
Header for SPIE use

The Dalí Multimedia Software Library
Wei-Tsang Ooi, Brian Smith, Sugata Mukhopadhyay, Haye Hsi Chan, Steve Weiss, Matthew Chiua

Department of Computer Science, Cornell University, Ithaca, NY 14850

ABSTRACT

This paper presents a new approach for constructing libraries for building processing-intensive multimedia software. Such
software is currently constructed either by using high-level libraries or by writing it “from scratch” using C. We have found
that the first approach produces inefficient code, while the second approach is time-consuming and produces complex code
that is difficult to maintain or reuse. We therefore designed and implemented Dalí, a set of reusable, high-performance
primitives and abstractions that are at an intermediate level of abstraction between C and conventional libraries. By
decomposing common multimedia data types and operations into thin abstractions and primitives, programs written using
Dalí achieve performance competitive with hand-tuned C code, but are shorter and more reusable. Furthermore, Dalí
programs can employ optimizations that are difficult to exploit in C (because the code is so verbose) and impossible using
conventional libraries (because the abstractions are too thick). We discuss the design of Dalí, show several example programs
written using Dalí, and show that programs written in Dalí achieve performance competitive to hand-tuned C programs.

Keywords: Multimedia toolkits, image processing, video processing, MPEG, JPEG

1. INTRODUCTION

The multimedia research community has traditionally focused much of its efforts on the compression, transport, storage, and
display of multimedia data. These technologies are fundamentally important for applications such as video conferencing and
video-on-demand, and results from the research community have made their way into many commercial products. For
example, JPEG15 and MPEG8 are ubiquitous standards for image and audio/video compression, and video conferencing tools
such as Microsoft NetMeeting11 and CU-SeeMe4 are gradually becoming part of a desktop PC.

Although many research problems remain in these areas, the research community has begun to examine the systems problems
that arise in multimedia data processing, such as content-based retrieval and understanding17,19, video production22, and
transcoding for heterogeneity and bandwidth adaptation1,2.

The lack of a high-performance toolkit that researchers can use to build processing-intensive multimedia applications is
hindering this research. Currently, researchers have several options (none of which is very good). They can develop code
from scratch, but the complex nature of common multimedia encoding schemes (e.g., MPEG) makes this approach
impractical. For example, several man-years of work went into writing the Berkeley MPEG player (mpeg_play)16, and we
believe a similar amount of effort would be required to reproduce this software.

A more commonly used option is to modify an existing code base to add the desired functionality. For example, many
researchers have “hacked up” mpeg_play to test their ideas. However, this approach requires understanding thousands of
lines of code and usually results in complex, unmanageable systems that are difficult to debug, maintain, and reuse.

A third option is to use standard libraries, such as ooMPEG13 or the Independent JPEG Group (IJG) software6. Such libraries
provide a high-level API that hides many of the details of the underlying compression scheme. However, since programmers
can not penetrate the “black-box” of the API, they can only exploit limited optimizations. For example, to extract a gray scale
image from an MPEG frame, the programmer must convert the RGB image returned by the ooMPEG library into a gray scale
image. A much more efficient strategy is to extract the gray scale image directly from the MPEG frame data, since it is
stored in a YUV color space. The ooMPEG abstractions do not support this optimization. Another problem is that these
libraries usually provide functions for specific multimedia format, making interoperability between the libraries difficult. For
example, it is difficult to transcode an MPEG I frame into a JPEG image, although both of them are DCT coded.

These concerns have lead us to develop Dalí, a library for constructing processing-intensive multimedia software. Dalí
consists of a set of simple, interoperable, high-performance primitives and abstractions that can be composed to create higher
level operations and data types. Dalí lies between the high-level APIs provided by common libraries and low-level C code. It

a Correspondence: Email : dali@cs.cornell.edu; WWW : http://www.cs.cornell.edu/dali

exposes some low level operations and data structures but provides a higher level of abstraction than C, making it possible to
compactly write high-performance, processing-intensive multimedia software. Dalí’s mechanisms include:

Resource control. Programmers have full control over memory utilization and I/O. With few exceptions, Dalí routines do not
implicitly allocate memory or perform I/O – such functions are always explicitly requested by the programmer. This feature
gives programmers tight control over performance-critical resources, an essential feature for writing applications with
predictable performance. Dalí also gives programmers mechanisms to optimize their programs using techniques such as data
copy avoidance and structuring their programs for good cache behavior.

“Thin" primitives. Dalí breaks complex functions into simple functions that can be layered. This feature promotes code reuse
and allows optimizations that would otherwise be difficult to exploit. For example, to decode a JPEG image, Dalí provides
three primitives: (1) a function to decode the bit stream into three SCImages, one for each color component (a SCImage is an
image where every “pixel” is a structure containing DCT coefficients), (2) a function to convert each SCImage into a
ByteImage (an uncompressed image whose pixels are integers in the range 0..255), and (3) a function to convert from YUV
color space to RGB color space. Exposing this structure has several advantages. First, it promotes code reuse. For instance,
the inverse DCT and color-space conversion functions are shared by the JPEG and MPEG routines. Second, it allows
optimizations that would be difficult to exploit otherwise. For example, compressed domain processing techniques 1,17,19,20

can be implemented on SCImages.

Exposing Structure: Dalí provides functions to parse compressed bit streams, such as MPEG, JPEG, and GIF. These bit
streams consist of a sequence of structural elements. For example, an MPEG-1 video bit stream consists of a sequence
header followed by one or more group-of-pictures (GOPs -- Figure 6). Each GOP is a GOP header followed by one or more
pictures. Each picture is a picture header followed by encoded picture data. While other libraries hide these structures from
programmers, Dalí exposes them. Dalí provides five functions for each structural element: find, parse, encode, skip, and
dump. The functions operate on data in a memory buffer (call a BitStream). Find locates that element in the BitStream,
parse reads the element into an associated data structure, encode writes a data structure into the BitStream, skip moves the
BitStream cursor past that structural element, and dump copies the element from one BitStream to another. These
routines allow a programmer to operate on a bit stream at a high level, but to perform operations that are impossible with
conventional libraries. For example, writing a routine that counts the number of I frames in an MPEG sequence is trivial: one
simply finds each picture header, parses it, and increments a counter if it is an I frame (indicated by the type field in the
picture header structure). Similarly, writing a program to demultiplex MPEG system streams or analyze the structure of
MPEG sequence is very easy. Similar considerations hold for other formats, such as GIF and JPEG.

The challenge of Dalí was to design a library of functions that (1) allowed us to write code whose performance was
competitive with hand-tuned C code, (2) allowed us to perform almost any optimization we could think of without breaking
open the abstractions, and (3) could be composed in interesting, unforeseen ways. We believe that we have achieved these
goals. For example, a Dalí program that decodes an MPEG-1 video into a series of RGB images is about 150 lines long, runs
about 10% faster than mpeg_play, and can be easily modified for new environments.

The contributions of this research are two-fold. First, we believe that Dalí provides a fairly complete set of operations that
will be useful to the research community for building processing intensive multimedia application. Dalí is freely available
for research use from http://www.cs.cornell.edu/dali/. Second, this research is a case study in designing high-
performance multimedia APIs. It provides a model for what APIs operating systems should provide to programmers.

The rest of this paper is organized around these two contributions. To show how Dalí is used, we describe it in Section 2
through three illustrative examples. Section 3 describes the design principles of Dalí. The implementation and its
performance are briefly discussed next, and we conclude by presenting our plans for Dalí and outline related work.

2. DALÍ BY EXAMPLE

This section is intended to give the reader a feel for programs written using Dalí. We first outline the major abstractions
defined by Dalí and then present three examples of programs written with Dalí that illustrate its use and power.

2.1. Abstractions

To understand Dalí, it is helpful to understand the data types Dalí provides. The basic abstractions in Dalí are:
• ByteImage – a 2D array of values in the range 0..255.
• BitImage – a 2D array of 0/1 values.

• SCImage – an image where each “pixel” is a structure that represents the run-length-encoded DCT blocks found in many
block-based compression schemes, such as MPEG and JPEG.

• VectorImage – an image where each “pixel” is a structure that represents motion-vector found in MPEG or H.261.
• AudioBuffer – an abstraction to represent audio data (mono or stereo, 8-bit or 16-bit).
• ImageMap –represents a look-up table that can be applied to one ByteImage to produce another ByteImage.
• AudioMap – a look-up table for AudioBuffer.
• BitStream/BitParser – A BitStream is a buffer for encoded data. A BitParser provides a cursor into the

BitStream and functions for reading/writing bits from/to the BitStream.
• Kernel – 2D array of integers, used for convolution.
• BistreamFilter – a scatter/gather list that can be used to select a subset of a BitStream.

These abstractions can be used to represent common multimedia data objects. For example,
• A gray-scale image can be represented using a ByteImage.
• A monochrome image can be represented using a BitImage.
• An irregularly shaped region can be represented using a BitImage.
• An RGB image can be represented using three ByteImages, all of the same size.
• A YUV image in 4:2:0 format can be represented using three ByteImages. The ByteImage that represents the Y plane

is twice the width and height of the ByteImages that represent the U and V planes.
• The DCT blocks in a JPEG image, an MPEG I-frame, or the error terms in an MPEG P- and B-frame can be represented

using three SCImages, one for each of the Y, U and V planes of the image in the DCT domain.
• The motion vectors in MPEG P- and B-frame can be represented with a VectorImage.
• A GIF Image can be represented using three ImageMaps, one for each color map, and one ByteImage for the color-

mapped pixel data.
• 8 or 16-bit PCM, µ-law or A-law audio data (mono or stereo) can be represented using an AudioBuffer.

Dalí also has abstractions to store encoding-specific
structures. For example, an MpegPicHdr stores the
information parsed from a picture header in an MPEG-1
video bit stream. The header abstractions in the current
implementation are listed in Table 1.

2.2. Examples

Although the set of abstractions defined in Dalí is fairly
small (9 general purpose and 13 header abstractions), the set
of operators that manipulate these abstractions is not. Dalí
currently contains about 500 operators divided into 12
packages. The rationale for defining so many operators is
discussed in section 3. For now, we simply note that it is
neither practical nor productive to describe all the operators.

Instead, we present three examples that illustrate the use of
the Dalí abstractions and give you a feel for programs
written using Dalí. The first example shows how to use Dalí
to manipulate images, the second shows how to use Dalí for
MPEG decoding, and the last shows how to use a Dalí
BistreamFilter to demultiplex an MPEG systems stream.

2.2.1. Image Primitives

The first example uses Dalí to perform a picture-in-picture operation (figure 3). Before explaining this example, we must
describe the ByteImage abstraction in detail. A ByteImage consists of a header and a body. The header stores information
such as width and height of the ByteImage and a pointer to the body. The body is a block of memory that contains the
image data. A ByteImage can be either physical or virtual. The body of a physical ByteImage is contiguous in memory,
whereas a virtual ByteImage borrows its body from part of another ByteImage (called its parent). In other words, a virtual

Header File Format
PnmHdr NETPBM image header
WavHdr WAVE audio header
GifSeqHdr GIF file sequence header
GifImgHdr GIF file image header
JpegHdr JPEG image header
JpegScanHdr JPEG scan header
MpegAudioHdr MPEG-1 audio (layer 1, 2, 3)

header
MpegSeqHdr MPEG-1 video sequence header
MpegGopHdr MPEG-1 video group-of-picture

header
MpegPicHdr MPEG-1 video picture header
MpegSysHdr MPEG-1 system stream system

header
MpegPckHdr MPEG-1 system stream pack

header
MpegPktHdr MPEG-1 system stream packet

header

Table 1. Header abstractions in Dalí

ByteImage provides a form of shared memory – changing the body of a virtual ByteImage implicitly changes the body of
its parent (see Figure 1).

A new physical ByteImage is allocated using ByteNew(w,h). A virtual ByteImage is created using
ByteClip(b,x,y,w,h). The rectangular area whose size is w x h and has its top left corner at (x,y) is shared between the
virtual ByteImage and the physical ByteImage. The virtual/physical distinction applies to all image types in Dalí. For
example, a virtual SCImage can be created to decode a subset of a JPEG image.

We now show how to use Dalí to create a "picture in picture” (PIP) effect on an image (figure 3). We choose this example as
an example because it is simple, yet involves basic operators that illustrate the principles of Dalí.

The steps to create the PIP effect can be briefly stated as follows: given an input image, (1) shrink the image by half, (2) draw
a white box slightly larger than the scaled image on the original image, and (3) paste the shrinked image into the white box..

Figure 1. The ByteImage whose header is on the left is a
physical ByteImage, whereas the ByteImage whose

header is on the right is virtual.

Pixel Data

HeaderHeader

Figure 3. The input (top) and output (bottom) of the PIP
operations

outer picture

inner
picture

marginborderWidth

h

w

destH

destW(destX, destY)

Figure 4. Variables used in PIP functions.

1 void PIP(image, borderWidth, margin)
2 ByteImage *image;
3 int borderWidth, margin;
4 {
5 int w = ByteGetWidth(image);
6 int h = ByteGetHeight(image);
7 int destW = w/2;
8 int destH = h/2;
9 int destX = w - destW - margin;
10 int destY = h - destH - margin;
11 ByteImage *dest;
12 ByteImage *temp;

13 temp = ByteNew(destW,destH);
14 ByteShrink2x2(image, temp);

15 dest = ByteClip(image,
16 destX-borderWidth, destY-borderWidth,
17 destW+2*borderWidth,destH+2*borderWidth);
18 ByteSet(dest, 255);
19 ByteFree(dest);

20 dest = ByteClip(image,
21 destX, destY, destW, destH);
22 ByteCopy(temp, dest);
23 ByteFree(dest);
24 ByteFree(temp);
25 }

Figure 2. PIP function written in Dalí

Figure 2 shows a Dalí function that performs the PIP operation. The function takes in three arguments: image, the input
image; borderWidth, the width of the border around the inner image in the output, and margin,the offset of the inner
image from the right and bottom edge of the outer image. (See Figure 4).

Line 5 to line 6 of the function query the width and height of the input image. Line 7 to line 10 calculate the position and
dimension of the inner picture. Line 13 creates a new physical ByteImage, temp, which is half the size of the original
image. Line 14 shrinks the input image into temp. Line 15 creates a virtual ByteImage slightly larger than the inner picture,
and line 18 sets the value of the virtual ByteImage to 255, achieving the effect of drawing a white box. Line 19 de-allocates
this virtual image. Line 20 creates another virtual ByteImage, corresponding to the inner picture. Line 21 copies the scaled
image into the inner picture using ByteCopy. Finally, line 22 and 23 free the memory allocated for the ByteImages.

This example shows how images are manipulated in Dalí through a series of simple, thin operations. It also illustrates several
design principles of Dalí, namely (1) sharing of memory (through virtual images), (2) explicit memory control (through
ByteClip, ByteNew and ByteFree), and (3) specialized operators (ByteShrink2x2). These design principles will be
discussed in greater details in Section 3.

2.2.2. MPEG and BitStreams Primitives

Our next example illustrates how to process MPEG video streams
using Dalí. Our example program decodes the I-frames in an
MPEG video stream into a series of RGB images. Before discussing
the example, we briefly review the format of MPEG video streams
and the relevant Dalí abstractions and functions.

To parse an MPEG video stream, the encoded video data is first
read into a BitStream. A BitStream is an abstraction for
input/output operations – that is, it is a buffer. To read and write
from the BitStream, we use a BitParser. A BitParser
provides functions to read and write data to and from the
BitStream, plus a cursor into the BitStream.

An MPEG video stream consists of a sequence header, followed by
a sequence of GOPs (group-of-pictures), followed by an end of sequence marker (Figure 5). Each GOP consists of a GOP
header followed by a sequence of pictures. Each picture consists of a picture header, followed by the compressed data
required to reconstruct the picture. Sequence headers contain information such as the width and height of the video, the frame
rate, the aspect ratio, and so on. The GOP header contains the timecode for the GOP. The picture header contains
information necessary for decoding the picture, most notably the type of picture (I, P, B). Dalí provides an abstraction for
each of these structural elements (see Table 1).

Dalí provides five primitives for each structural element: find, skip, dump, parse, and encode. Find positions the cursor
in the BitStream just before the element. Skip advances the cursor to the end of the element. Dump moves the bytes
corresponding to the element from input BitStream to the output BitStream, until the cursor is at the end of the header.
Parse decodes the BitStream and stores the information into a header abstraction, and encode encodes the information
from a header abstraction into a BitStream. Thus, the MpegPicHdrFind function advances the cursor to the next picture
header, and MpegSeqHdrParse decodes the sequence header into a structure.

Given this background, we can describe the Dalí program shown in Figure 6, which decodes the I-frames in an MPEG video
into RGB images. Lines 1 through 7 allocate the data structures needed for decoding. Line 8 associates inbp to inbs. The
cursor of inbp will be pointing to the first byte of buffer in inbs, which is a memory-mapped version of the file. Lines 9-10
move inbp to the beginning of a sequence header and parse the sequence header into seqhdr.

We extract vital information such as width, height and the minimum data that must be present to decode a picture (vbvsize)
from the sequence header in lines 11-13. Lines 14 through 22 allocate the ByteImages and SCImages we need for decoding
the I-frames. The variables scy, scu, and scv store compressed (DCT domain) picture data, y, u, and v store the decoded
picture in YUV color space, and r, g, and b store the decoded picture in RGB color space.

seq header GOP GOP … end sequence

 GOP header picture picture …

picture header picture body

Figure 5. Format of an MPEG-1 Video Stream.

The main loop in the decoding program (lines 23-34) starts
by advancing the BitParser cursor to the next MPEG
picture header (line 24). If the picture header is not found,
we exit the loop (line 25). Otherwise, we parse the picture
header (line 26) and check its type (line 27). If it is an I-
frame, we parse it into three SCImages, (line 28), convert the
SCImages to ByteImages (lines 29-31), and convert the
ByteImages into RGB color space (line 32).

Breaking down complex decoding operations like MPEG
decoding into “thin” primitives makes Dalí code highly
configurable. For example, by removing lines 32 to 34, we
get a program that decodes MPEG I-frame into gray scale
images. By replacing line 31 to 34 with JPEG encoding
primitives, we get an efficient MPEG I-frame to JPEG
transcoder. Similarly, we can just as easily write a Motion-
JPEG to MPEG I-frame transcoder.

2.2.3. BistreamFilters

Our final example illustrates how we can filter out a subset
of a BitStream for processing. BistreamFilters were
designed to simplify the processing of bit streams with
interleaved data (e.g., AVI, QuickTime, or MPEG systems
streams). BistreamFilters are similar to scatter/gather
vectors – they specify an ordered subset of a larger set of
data.

A common use of filtering is processing MPEG system
streams, which consists of interleaved audio or video (A/V)
streams (Figure 7). In MPEG, each A/V stream is assigned
an unique id. Audio streams have ids in the range 0..31;
video streams ids are in the range 32..47. The A/V streams
are divided up into small (approx. 2 Kbytes) chunks, called
packets. Each packet has a header that contains the id of the
stream, the length of the packet, and other information (e.g.,
a timecode).

In this example, we build a BistreamFilter that can be
used to copy the packets of the first video stream (id = 32)
from a system stream stored in one BitStream to another.
Once copied, we can use the Dalí MPEG video processing
primitives on the video-only BitStream. The Dalí code for
building this filter is shown in Figure 8.

Lines 2 through 8 allocate and initialize various structures
needed by this program. The variable offset stores the
byte offset of a packet in the bit stream, relative to the start of
the stream. Line 9 advances the cursor to the beginning of the
first packet header and updates offset. The main loop
(lines 10-18) parses the packet header (line 11) and, if the
packet belongs to the first video stream, its offset and length
are added to filter (line 14). EndOfBitstream is a macro
that checks the position of the bit stream cursor against the
length of the data buffer.

// filename is the name of the MPEG file to parse
1 BitStream *inbs = BitStreamMmapReadNew (filename);
2 BitParser *inbp = BitParserNew ();
3 MpegSeqHdr *seqhdr = MpegSeqHdrNew ();
4 MpegPicHdr *pichdr = MpegPicHdrNew ();
5 int w, h, vbvsize, status;
6 ScImage *scy, *scu, *scv;
7 ByteImage *y, *u, *v, *r, *g, *b;

8 BitParserWrap(bp, bs);

9 MpegSeqHdrFind(bp);
10 MpegSeqHdrParse(bp, seqhdr);

11 w = MpegSeqHdrGetWidth(seqhdr);
12 h = MpegSeqHdrGetHeight(seqhdr);
13 vbvsize = MpegSeqHdrGetVbvSize(seqhdr);

14 r = ByteNew(w, h);
15 g = ByteNew(w, h);
16 b = ByteNew(w, h);
17 y = ByteNew(w, h);
18 u = ByteNew((w+1)/2, (h+1)/2);
19 v = ByteNew((w+1)/2, (h+1)/2);
20 scy = ScNew((w+15)/16, (h+15)/16);
21 scu = ScNew((w+31)/32, (h+31)/32);
22 scv = ScNew((w+31)/32, (h+31)/32);

23 while (1) {
24 status = MpegPicHdrFind (inbp);
25 if (status == DVM_MPEG_NOT_FOUND) break;
26 MpegPicHdrParse (inbp, pichdr);
27 if (pichdr->type == I_FRAME) {
28 MpegPicIParse (inbp,scy,scu,scv);
29 ScToByte (scy, y);
30 ScToByte (scu, u);
31 ScToByte (scv, v);
32 YuvToRgb420 (y, u, v, r, g, b);
33 }
34 }

Figure 6. Dalí code to decode the I-frames of an MPEG video to
RGB format.

v a v a v a …

filtering

v v v v v …

MPEG
System
BitStream

Video
Only
BitStream

Figure 7. An MPEG system stream consists of
interleaving video (v) and audio (a) packets. Filter
efficiently extracts a portion of one input stream. For
example, it extracts the video portion to create a
video only stream.

Once the BistreamFilter is constructed, it can be saved
to disk, or used as a parameter to functions such as
BitStreamFileFilter, which reads the subset of a file
specified by the filter, or BitstreamDumpUsingFilter.,
which copies the data subset specified by a filter from one
BitStream to another.

This example illustrates how Dalí can be used to
demultiplex interleaved data. The technique is easily
extended to other formats, such as QuickTime, AVI,
MPEG-2 and MPEG-4. Although this mechanism uses
data copies, the cost of copying is offset by the
performance gain when processing the filtered data.
Another option (one we initially tried) is to integrate the
filter mechanism directly into the bit-at-a-time parsing
functions provided by the BitParser. Although this
design avoids unnecessary data copies, we found the
overhead of checking if the cursor was at a filter segment
boundary on each function call too high to make this design
practical. A better option would be to provide hardware
support for scatter/gather vectors3.

These three examples should give you a feel for Dalí programs. Interested readers should consult the Dalí web site at
http://www.cs.cornell.edu/dali for more details and examples.

3. DESIGN PRINCIPLES OF DALÍ

One of the contributions of this research is that it provides a case study in the design of high-performance software libraries
for processing multimedia data. Many of the design decision we made differ from other libraries because Dalí emphasizes
performance over ease of use. This goal put us at an unusual point in the design space. In this section, we highlight the
principles that emerged during the design of Dalí.

Three themes emerge from these principles. The first theme is predictable performance. We designed Dalí to allow
programmers to easily predict the performance of their code. We believe it is important that programmers have a simple,
well-defined cost model for the functions provided by a library. Predictable performance is important for writing high-
performance code because it simplifies the analysis required when making design decisions between alternative
implementations of a program. It is also important for writing programs that are well-behaved in real-time environments.

The cost of functions in existing libraries can be difficult to predict. This unpredictability has several sources. Often,
functions will perform hidden, expensive operations, such as I/O or memory allocation. How much these operations cost,
and when they occur, is hidden behind the abstractions provided by the API. A second source of unpredictability is the
APIs, which often provide abstractions that are too coarse. For instance, many video-decoding libraries provide a function to
"get the next frame." But the execution time for this function can be vastly different when decoding MPEG video, depending
on the frame type (I, P, or B). A third source of unpredictability is that the execution time of a function can be very non-
linear, depending on the value of the parameters. For example, scaling an image down by a factor of 2 can be significantly
faster than scaling an image down by a factor of 1.9 if interpolation is used.

The second, closely related theme in the design of Dalí is resource control. We wanted to give programmers better control
over the machine's resources (at the language level, not the OS level). Predictable performance gives programmers control
over their use of the CPU, but memory and I/O are very important resources in multimedia applications. Dalí provides
several mechanisms for giving the programmer tight control over memory allocation and I/O execution, and for reducing or
eliminating unnecessary memory allocation.

The final theme is replacability and extensibility. We wanted Dalí to be usable in many applications, not just the ones we
envision. For example, Dalí would be useful in building a multimedia database. Since most database management systems
perform their own I/O, we separated the Dalí I/O functions from the computation functions. Throughout the design, we tried
to make Dalí extensible and pieces of it replaceable.

1 #define SIZE (128*1024)
2 int len, offset, start = 0;
3 MpegPktHdr *hdr = MpegPktHdrNew();
4 BitStream *bs = BitStreamNew (SIZE);
5 BitParser *bp = BitParserNew ();
6 BitStreamFilter * filter = BitStreamFilterNew();

7 BitParserAttach (bp, bs);
8 BitStreamFileRead (bs, file);

9 offset = MpegPktHdrFind (bp);
10 while (!eof(file) && !EndOfBitstream(bp)) {
11 MpegPktHdrParse (bp, hdr);
12 if (hdr->id == 32) {
13 len = hdr->len;
14 BitStreamFilterAdd(filter, offset, len);
15 start += UpdateIfUnderflow (bp,bs,file,SIZE/2);
16 offset = start + MpegPktHdrFind(bp);
17 }
18 }

Figure 8. Filtering an MPEG system stream by copying the first
video stream to another BitStream for processing.

In summary, the design problem we faced was providing an API that was coarse enough to provide a useful level of
abstraction to the programmer, yet fine enough to give the programmer tight control over their code. The following sections
describe the mechanisms we use to solve this problem in detail.

3.1. I/O Separation

Few Dalí primitives perform I/O. The only ones that do are special I/O primitives that load/store BitStream data. All other
Dalí primitives use BitStream as their data source.

This separation has three advantages. First, it makes the I/O method used transparent to Dalí primitives. Other libraries use
integrated processing and I/O. A library that integrates file I/O with its processing is difficult to use in a network
environment, since the I/O behavior of networks is different from that of files. Second, the separation of I/O also allows
control of when I/O is performed. For example, we are building a multithreaded implementation of Dalí that will allow us to
use a double buffering scheme to read and process data concurrently. Third, by isolating the I/O calls, the performance of the
remaining functions becomes more predictable.

3.2. Sharing of Memory

Dalí provides two mechanisms for sharing memory between abstractions. These mechanisms are called clipping and casting.
In clipping, one object "borrows" memory from another object of the same type. An example usage of clipping can be seen in
Figure 1. Clipping functions are extremely cheap (they only allocate an image header structure), and are provided for all Dalí
image and audio data types. Clipping is useful for avoiding unnecessary copying or processing of data. For example, if we
only want to decode part of the gray-scale image in an MPEG I-frame, we could create a clipped SCImage that contains a
subset of DCT blocks from the decoded I-frame and then perform the IDCT on that clipped image. The advantage of this
strategy is that it avoids performing the IDCT on encoded data that we will not use.

While clipping is the sharing of memory between objects of the same type, casting refers to the sharing of memory between
objects of different types. Casting avoids unnecessary copying of data. Casting is often used in I/O, since all I/O must be
done through a BitStream. To avoid copying data, a section of the BitStream buffer can be shared with another object. For
instance, we can read a PGMb image file into BitStream, parse the headers, and cast the remaining data into a ByteImage.

3.3. Explicit Memory Allocation

In Dalí, the programmer allocates and frees all non-trivial memory resources using new and free primitives (e.g.,
ByteImageNew and ByteImageFree). Functions never allocate temporary memory – if such memory is required to
complete an operation (scratch space, for example), the programmer must allocate it and pass it to the routine as a parameter.
Explicit memory allocation allows the programmer to reduce or eliminate paging, and make the performance of the
application more predictable.

To illustrate these points, consider the ByteCopy function, which copies from one ByteImage to another. One potential
problem is that the two ByteImages might overlap (e.g., if they share memory, via clipping). One way to implement
ByteCopy is shown on the left side of Figure 9. This implementation allocates a temporary buffer, copies the source into the
temporary buffer, copies the temporary buffers into the destination, and frees the temporary buffer. In contrast, the Dalí

ByteCopy operation assumes that the source and destination
do not overlap, so it simply copies the source into the
destination. The programmer must determine if the source
and destination overlap, and if so allocate a temporary
ByteImage and two ByteCopy calls (Figure 9, right).

A third possible implementation is to only allocate a
temporary buffer if the source and destination overlap. This
implementation has the drawback that its performance would
be difficult to predict. If the source and destination overlap,
the function could take 2-3 times longer to complete than if
they do not.

b A PGM file contains a header followed by raw, gray-scale image data in row-major order – the same order as Dali ByteImages.

ByteCopy(src, dest) {
 temp = malloc ();
 memcpy src to temp;
 memcpy temp to dest;
 free (temp);
}

ByteCopy(src, dest);

ByteCopy(src, dest) {
 memcpy src to dest;
}

temp = ByteNew ();
ByteCopy(src, temp);
ByteCopy(temp, dest);
ByteFree (temp);

Figure 9. Left: an implementation of ByteCopy where
memory is implicitly allocated. Right: the Dalí
implementation of ByteCopy.

3.4. Specialization

Many Dalí primitives implement special cases of a more general operation. The special cases can be combined to achieve the
same functionality of the general operation, and have a simple, fast implementation whose performance is predictable.
ByteCopy is one such primitive – only the special case of non-overlapping images is implemented.

Another example is image scaling (shrinking or expanding the image). Instead of providing one primitive that scales an
image by an arbitrary factor, Dalí provides five primitives to shrink an image (Shrink4x4, Shrink2x2, Shrink2x1,
Shrink1x2, and ShrinkBilinear) and five others to expand an image. Each primitive is highly optimized and performs a
specific task. For example, Shrink2x2 is a specialized function that shrinks the image by a factor of 2 in each dimension.
It is implemented by repeatedly adding 4 pixel values together and shifting the result, an extremely fast operation. Similar
implementations are provided for Shrink4x4, Shrink2x1, and Shrink1x2. In contrast, the function
ShrinkBilinear shrinks an image by a factor between 0.5 and 2 using bilinear interpolation. Although arbitrary scaling
can be achieved by composing these primitives, splitting them into specialized operations makes the performance predictable,
exposes the cost more clearly to the programmer, and allows us to produce very fast implementations.

3.5. Generalization

The drawback to specialization is that it can lead to an explosion in the number of functions in the API. Sometimes, however,
we can combine several primitives without sacrificing performance, which significantly reduces the number of primitives in
the API. We call this principle generalization.

A good example of generalization is found in the primitives that process AudioBuffers. AudioBuffers store mono or
stereo audio data. Stereo samples from the left and right channels are interleaved in memory (Figure 10, top).

Suppose you were implementing an operation that raises the volume on one channel (i.e., a balance control). One possible
design is to provide one primitive that processes the left channel and another that processes the right channel (Figure 10a).
However, we can combine the two without sacrificing performance by modifying the initialization of the looping variable (1
for right, 0 for left). This implementation is shown in Figure 10b.

In general, if specialization gives better performance, it should be used. Otherwise, generalization should be used to reduce
the number of functions in the API.

3.6. Exposing Structures

Most libraries try to hide details of encoding algorithms from the programmer, providing a simple, high-level API. In
contrast, Dalí exposes the structure of compressed data in two ways.

First Dalí exposes intermediate structures in the decoding
process. For example, instead of decoding an MPEG frame
directly into RGB format, Dalí breaks the process into three
steps: bit stream decoding (including Huffman decoding and
dequantization), frame reconstruction (motion compensation
and IDCT), and color space conversion. For example, the
MpegPicParseP function parses a P frame from a BitStream

and writes the results into three SCImages and one
VectorImage. A second primitive reconstructs pixel data
from SCImage and VectorImage data, and a third converts
between color spaces. The important point is that Dalí exposes
the intermediate data structures, which allows the programmer
to exploit optimizations that are normally impossible. For
example, to decode gray scale data, one simply skips the frame
reconstruction step on the U/V planes. Furthermore,
compressed domain processing techniques can be applied on
the SCImage or VectorImage structures.

Dalí also exposes the structure of the underlying bit stream. As
described in the introduction and section 2.2.2, Dalí provides
operations to find structural elements in compressed bit streams.

 L0 R0 L1 R1 L2 R2 L3 R3 …

 x0 x1 x2 x3 x4 x5 x6 x7

(a)
process_left(x)
for (i = 0; i < n; i+= 2) {
 process x[i]
}
process_right(x)
for (i = 0; i < n; i+= 2) {
 process x[i]
}

(b)
process(x, offset)
for (i = offset; i < n; i+= 2) {
 process x[i]
}

Figure 10. Generalization of an AudioBuffer primitives.

This feature allows programmers to exploit knowledge about the underlying bit stream structure for better performance. For
example, a program that searches for an event in an MPEG video stream might cull the data set by examining only the I-
frames initially, since they are easily (and quickly) parsed, and compressed domain techniques can be applied. This
optimization can give several orders of magnitude improvement in performance in some circumstances, but since other
libraries hide the structure of the MPEG bit stream from the programmer, this optimization cannot be used. In Dalí, this
optimization is trivial to exploit. The programmer can use the MpegPicHdrFind function to find a picture header,
MpegPicHdrParse to decode it, and, if the type field in the decoded header indicates the picture that follows is an I-frame,
call MpegIPicParse to decode the picture.

4. IMPLEMENTATION

Dalí is currently implemented as a C run time library with approximately 50K lines of code. A Tcl binding is also available.
It has been ported to Win95/NT, SunOS 4, Solaris, and Linux. The Dalí library is divided into several packages according to
their functionality and data type support. Supported data type includes PNM, GIF, JPEG, WAV, MPEG-1 and AVI. The
code can be downloaded from http://www.cs.cornell.edu/dali/

One might wonder whether the layered architecture of Dalí has any negative impact on performance. To answer this
question, we compared three programs written in Dalí to similar programs widely used in the research community. These
benchmarks include the Berkeley MPEG decoder, the IJG JPEG encoder, and a use of the NETPBM toolkit. Our results
show that Dalí performs as well as these programs or better.

4.1. NETPBM

To compare Dalí with NETPBM, we used the following task: convert a 1600x1200 GIF image to a 320x240 gray scale
image. On a Sparc 20 workstation, the command giftopnm input.gif | ppmtopgm | pnmscale 0.2 > /dev/null

takes 2.6 seconds. The Dalí program that performs the same function takes 1.5 seconds and is about 110 lines long.

The Dalí program performs better because the implementation of NETPBM is not optimized and overhead is incurred when
data is piped from one program to another. These shortcomings could be addressed by writing a single C program that
combines code from giftopnm.c, ppmtopgm.c, and pnmscale.c, but this is a time-consuming task. In contrast, the Dalí
program to perform the task can be easily optimized. For example, since Dalí exposes the color table of a GIF image (as an
ImageMap), we can perform the RGB-to-gray conversion on the color table instead of the RGB image. This modification
improved the performance by 13% and required changing four lines of code.

4.2. MPEG decoder

We compared Dalí with Berkeley MPEG decoder (mpeg_play). Our full function MPEG to PPM converter required about
150 lines of Dalí code. On a Sparc 20 workstation, the Dalí program ran about 10% faster than the mpeg_play c on a large
variety of streams. We believe that Dalí's specialized primitives for decoding I, P, and B Frames contributes to the gain in
performances.

4.3. JPEG encoding

Dalí JPEG encoding performance is comparable to the Independent JPEG Group’s encoder (cjpeg). The IJG encoder will
compress a 1600x1200 PPM image in 1.0 seconds of CPU time on a Pentium II 266 MHz WinNT workstation with 64MB of
memory. The straightforward version of the equivalent Dalí encoder, which reads the whole PPM image into three
ByteImages, converts them into the YUV color space, performs the DCT, and encodes the result, takes about 20% longer.
We believe that the data copies associated with demultiplexing the RGB data in the I/O buffers into the ByteImages is
responsible for the lesser performance of our versiond.

Not satisfied with this result, we rewrote the Dalí encoder to divide the ByteImages into horizontal strips using Dalí's
clipping mechanism. We then perform color-space conversion, DCT, and bitstream encoding on each strip separately. This
design gives superior caching performance. The improved version of JPEG encoder takes 1.0 seconds to encode the image.

c For Berkeley MPEG player, we used mpeg_play -dither color -no_display
d The Dalí casting mechanism could not be used in this case because the PPM data contains interleaved RGB data. We intend to rewrite the ByteImage

abstraction to store and access interleaved RGB data. The mechanism will be similar to the way AudioBuffers store mono or stereo data in a single
structure.

These experiments show that the design principles that we adopted for Dalí do not hurt performance. Rather, they allow
flexible, optimized programs to be constructed with minimal effort.

5. CONCLUSION

The multimedia research community has traditionally built their software from scratch in C or by using high-level libraries.
We believe that neither approach is satisfactory. We therefore developed Dalí, a software library for high-performance
multimedia processing that provides lower level abstractions than most libraries, but much higher level than C. Dalí is
designed for high-performance, and is based on several design principles such as explicit resource management, resource
sharing and thin operations.

This paper described Dalí through examples and presented the design principles that make Dalí a high performance library.
Our contribution is one of engineering, not scientific, research. We think that Dalí will prove to be a useful tool to the
community because it allows efficient, processing-intensive multimedia software to be built with relatively small effort, and
provides a vehicle through which research groups building this software can exchange their results.

5.1. Related Work

There are countless libraries for processing multimedia data (e.g., NETPBM12, IJG JPEG6, gd5, ooMPEG13). Most libraries
either provide a high-level API or work for a specific data format. Dalí is the first library that attempts to provide an efficient
API that supports multiple multimedia data formats.

Others have proposed scripting language (VideoScheme10, Isis7, Rivl21) for processing multimedia data. Scripting languages
are typically high-level, weakly typed, interpreted languages that support the composition of components and rapid
prototyping. These languages provide high-level commands for manipulation of multimedia data. Isis and VideoScheme do
not address performance issues in processing. Rivl addresses performance issues by using optimization techniques such as
lazy evaluation and memory management. However, the optimizations that Rivl can perform are limited because Rivl
combines the interpreter, optimizer and execution engine into one single system. This combined function makes it difficult to
extend and debug. In fact, Dalí is initially designed to be compiler target for the Rivl compiler to address these problems.

PPE17 is a multimedia toolkit that proposed using composable components to construct multimedia software. PPE
components are lower level than Dalí. For example, PPE include components such as Huffman decoder, zigzag decoder, and
IDCT decoder that can be pipelined to build a JPEG decoder. However PPE is designed to provide adaptive and configurable
modules that can adapt themselves to heterogeneous environment, and not for more general multimedia processing. PPE is
meant for building decoders whose component can be easily replaced. For instance, a fast, inaccurate IDCT can be used
instead of a slower, more accurate IDCT when CPU power is limited. In contrast, Dalí is designed to construct more
complex applications than PPE and to allow the program to exploit high-level optimizations.

5.2. Future Work

We are currently enhancing and Dalí with support for more multimedia data types such as MPEG-2, MPEG-4 and H.263. A
Java binding is also under development. We plan to build a multithreaded implementation of Dalí in the near future. Dalí's
clipping mechanism will allow us to easily exploit the parallelism inherent in most multimedia processing. For example, we
can clip a ByteImage into small strips and process them in parallel using separate threads.

We are integrating Dalí into the Mash9 toolkit. Mash is a toolkit for constructing multimedia applications such as vic and vat.
Integrating Dalí into Mash will allow us to build many interesting applications, such as a programmable media gateway
where users can upload Dalí programs that process multimedia data as it flows through the network.

ACKNOWLEDGEMENTS

We would like to thank the Dalí team: Sugata Mukhopadhyay, Haye Hsi Chan, Tibor Janosi, Steve Weiss, Matthew Chew,
Jose Machuca, Jiesang Song and Daniel Rabinovitz for implementation of Dalí. This research was supported by
DARPA/ONR (contract N00014-95-1-0799), and grants from the National Science Foundation, Kodak, Intel, Xerox, and
Microsoft.

REFERENCES

1. S. Acharya, B. Smith, Compressed Domain Transcoding of MPEG. Proceedings of the International Conference on
Multimedia Computing and Systems (ICMCS) 1998, Austin, Texas. June 1998.

2. E. Amir, S. McCanne, H. Zhang, An Application Level Video Gateway. Proceedings of ACM Multimedia ’95, San
Francisco, California, November 1995.

3. J. Carter, W. Hsieh, M. Swanson, A. Davis, M. Parker, L. Schaelicke, L. Stoller, T. Tateyama, and L. Zhang, Memory
System Support for Irregular Applications, Fourth ACM Workshop on Languages, Compilers, and Run-time Systems
for Scalable Computers (LCR ’98), Carnegie Mellon University, Pittsburgh, PA, USA, May 28-30, 1998 May 1998.
http://www2.cs.utah.edu/impulse/publications.html

4. CU-SeeMe, http://www.wpine.com/Products/CU-SeeMe/

5. gd GIF library, http://www.boutell.com/gd.

6. Independent JPEG Group software, release 6b, March 1998
ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v6b.tar.gz

7. Isis. A multilevel scripting environment for responsive multimedia.
http://isis.www.media.mit.edu/projects/isis/

8. D. Le Gall, MPEG: A Video Compression Standard for Multimedia Applications, Communications of the ACM, pp. 46-
58, Vol. 34, Num.4, April 1991.

9. S. McCanne et. al., Toward a Common Infrastructure for Multimedia-Networking Middleware. In Proc. 7th Intl.
Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV ’97), St. Louis,
Missouri, May 1997.

10. J. Matthews, P. Gloor, F. Makedon, VideoScheme: A Programmable Video Editing System for Automation and Media
Recognition. ACM Multimedia ‘93, August 1993, Anaheim, CA, pp. 419-426.

11. Microsoft NetMeeting, http://www.microsoft.com/netmeeting

12. NETPBM Graphics Package, March 1994,
ftp://ftp.cs.ubc.ca/ftp/archive/netpbm/netpbm-1mar1994.tar.gz

13. ooMPEG: Object-oriented MPEG Decoder,
http://www.cs.brown.edu/software/ooMPEG/

14. J. Ousterhout, Tcl and the Tk Toolkit. Addison-Wesley, Massachusetts, 1994.

15. W. Pennebaker, JPEG Still Image Data Compression Standard, Van Nos and Reinhold, New York, 1992.

16. K. Patel, B. Smith, L. Rowe, Performance of a Software MPEG Video Decoder, Proc. of the First ACM International
Conference on Multimedia, pp. 75-82, Anaheim, CA, August 1-6, 1993.

17. N. Patel, I. Sethi, Compressed Video Processing for Cut Detection. IEEE Proceedings: Vision, Image and Signal
Processing, pp. 315-323, Vol. 143, October 1996

18. E. Posnak, R. Lavender, H. Vin, An Adaptive Framework for Developing Multimedia Software Components.
Communications of the ACM, October 1997.

19. B. Shen, I. Sethi, Convolution-Based Edge Detection for Image/Video in Block DCT Domain, Journal of Visual
Communication and Image Representation, Vol. 7, No. 4, pp. 411-423, 1996.

20. B. Smith, L. Rowe, Compressed Domain Processing of JPEG-encoded Images, Real-Time Imaging, pp. 3-17,Vol. 1,
Num. 2, July 1996.

21. J. Swartz, B. Smith, A Resolution Independent Video Language. Proceedings of ACM Multimedia Conference. San
Francisco, California, 1995.

22. T. Wong et. al., Software-only video production switcher for the Internet MBone. Proceedings of Multimedia
Computing and Networking, pp. 28-39, San Jose, California, January 1998.

