneering research systems include Gamma [9], and
Grace [14]. Parallel databases are mainly designed for pro-
cessing structured data sets where each data (called a record)
strictly forms a table structure. Parallel databases employ
data partitioning and partitioned execution techniques for
high performance query processing. Recent parallel database
systems also employ the column-oriented processing strate-
gy to even improve the performance of analytical workload-
s such as OLAP queries [32]. Parallel databases have been
shown to scale to at least peta-byte dataset but with a rel-
atively high cost on hardware and software [3]. The main
drawback of parallel databases is that those system cannot
effectively process unstructured data. However, there are re-
cent proposals trying to integrate Hadoop into database sys-
tems to mitigate the problem [33]. Our epiC, on the other
hand, has been designed and built from scratch to provide
the scalability, efficiency and flexibility found in both plat-
forms.

MapReduce was proposed by Dean and Ghemawat in
[8]. The system was originally developed as a tool for build-
ing inverted index for large web corpus. However, the abil-
ity of using MapReduce as a general data analysis tool for
processing both structured data and unstructured data was
quickly recognized [36] [34]. MapReduce gains popularity
due to its simplicity and flexibility. Even though the pro-
gramming model is relatively simple (only consists of two
functions), users, however, can specify any kinds of com-
putations in the map() and reduce() implementations.
MapReduce is also extremely scalable and resilient to slave
failures. The main drawback of MapReduce is its inefficien-
cy for processing structured (relational) data and graph da-
ta. Many research work have been proposed to improve the
performance of MapReduce on relational data processing
[3][22]. The most recent work shows that, in order to achieve
better performance of relational processing, one must relax
the MapReduce programming model and make non-trivial
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modifications to the runtime system [7]. Our work is in par-
allel to these work. Instead of using a one-size-fit-all so-
lution, we propose to use different data processing models
to process different data and employ a common concurrent
programming model to parallelize all those data processing.

Dryad is an ongoing research project at Microsoft [18]
[19]. This work is close to ours since Dryad is intended for a
general purpose data parallel programming framework. Our
work is different from that of Dryad - our concurrent pro-
gramming model is entirely independent of communication
patterns while Dryad enforces processing units to transfer
data through DAG.

The the concept of Actor was originally proposed for
simplifying concurrent programming [16]. Recently, system-
s like Storm [2] and S4 [27] implement the Actor abstraction
for streaming data processing. Our concurrent programming
model is also inspired by the Actor model. However, differ-
ent from Storm and S4, our system is designed for batch data
processing. A job of epiC will complete eventually. How-
ever, jobs of Storm and S4 may never end. This difference
influenced us in choosing quite different design decisions
from Storm and S4.

HadoopDB [3] and PolyBase [11] are new systems for
handling the the variety challenge of Big Data. The differ-
ence between these systems and ours is that the two systems
adopt a hybrid architecture and use a combination of a re-
lational database system and Hadoop to process Big Data.
Based on the data type, a split execution strategy is em-
ployed to split the whole data analytical job into database
and Hadoop for processing. Our system, on the other hand,
do not employ the split execution strategy and use a single
system to process all types of data.

9 Conclusions

This paper presents epiC, a scalable and extensible system
for processing BigData. epiC solves BigData’s data volume
challenge by parallelization and tackles the data variety chal-
lenge by decoupling the concurrent programming model and
the data processing model. To handle a multi-structured da-
ta, users process each data type with the most appropriate
data processing model and wrap those computations in a
simple unit interface. Programs written in this way can be
automatically executed in parallel by epiC’s concurrent run-
time system. In addition to the simple yet effective interface
design for handling multi-structured data, epiC also intro-
duces several optimizations in its Actor-like programming
model. We use MapReduce extension and relational exten-
sion as two examples to show the power of epiC. We also
show how users can leverage epiC to process heterogeneous
data, and we discuss a novel partition-based optimization
technique adopted in epiC. The benchmarking of epiC a-
gainst Hadoop and GPS confirms its efficiency.
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