Noname manuscript No.
(will be inserted by the editor)

epiC: an extensible and scalable system for processing Big Data

Dawei Jiang - Sai Wu -

Received: date / Accepted: date

Abstract The Big Data problem is characterized by the so
called 3V features: Volume - a huge amount of data, Ve-
locity - a high data ingestion rate, and Variety - a mix of
structured data, semi-structured data, and unstructured data.
The state-of-the-art solutions to the Big Data problem are
largely based on the MapReduce framework (aka its open
source implementation Hadoop). Although Hadoop handles
the data volume challenge successfully, it does not deal with
the data variety well since the programming interfaces and
its associated data processing model is inconvenient and in-
efficient for handling structured data and graph data.

This paper presents epiC, an extensible system to tack-
le the Big Data’s data variety challenge. epiC introduces
a general Actor-like concurrent programming model, inde-
pendent of the data processing models, for specifying par-
allel computations. Users process multi-structured dataset-
s with appropriate epiC extensions, the implementation of
a data processing model best suited for the data type and
auxiliary code for mapping that data processing model into
epiC’s concurrent programming model. Like Hadoop, pro-
grams written in this way can be automatically parallelized
and the runtime system takes care of fault tolerance and
inter-machine communications. We present the design and
implementation of epiC’s concurrent programming model.

Dawei Jiang, Beng Chin Ooi and Kian-Lee Tan

School of Computing, National University of Singapore, Singapore,
Singapore

E-mail: {jiangdw, ooibc, tankl} @comp.nus.edu.sg

Gang Chen and Sai Wu

College of Computer Science and Technology, Zhejiang University,
Hangzhou, China

E-mail: {cg, wusai} @zju.edu.cn

Jun Xu

School of Computer Science and Technology, Harbin Institute of Tech-
nology, Harbin, China

E-mail: junxul991 @gmail.com

Gang Chen - Beng Chin Ooi - Kian-Lee Tan -

Jun Xu

We also present two customized data processing models,
an optimized MapReduce extension and a relational mod-
el, on top of epiC. We show how users can leverage epiC
to process heterogeneous data by linking different types of
operators together. To improve the performance of complex
analytic jobs, epiC supports a partition-based optimization
technique where data are streamed between the operators to
avoid the high I/O overheads. Experiments demonstrate the
effectiveness and efficiency of our proposed epiC.

Keywords Parallel Processing - MapReduce - Pregel -
Hadoop

1 Introduction

Many of today’s enterprises are encountering the Big Data
problems. A Big Data problem has three distinct characteris-
tics (so called 3V features): the data volume is huge; the data
type is diverse (mixture of structured data, semi-structured
data and unstructured data); and the data producing velocity
is very high. These 3V features pose a grand challenge to
traditional data processing systems since these systems ei-
ther cannot scale to the huge data volume in a cost effective
way or fail to handle data with variety of types [3][7].

A popular approach to process Big Data is to use the
MapReduce programming model and its open source imple-
mentation Hadoop [8][1]. The advantage of MapReduce is
that the system tackles the data volume challenge success-
fully and is resilient to machine failures [8]. Unfortunately,
the MapReduce programming model does not handle the da-
ta variety problem well - while it manages certain unstruc-
tured data (e.g., plain text data) effectively, the programming
model and its associated data processing scheme is inconve-
nient and inefficient for processing structured data and graph
data that require DAG (Directed Acyclic Graph) like com-
putation and iterative computation [21,3,29,26,36]. Thus,

Dawei Jiang et al.

systems like Dryad [18] and Pregel [26] are built to process
those kinds of analytical tasks.

As aresult, to handle the data variety challenge, the state-
of-the-art approach favors a hybrid architecture [3,11]. The
approach employs a hybrid system to process multi-structured
datasets (i.e., datasets containing a variety of data types:
structured data, text, graph). The multi-structured dataset is
stored in a variety of systems based on types (e.g., struc-
tured data are stored in a database, unstructured data are
stored in Hadoop). Then, a split execution scheme is em-
ployed to process those data. The scheme splits the whole
data analytical job into sub-jobs and choose the appropriate
systems to perform those sub-jobs based on the data types.
For example, the scheme may choose MapReduce to pro-
cess text data, database systems to process relational da-
ta, and Pregel to process graph data. Finally, the output of
those sub-jobs will be loaded into a single system (Hadoop
or database) with proper data formation to produce the final
results. Even though the hybrid approach is able to employ
the right data processing system to process the right type of
data, it introduces complexity in maintaining several cluster-
s (i.e., Hadoop cluster, Pregel cluster, database cluster) and
the overhead of frequent data formation and data loading for
merging output of sub-jobs during data processing.

This paper presents a new system called epiC to tackle
the Big Data’s data variety challenge. The major contribu-
tion of this work is an architectural design that enables users
to handle multi-structured data in the most effective and effi-
cient way within a single system. We found that although d-
ifferent systems (Hadoop, Dryad, Database, Pregrel) are de-
signed for different types of data, they all share the same
shared-nothing architecture and decompose the whole com-
putation into independent computations for parallelization.
The differences between them are the types of independent
computation that these systems allow and the computation
patterns (intermediate data transmission) that they employ
to coordinate those independent computations. For exam-
ple, MapReduce only allows two kinds of independent com-
putations (i.e., map and reduce) and only allows transmit-
ting intermediate data between mappers and reducers. DAG
systems like Dryad allow arbitrary number of independent
computations and DAG-like data transmission. Graph pro-
cessing systems like Pregel employ recursive /iterative data
transmission. Therefore, if we can decompose the computa-
tion and communication pattern by building a common run-
time system for running independent computations and de-
veloping plug-ins for implementing specific communication
patterns, we are able to run all those kinds of computation-
s in a single system. To achieve this goal, epiC adopts an
extensible design. The core abstraction of epiC is an Actor-
like concurrent programming model which is able to execute
any number of independent computations (called units). On
top of it, epiC provides a set of extensions that enable users

naming service
master network message service
- schedule service

A
control msg | control m‘sx‘
A J

message queue message queue

y
J

y
J

control msg

N

message queue

/0 eniC code /0 /o
library e P

library V\ epiC code library
\ Unit: PageRank x Unit: PageRank

l Distributed Storage System (DFS, Key-value store, Dstributed Database,...) l

epiC code

Unit: PageRank

Fig. 1 Overview of epiC

to process different types of data with different types of da-
ta processing models (MapReduce, DAG or Graph). In our
current implementation, epiC supports two data processing
models, namely MapReduce and relation database model.

The concrete design of epiC is summarized as follows.
The system employs a pure shared-nothing design. The un-
derlying storage system (e.g., DFS, key-value store or dis-
tributed database) is accessible to all processing units. The
unit performs its I/O operations and user-defined jobs inde-
pendently without communications with others. When the
job is done, it sends messages to the master network, which
helps disseminate them. Note that the message only contains
the control information and metadata of the intermediate re-
sults. In epiC, there is no shuffling phase, as all units access
the distributed storage system directly. Second, epiC does
not enforce units to communicate with each other through
a DAG (Directed Acyclic Graph). All units are equivalent,
except for their roles in processing. The processing flow is
represented as a message flow, which is handled by the mas-
ter network. This flexible design provides the users more
opportunities to customize their implementations for opti-
mal performance. The equal-join algorithm will be used to
illustrate this point.

The rest of the paper is organized as follows. Section 2
shows the overview of epiC and motivates our design with
an example. Section 3 presents the programming abstrac-
tions introduced in epiC, focusing on the concurrency pro-
gramming model and the MapReduce extension. In Section
4, we show how epiC can be extended to support the pro-
cessing of heterogeneous data, and in Section 5, we present
a novel optimization technique adopted in epiC. Section 6
presents the internals of epiC. Section 7 evaluates the per-
formance and scalability of epiC based on a selected bench-
mark of tasks. Section 8 presents related work. Finally, we
conclude this paper in Section 9.

epiC: an extensible and scalable system for processing Big Data

2 Overview of epiC

epiC adopts the Actor-like programming model. Each unit
applies the user-defined logic to process the data from the
underlying storage system independently in an asynchro-
nized way. The only way to communicate with the other u-
nits is through message passing. However, unlike existing
systems such as Dryad and Pregel [26], units cannot interact
directly in epiC. All their messages are sent to the master
network and then disseminated to the corresponding recipi-
ents. The master network is similar to the mail servers in the
email system. Figure 1 shows an overview of epiC.

2.1 Programming Model

From the point of view of a unit, it works in an isolated way.
A unit becomes activated when it receives a message from
the master network. Based on the message content, it adap-
tively loads data from the storage system and applies the
user-written codes to consume the data. After completing
the process, the unit writes the results back to the storage
system and the information of the intermediate results are
summarized in a message forwarded to the master network.
Then, the unit becomes inactive, waiting for the next mes-
sage. Units are not aware of the existence of each other. The
only way of communications is via the master network.

The master network consists of several synchronized mas-
ters, which are responsible for three services: naming ser-
vice, message service and schedule service. Naming ser-
vice assigns a unique namespace to each unit. In particular,
we maintain a two-level namespace. The first level names-
pace indicates a group of units running the same user code.
For example, in Figure 1, all units share the same first lev-
el namespace PageRank [28]. The second level namespace
distinguishes the unit from the others. epiC allows the users
to customize the second level namespace. Suppose we wan-
t to compute the PageRank values for a graph with 10,000
vertices. We can use the vertex ID range as the second lev-
el namespace. Namely, we evenly partition the vertex IDs
into small ranges. Each range is assigned to a unit. A possi-
ble full namespace may be “[0, 999] @PageRank”, where @
is used to concatenate the two namespaces. The master net-
work maintains a mapping relationship between the names-
pace and the IP address of the corresponding unit process.

Based on the naming service, the master network col-
lects and disseminates the messages to different units. The
workload is balanced among the masters and we keep the
replicas for the messages for fault tolerance. Note that in
epiC, the message only contains the meta-information of the
data. The units do not transfer the intermediate results via
the message channel as in the shuffle phase of MapReduce.
Therefore, the message service is a light-weight service with
low overhead.

The schedule service of master network monitors the s-
tatus of the units. If a failed unit is detected, a new unit will
be started to take over its job. On the other hand, the sched-
ule service also activates/deactivates units when they receive
new messages or complete the processing. When all units
become inactive and no more messages are maintained by
the master network, the scheduler terminates the job.

Formally, the programming model of epiC is defined by
a triple < M,U,S >, where M is the message set, U is
the unit set and S is the dataset. Let A/ and U denote the
universes of the namespace and data URIs. For a message
m € M, m is expressed as:

m = {(ns,uri)lns € N ANuri € U}
We define a projection 7 function for m as:
w(m,u) = {(ns,uri)|(ns, uri) € m Ans = u.ns}

Namely, 7 returns the message content sharing the same
namespace with u. 7 can be applied to M to recursively
perform the projection. Then, the processing logic of a unit
u in epiC can be expressed by function g as:

g=m(M,u) X u xS — moys x5

S’ denotes the output data and my.; is the message to the
master network satisfying:

Vs € 8" = A(ns,uri) € mous A p(uri) = s

where p(uri) maps a URI to the data file. After the process-
ing, S is updated as SU.S’. As the behaviors of units running
the same code are only affected by their received messages,
we use (U, g) to denote a set of units running code g. Finally,
the job J of epiC is represented as:

J = (U, g)Jr X Sin, = S(mt

Sin 1s the initial input data, while S,,; is the result data.
The job J does not specify the order of execution of dif-
ferent units, which can be controlled by users for different
applications.

2.2 Comparison with Other Systems

To appreciate the workings of epiC, we compare the way the
PageRank algorithm is implemented in MapReduce (Figure
2), Pregel (Figure 3) and epiC (Figure 4). For simplicity,
we assume the graph data and score vector are maintained
in the DFS. Each line of the graph file represents a vertex
and its neighbors. Each line of the score vector records the
latest PageRank value of a vertex. The score vector is small
enough to be buffered in memory.

To compute the PageRank value, MapReduce requires a
set of jobs. Each mapper loads the score vector into memo-
ry and scans a chunk of the graph file. For each vertex, the

Dawei Jiang et al.

iterations .
receive scores

divide the score
to neighbors

graph
data

compute the new from neighbors to neighbors
O : O
/™ 4

0. send messages to
unit to activate it

broadcast scores

2

1. load graph data and
score vector based on
the received message

queue

epiC code o

w

score
vector

score
vector

&

Fig. 2 PageRank in MapReduce

mapper looks up its score from the score vector and then
distributes its scores to the neighbors. The intermediate re-
sults are key-value pairs, where key is the neighbor ID and
value is the score assigned to the neighbor. In the reduce
phase, we aggregate the scores of the same vertex and apply
the PageRank algorithm to generate the new score, which is
written to the DFS as the new score vector. When the cur-
rent job completes, a new job starts up to repeat the above
processing until the PageRank values converge.

Compared to MapReduce, Pregel is more effective in
handling iterative processing. The graph file is preloaded in
the initial process and the vertices are linked based on their
edges. In each super-step, the vertex gets the scores from it-
s incoming neighbors and applies the PageRank algorithm
to generate the new score, which is broadcast to the outgo-
ing neighbors. If the score of a vertex converges, it stops the
broadcasting. When all vertices stop sending messages, the
processing can be terminated.

The processing flow of epiC is similar to Pregel. The
master network sends messages to the unit to activate it. The
message contains the information of partitions of the graph
file and the score vectors generated by other units. The unit
scans a partition of the graph file based on its namespace to
compute the PageRank values. Moreover, it needs to load the
score vectors and merge them based on the vertex IDs. As
its namespace indicates, only a portion of the score vector
needs to be maintained in the computation. The new score
of the vertex is written back to the DFS as the new score vec-
tor and the unit sends messages about the newly generated
vector to the master network. The recipient is specified as
“*@PageRank”. Namely, the unit asks the master network
to broadcast the message to all units under the PageRank
namespace. Then, the master network can schedule other u-
nits to process the messages. Although epiC allows the u-
nits to run asynchronously, to guarantee the correctness of
PageRank value, we can intentionally ask the master net-
work to block the messages, until all units complete their
processing. In this way, we simulate the BSP (Bulk Syn-
chronous Parallel Model) as Pregel.

We use the above example to show the design philoso-
phy of epiC and why it performs better than the other two.

Flexibility MapReduce is not designed for such iterative job-
s. Users have to split their codes into the map and re-

Fig. 3 PageRank in Pregel

library 4

wa)sAs a5eI10ls

JIomiou Jajseut

2. compute new score
vector of vertices

Unit: PageRank

3. generate new score
vector files

4. send messages to
master network

Fig. 4 PageRank in epiC

duce functions. On the other hand, Pregel and epiC can
express the logic in a more natural way. The unit of
epiC is analogous to the worker in Pregel. Each unit
processes the computation for a set of vertices. How-
ever, Pregel requires to explicitly construct and main-
tain the graph, while epiC hides the graph structure by
namespace and message passing. We note that maintain-
ing the graph structure, in fact, consumes many system
resources, which can be avoided by epiC.

Optimization Both MapReduce and epiC allow customized
optimization. For example, the Haloop system [6] buffer-
s the intermediate files to reduce the I/O cost and the u-
nits in epiC can maintain their graph partitions to avoid
repeated scan. Such customized optimization is difficult
to implement in Pregel.

Extensibility In MapReduce and Pregel, the users must fol-
low the pre-defined programming model (e.g., map-reduce
model and vertex-centric model), whereas in epiC, the
users can design their customized programming model.
We will show how the MapReduce model and the rela-
tional model are implemented in epiC. Therefore, epiC
provides a more general platform for processing parallel
jobs.

3 The epiC Abstractions

epiC distinguishes two kinds of abstractions: a concurrent
programming model and a data processing model. A concur-
rent programming model defines a set of abstractions (i.e.,
interfaces) for users to specify parallel computations con-
sisting of independent computations and dependencies be-
tween those computations. A data processing model defines
a set of abstractions for users to specify data manipulation
operations. Figure 5 shows the programming stack of epiC.
Users write data processing programs with extensions. Each
extension of epiC provides a concrete data processing model
(e.g., MapReduce extension offers a MapReduce program-
ming interface) and auxiliary code (shown as a bridge in Fig-
ure 5) for running the written program on the epiC’s com-
mon concurrent runtime system.

We point out that the data processing model is problem
domain specific. For example, a MapReduce model is best
suited for processing unstructured data, a relational model

epiC: an extensible and scalable system for processing Big Data

Extension Extension

MapReduce Model Relation Model
MapReduce Bridge Relation Bridge

Concurrent Runtime System

Fig. 5 The Programming Stack of epiC

is best suited for structured data and a graph model is best
suited for graph data. The common requirement is that pro-
grams written with these models are all needed to be par-
allelized. Since Big Data is inherently multi-structured, we
build an Actor-like concurrent programming model for a
common runtime framework and offer epiC extensions for
users to specify domain specific data manipulation opera-
tions for each data type. In the previous section, we have
introduced the basic programming model of epiC. In this
section, we focus on two customized data processing model,
the MapReduce model and relational model. We will show
how to implement them on top of epiC.

3.1 The MapReduce Extension

We first consider the MapReduce framework, and extend it
to work with epiC’s runtime framework. The MapReduce
data processing model consists of two interfaces:

map (k1, vl) -

reduce (k2, list(v2)) — 1list(v2)

Our MapReduce extension reuses Hadoop’s implemen-

tation of these interfaces and other useful functions such as
the partition. This section only describes the auxiliary
support which enables users to run MapReduce programs on
epiC and our own optimizations which are not supported in
Hadoop.

3.1.1 General Abstractions

Running MapReduce on top of epiC is straightforward. We

first place the map () function in a map unit and the reduce ()

function in a reduce unit. Then, we instantiate M/ map unit-
s and R reduce units. The master network assigns a unique
namespace to each map and reduce unit. In the simplest case,
the name addresses of the units are like “x@MapUnit” and
“y@ReduceUnit”, where 0 <z < M and 0 < y < R.
Based on the namespace, the MapUnit loads a partition
of input data and applies the customized map () function to
process it. The results are a set of key-value pairs. Here, a
partition () function is required to split the key-value
pairs into multiple HDFS files. Based on the application’s
requirement, the partition () can choose to sort the data
by keys. By default, the partition () simply applies the

list (k2, v2)

hash function to generate R files and assigns a namespace
to each file. The meta-data of the HDFS files are composed
into a message, which is sent to the master network. The
recipient is specified as all the ReduceUnit.

The master network then collects the messages from al-
1 MapUnits and broadcasts them to the ReduceUnit.
When a ReduceUnit starts up, it loads the HDFS files
that share the same namespace with it. A possible merge-
sort is required, if the results should be sorted. Then, the
customized reduce () function is invoked to generate the
final results.

class Map implements Mapper {
void map () {
}
}
class Reduce implements Reducer {
void reduce () {
}
}
class MapUnit implements Unit {
void run(LocalRuntime r, Input i, Output o) {
Message m = i.getMessage();
InputSplit s = m[r.getNameAddress()];
Reader reader = new HdfsReader(s);

MapRunner map = new MapRunner (reader, Map());

map.run();
o.sendMessage ("x@ReduceUnit",
map.getOutputMessage ()) ;
}
}
class ReduceUnit implements Unit {
void run(LocalRuntime r, Input i, Output o) {
Message m = i.getMessage();
InputSplit s = m[r.getNameAddress()];
Reader in = new MapOutputReader (s);
ReduceRunner red = new ReduceRunner (in,
Reduce());
red.run () ;

Here, we highlight the advantage of our design deci-
sion to decouple the data processing model and the con-
current programming model. Suppose we want to extend
the MapReduce programming model to the Map-Reduce-
Merge programming model [36]. All we need to do is to
add a new unit mergeUnit () and modify the codes in
the ReduceUnit to send messages to the master network
for declaring its output files. Compared to this non-intrusive
scheme, Hadoop needs to make dramatic changes to its run-
time system to support the same functionality [36] since
Hadoop’s design bundles data processing model with con-
current programming model.

3.1.2 Optimizations for MapReduce

In addition to the basic MapReduce implementation which
is similar to Hadoop, we add an optimization for map unit
data processing. We found that the map unit computation is

Dawei Jiang et al.

CPU-bound instead of I/O bound. The high CPU cost comes
from the final sorting phase.

The Map unit needs to sort the intermediate key-value
pairs since MapReduce requires the reduce function to pro-
cess key-value pairs in an increasing order. Sorting in MapRe-
duce is expensive since 1) the sorting algorithm (i.e., quick
sort) itself is CPU intensive and 2) the data de-serialization
cost is not negligible. We employ two techniques to improve
the map unit sorting performance: 1) order-preserving se-
rialization and 2) high performance string sort (i.e., burst
sort).

Definition 1 For a data type 7', an order-preserving serial-
ization is an encoding scheme which serializes a variable
x € T to a string s, such that, for any two variables z € T
andy € T, if x < y then s; < s, in string lexicographical
order.

In other words, the order-preserving serialization scheme
serializes keys so that the keys can be ordered by directly
sorting their serialized strings (in string lexicographical or-
der) without de-serialization. Note that the order-preserving
serialization scheme exists for all Java built-in data types.

We adopt burst sort algorithm to order the serialized strings.
We choose burst sort as our sorting technique since it is spe-
cially designed for sorting large string collections and has
been shown to be significantly faster than other candidates
[31]. We briefly outline the algorithm here. Interested read-
ers should refer to [31] for details. The burst sort technique
sorts a string collection in two passes. In the first pass, the
algorithm processes each input string and stores the pointer
of each string into a leaf node (bucket) in a burst trie. The
burst trie has a nice property that all leaf nodes (buckets) are
ordered. Thus, in the second pass, the algorithm processes
each bucket in order, applies a standard sorting technique
such as quick sort to sort strings, and produces the final
results. The original burst sort requires a lot of additional
memory to hold the trie structure and thus does not scale
well to a very large string collection. We, thus, developed a
memory efficient burst sort implementation which requires
only 2 bits of additional space for each key entry. We al-
so use the multi-key quick sort algorithm [5] to sort strings
resided in the same bucket.

Combining the two techniques (i.e., order-preserving se-
rialization and burst sort), our sorting scheme outperforms
Hadoop’s quick sort implementation by a factor of three to
four.

3.2 Relational Model Extension

As pointed out earlier, for structured data, the relational data
processing model is most suited. Like the MapReduce ex-
tensions, we can implement the relational model on top of
epiC.

Master network

Partition info of

PartitioniTo of Pat ftien_info of
Customer _=~" Orders | ineitem™ ~
P \ Lineitem S<a
’ SingleTableUnit ’ SingleTableUnit ’ SingleTableUnit

select o_orderdate, o_custkey,
o_orderkey, o_shippriority from
Orders where o_orderdate < date

select ¢_custkey from
Customer where
c_mktsegment ="1"

select |_orderkey, |_extendedprice,
1_discount from Lingitem where
1_shipdate > date 2"

A J A J

’ Relational Data of Customer/Orders/Lineitem ‘

Fig. 6 Step 1 of Q3

3.2.1 General Abstractions

Currently, three core units (SingleTableUnit, JoinUnit
and AggregateUnit) are defined for the relational mod-
el. They are capable of handling non-nested SQL queries.
The SingleTableUnit processes queries that involve
only a partition of a single table. The JoinUnit reads par-
titions from two tables and merge them into one partition
of the join table. Finally, the AggregateUnit collects the
partitions of different groups and computes the aggregation
results for each group. The abstractions of these units are
shown below. Currently, we adopt the synchronization mod-
el as in MapReduce. Namely, we will start the next types of
units, only when all current units complete their processing.
We will study the possibility of creating a pipeline model in
future work. Due to space limitation, we only show the most
important part.

class SingleTableQuery implements DBQuery {
void getQuery () {
}
}
class JoinQuery implements DBQuery {
void getQuery () {
}
}
class AggregateQuery implements DBQuery {
void getQuery () {
}
}
class SingleTableUnit implements Unit {
void run(LocalRuntime r, Input i, Output o) {
Message m = i.getMessage();
InputSplit s = m[r.getNameAddress()];
Reader reader = new TableReader (s);
EmbededDBEngine e =
new EmbededDBEngine (reader,
e.process () ;
o.sendMessage (r.getRecipient (),
e.getOutputMessage());

getQuery());

}
}
class JoinUnit implements Unit {
void run(LocalRuntime r, Input i,
Message m = i.getMessage();
InputSplit sl = m[r.getNameAddress (LEFT_TABLE)];
InputSplit s2 = m[r.getNameAddress (RIGHT_TABLE)];
Reader inl = new MapOutputReader (sl);

Output o) {

epiC: an extensible and scalable system for processing Big Data

‘ Master network ‘ ‘ Master network

4 Partition info of the * Partition info of the Partial

| Partial Results of | Results of Customer and

Lineitem and Orders JoinViewl
JoinUnit JoinUnit

A A

Create Partition JoinView2 as
(Customer join JoinViewl)

Create Partition JoinViewl as
(Lincitem join Orders)

A

‘ Partial Results of Customer/Lineitem ‘

A

‘ Partial Results of Customer/JoinView I ‘

Fig. 7 Step 2 of Q3 Fig. 8 Step 3 of Q3

Reader in2 = new MapOutputReader (s2);
EmbededDBEngine e =
new EmbededDBEngine (inl,
e.process () ;
o.sendMessage (r.getRecipient (),
e.getOutputMessage());

in2,

}
}
class AggregateUnit implements Unit {
void run(LocalRuntime r, Input i, Output o) {
Message m = i.getMessage () ;
InputSplit s = m[r.getNameAddress ()];
Reader in = new MapOutputReader (s);
EmbededDBEngine e =
new EmbededDBEngine (in,
e.process () ;

getQuery());

The abstractions are straightforward and we discard the
detailed discussion. In each unit, we embed a customized
query engine, which can process single table queries, join
queries and aggregations. We have not specified the recip-
ients of each message in the unit abstraction. This must be
implemented by users for different queries. However, as dis-
cussed later, we provide a query optimizer to automatically
fill in the recipients. To show how users can adopt the above
relational model to process queries, let us consider the fol-
lowing query (a variant of TPC-H Q3):

SELECT [_orderkey, sum(l_extendedprice*(1-1_discount))
as revenue, o_orderdate, o_shippriority

FROM customer, orders, lineitem

WHERE c_mktsegment = ’:1’ and c_custkey = o_custkey
and l_orderkey = o_orderkey and o_orderdate
< date ’:2’ and l_shipdate > date ’:2’

Group By o_orderdate, o_shippriority

Figure 6 to Figure 10 illustrate the processing of TPC-
H Q3 in epiC. In step 1 (Figure 6), three different types
of the SingleTableUnits are started to process the se-
lect/project operators of Lineitem, Orders and Customer re-
spectively. Note that those SingleTableUnits run the
same code. The only differences are their name addresses
and processed queries. The results are written back to the
storage system (either HDFS or distributed database). The
meta-data of the corresponding files are forwarded to the
JoinUnits.

getQuery ())

‘ Master network ‘ ‘ Master network ‘

K psiition info of the Partial

| Results of Join View? | Partition info of Groups

AggregateUnit
A

Compute Aggregation Results
for Each Group

SingleTableUnit
A

Select * from JoinView2 Group
By o_orderdate, o_shippriority

A

‘ Partial Results of JoinView2 ‘ ‘

Y
Partial Results of Group By ‘

Fig. 9 Step 4 of Q3 Fig. 10 Step 5 of Q3

In step 2 and step 3 (Figures 7 and 8), we apply the hash-
join approach to process the data. In previous step, the out-

’ put data are partitioned by the join keys. So the JoinUnit

can selectively load the paired partitions to perform the join.
We will discuss other possible join implementations in the
next section.

Finally, in step 4 (Figure 9), we perform the group opera-
tion for two attributes. As the join results are partitioned into
multiple chunks, one SingleTableUnit can only gener-
ate the grouping results for its own chunk. To produce the
complete grouping results, we merge groups generated by
different SingleTableUnits. Therefore, in step 5 (Fig-
ure 10), one AggregateUnit needs to load the partitions
generated by all SingleTableUnits for the same group
to compute the final aggregation results.

Our relational model simplifies the query processing, as
users only need to consider how to partition the tables by
the three units. Moreover, it also provides the flexibility of
customized optimization.

3.2.2 Optimizations for Relational Model

The relational model on epiC can be optimized in two layers,
the unit layer and the job layer.

In the unit layer, the user can adaptively combine the
units to implement different database operations. They can
even write their own units, such as ThetaJoinUnit, to
extend the functionality of our model. In this section, we use
the euqi-join as an example to illustrate the flexibility of the
model. Figure 11 shows how the basic equi-join (S > 1) is
implemented in epiC. We firstuse the SingleTableUnit
to scan the corresponding tables and partition the tables by
join keys. Then, the JoinUnit loads the corresponding
partitions to generate the results. In fact, the same approach
is also used in processing Q3. We partition the tables by the
keys in step 1 (Figure 6). S