Processor Frequency Selection for SoC Platformsfor Multimedia Applications

Yanhong Liu* Alexander Maxiaguine?

Samarjit Chakraborty! ~ Wei Tsang Ooi*

!Department of Computer Science, National University of Singapore
2Computer Engineering and Networks Laboratory, ETH Ziirich

E-mail: {liuyanho, samarjit, ooiwt} @comp.nus.edu.sg,

Abstract
Of late, there has been a considerableinterest in generic

and configurabl e System-on-Chip platforms specifically tar-
geted towards implementing multimedia applications. A
number of such platforms offer the possibility of includ-
ing processor soft cores which are highly customizable. For
voltage/frequency scaled processors, such customizationin-
cludes the selection of appropriate voltage/frequency oper-
ating points which are tuned to the application set to be
mapped onto the platform. Inthis context, we present an an-
alytical framework that can guide a systemdesigner iniden-
tifying the frequency ranges that should be supported by the
different processors of a platform architecture. This frame-
work can al so be used to i dentify how such frequency ranges
depend on the different parameters of the architecture (such
as on-chip buffer sizes), and the performance impacts as-
sociated with selecting a particular frequency range. In
the case of multimedia streaming applications, identifying
such performance impacts and tradeoffs involved in cus-
tomizing a platform architecture is especially difficult due
to the bursty nature of on-chip traffic arising out of multi-
media processing and the high variability in their execution
requirements. The framework presented here is designed to
precisely capture such characteristics and can be used in
the design-space exploration of energy-aware platform ar-
chitecturesfor multimedia processing.

1 Introduction

Today, most portable devices such as PDAs and mobile
phones offer support for streaming multimedia applications.
Because of flexibility, time-to-market advantages and low
design costs, very often such devices are now designed us-
ing generic, configurable System-on-Chip (SoC) platforms.
Such platforms are usually customized for a particular ap-
plication domain, but still support sufficient flexibility to al-
low them to be configured for specific products belonging
to that domain. Examples of such platforms are the Eclipse
architecture template [10] and the Viper SoC architecture
[5] from Philips, both of which target advanced set-top box
and DTV markets.

Because of the high computational demands, real-time
constraints and low power consumption requirements of

maxiagui@tik.ee.ethz.ch

portable multimedia devices, designing SoC platforms for
such devices require a disciplined design methodology. Al-
though, recently there has been some work on platform
management techniques [13], the issue of platform design
has not been sufficiently addressed so far. The only signif-
icant effort in this direction, that we are aware of, is from
Philips in designing the Eclipse architecture template for
media processing SoCs [11, 12]. In this paper, we follow
this line of work and propose a framework for designing
energy-aware SoC platforms specifically targeted towards
media processing in portable devices. In the application
domain targeted by Eclipse (digital televisions and set-top
boxes), power consumption is not a significant issue.

Problem Statement: The problems we are interested in
addressing are of the following form. Suppose that we
are given a multiprocessor SoC platform architecture “tem-
plate” and a number of multimedia applications, all of
which are required to be supported by this platform. Our job
is to derive a (concrete) platform architecture from this tem-
plate, by choosing appropriate processors, sizes of on-chip
buffers and possibly other parameters such as bus widths
and cache configurations. The processors to be chosen for
this platform support software-controlled voltage and fre-
quency scaling to allow different degrees of power con-
sumption at run time. Therefore, we are also required
to choose the frequency/voltage ranges that each proces-
sor should support. In this paper we specifically focus on
this last issue and identify how this range depends on the
other parameters of the platform architecture, such as on-
chip buffer sizes.

The results presented in this paper also provide insights
into questions such as: if a processor supports only a fixed
number of operating points, where each such point is char-
acterized by a voltage and a frequency value, then how
many such operating points should a processor ideally sup-
port and how should these values be chosen? A proces-
sor which allows the voltage and frequency values to be
changed continuously would typically be more expensive
than one which allows these values to be changed in dis-
crete steps and supports only a fixed number of these val-

ues or operating points. Today, processors of both these
types are available—Intel’s XScale processor is of the for-
mer type and Transmeta’s Crusoe processor is of the latter
type. Therefore, it is pertinent to ask questions like what
kind of performance impacts would choosing a processor of
the latter type have, over a more expensive processor which
supports a continuous range of frequency values? Further,
a platform designer would also be interested in identify-
ing how the frequency range, that needs to be supported
by a processor, varies with the available on-chip buffer size.
Since on-chip buffers are available only at a premium be-
cause of their high area requirements [14], such information
would help in choosing an appropriate tradeoff.

Answers to these questions are becoming increasingly
relevant because a number of embedded processor cores to-
day offer a high degree of customization potential, such as
instruction set tailoring and register file sizing. For pro-
cessors which support dynamic frequency/voltage scaling,
choosing efficient operating points is therefore becoming a
part of this customization procedure. In the context of mul-
timedia applications, this is especially critical because of
the complex and bursty nature of on-chip traffic and the high
variability in the execution times of multimedia processing
tasks—both of these resulting in a highly variable demand
on the computational resources available on the chip [14].
Hence, being able to control the processor frequency accu-
rately to counter this variability is important.

Our Resultsand Relation to PreviousWork: The main
contribution of this paper is framework which can guide
a system designer in identifying the operating frequency
range that different processors on a SoC platform archi-
tecture should support in order to run a given multimedia
application or a class of applications. Identifying such a
range accurately is not straightforward because of the rea-
sons mentioned above, i.e. the complex nature of on-chip
traffic arising out of multimedia processing and the variabil-
ity in the execution times of tasks. Moreover, since differ-
ent applications and input classes might have very different
computational demands, choosing an appropriate processor
frequency range involves several tradeoffs between proces-
sor cost, flexibility and on-chip buffer requirements. Our
framework can help a system designer in identifying these
tradeoffs.

Although there has been a significant amount of work
in developing voltage and frequency scheduling algorithms
in the context of multimedia applications, the problem of
processor design and processor frequency selection from
an energy-aware perspective has received considerably lit-
tle attention so far. Our work is partly motivated by a recent
paper [2], which proposes a linear programming based tech-
nique to optimally select operating voltage/frequency points
in an embedded processor core. The task to be executed on
such a processor is specified as a task graph whose vertices

are annotated with execution requirements and deadlines.
However, in contrast to this work, the framework proposed
here is targeted specifically towards streaming multimedia
applications and explicitly models the burstiness in multi-
media streams and the variability in the execution require-
ments of multimedia processing tasks. Other representative
work in this direction is [6], which addresses the selection
of the processor core and instruction and data cache config-
uration in the design of variable voltage processors.

The framework presented in this paper is based on the
theory of Network Calculus [1] which was developed and
is still largely used in the context of analyzing communi-
cation networks. Very recently, it was extended to analyze
SoC architectures in the context of network processors [4].
This work was further extended in [3, 9] to the domain of
general SoC platform architectures. Our work in this paper
follows this line of development, but extends the underly-
ing theory in two ways. On an abstract level, the analysis
schemes presented in the previous papers relied on concrete
input instances and could not provide any theoretical guar-
antees on the performance of an architecture for a class of
inputs. In contrast to this, the framework presented here
can be used to analyze a class of input streams, for which
a more elaborate theory is necessary—this is explained in
detail in Sections 3.1 - 3.3. Secondly, none of the previous
results provided means for computing the range of proces-
sor frequencies from an input specification. This extension
is presented in Section 4.

The rest of the paper is organized as follows. The next
section describes a system model of a platform architecture
and formally states our problem. Given a specification of
the application to be implemented on this architecture and
the class of input streams to be processed, in Section 3 we
compute bounds on the service that needs to be provided by
each processor of this architecture. In Section 4 we show
how such service bounds can be used to derive the operat-
ing frequency range of each processor. Finally, in Section 5
we present a case study involving an MPEG-2 decoder ap-
plication to illustrate an application of the proposed frame-
work, and also validate the results obtained using detailed
simulations.

2 Problem Formulation

In this paper, we consider the following system-level
view of multimedia stream processing on a SoC platform.
A platform architecture, such as the one shown in Fig-
ure 1, consists of multiple processing elements (PEs) onto
which the different parts of an application are partitioned
and mapped. An input multimedia stream enters a PE, gets
processed by the task(s) implemented on this PE, and the
processed stream enters another PE for further processing.
A model of the architecture in Figure 1 is shown in Figure 2.
Each PE has an internal buffer, which is a FIFO channel of
fixed capacity, and is used to store the incoming stream to

Network
Interface

PE |

B
el (T)

VLD: Variable Length Decoding

IDCT: Inverse Discrete Cosine Transform

Video decoding

PE,

B B

%

|

1Q: Inverse Quantization

MC: Motion Compensation

Figure 1. A multiprocessor SoC platform onto which an MPEG-2 decoder application is partitioned and mapped.

be processed. Finally, the fully processed stream is written
into a playout buffer which is read by some real-time client
(RTC) such as an audio or a video output device.

For the sake of generality, we consider any multimedia
stream that is seen by a PE belonging to the platform, to be
made up of a potentially infinite sequence of stream objects.
A stream object might be a bit belonging to a compressed
bitstream representing a coded video clip, or a macroblock,
or a video frame, or an audio sample—depending on where
in the architecture the stream exists. For example, in the ar-
chitecture shown in Figure 1, stream objects entering PE,
are single bits. But stream objects entering P E5 are coded
macroblocks and the stream objects being written into the
playout buffer B,, are decoded macroblocks.

In Figure 2, let x;(t) denote the number of stream ob-
jects that arrive at a PE PE; during the time interval [0, ¢].
Let y;(t) (equal to z;41 (¢)) denote the number of processed
stream objects at the output of PE; (or the inputof PE; 1)
during the time interval [0,¢]. The real-time client RT'C
consumes stream objects from the playout buffer at a rate
C(t), which again denotes the number of stream objects
consumed within the time interval [0,¢]. The stream en-
tering the processing element PFE; receives a service 3;,
which is specified by a tuple (3¢, 3*). Within any time in-
terval of length A, it is guaranteed that PE; will process at
least 3:(A) number of stream objects and it will be able to
process at most 3 (A) number of stream objects. The func-
tions 3! and 3¢ therefore represent lower and upper bounds
on the service provided by PE; and is determined by the
time required to process each stream object, the scheduling
policy implemented on this PE (in case multiple streams are
being processed by it), and also by the voltage/frequency
scheduling policy implemented on it. Lastly, each PE PE;
is also associated with a tuple v; = (7, v%), where v(k)
and ~(k) denote the minimum and the maximum num-
ber of processor cycles respectively, that may be required
to process any k consecutive stream objects belonging to
the input stream. ~; is therefore used to capture the vari-
ability in the execution requirements of the different stream
objects.

Now recall from Section 1 that for each PE belonging
to the platform, we would like to determine the operating
frequency range that should be supported by it. If the pro-
cessor supports only a fixed number of discrete frequency

levels, then we would like to determine how should these
frequencies be chosen and what kind of performance im-
pacts will this decision have. Note that the platform should
be designed to support a class (or several classes) of mul-
timedia streams. For example, a portable multimedia de-
vice might have a wireless interface through which MPEG-
2 coded video streams of two different classes come in—
high-quality video clips with 8 Mbps input bit rate and
low-quality clips with 4 Mbps input bit rate. The compu-
tational demands associated with these two input classes
might vary widely, which translates to different operating
frequency requirements for any PE on the platform. The
input to a PE, when specified using the function z;(¢), how-
ever, represents a concrete instance of a stream rather than
a class of streams. Therefore, to specify the arrival pat-
tern of a class or family of streams, we use an abstrac-
tion called arrival curve which is similar to the concept
of service g, described above. The arrival curve o, rep-
resenting the class of streams that might arrive at the in-
put of PE; is also specified by a tuple (o, (A), a% (A)),
where the first and the second terms represent the minimum
and the maximum number of stream objects that might ar-
rive within any time interval of length A. In other words,
ol (A) < zi(t+ A) —z(t) < a¥ (A), Vt,A > 0. There-
fore, any concrete arrival pattern x;(t) is lower and upper
bounded by the functions ;. and % respectively. Simi-
larly, we use a cand oy, to denote lower and upper bounds
on the arrival pattern of the processed stream at the output
of PE;.

Now, let us consider the last PE in the path of a stream,
i.e. the PE whose output is written into the playout buffer
(see Figure 2). Henceforth, for simplifying the notation, we
drop the subscript i representing the PE identifier. There-
fore, as described above, any input instance to this PE is
specified by the function x(¢) and the class of all input in-
stances is bounded by the arrival curve a,.. Any output ar-
rival pattern from this PE is represented by the function y(¢)
and the sizes of the internal and the playout buffers are b and
B respectively. The consumption pattern of stream objects
from the playout buffer is specified by the function C'(t)
described above. Now, given a,(A), v(k), C(¢) and the
buffer sizes b and B, the problem is to compute the set of
all possible processor frequencies at which this PE might be
run, such that the following constraints are satisfied: (i) the

b, Y,
input Y
stream
— PE BE RTC
X0 L) L2 x5 C)

Figure 2. System-level view of multimedia processing on
a multiprocessor SoC platform.

playout buffer never overflows, (ii) it never underflows, and
(iii) the internal buffer never overflows. The constraint on
the playout buffer underflow is to ascertain that stream ob-
jects can be read out by the output audio/video devices (the
RTC in Figure 2) at the rate specified by C'(¢), and hence the
output quality is guaranteed. The constraints on buffer over-
flow are motivated by the fact that typically on-chip PEs use
static voltage and task scheduling policies. This is because
using blocking write/read mechanisms efficiently to prevent
buffer overflows/underflows either require a multithreaded
processor architecture or substantial run-time operating sys-
tem support for context switching.

Our solution to the above problem consists of two parts.
In Section 3 we compute lower and upper bounds on the
service (5! and 3%) that needs to be provided by the PE
in order to satisfy the above mentioned buffer constraints.
In Section 4, we then show how to compute the frequency
range that needs to be supported by the PE in order to realize
these service bounds. The extension of these results to any
other PE in the path of a stream (i.e. one whose output is
not written into the playout buffer, but instead into another
PE) is fairly simple, and is also explained in Section 3.4.

Throughout this paper we assume the following proces-
sor model: a PE can either support a continuous range of
clock frequencies, or a fixed number of discrete frequen-
cies, where this number can also be equal to one, i.e. the PE
runs at a fixed frequency and does not support frequency
scaling. Any clock frequency is associated with a minimum
operating voltage that needs to be supplied to run the pro-
cessor at this frequency. We assume that this is the voltage
at which the processor is run for any frequency, i.e. voltage
and frequency are tightly coupled and determining the fre-
quency results in the voltage also being determined. Hence,
we will only be concerned with determining the frequency
range or the discrete frequency values for any given PE.

3 Boundson Service Requirements

Given a,(A), C(t) and the buffer sizes b and B for the
last PE in the path of a stream, in this section we compute
the lower and the upper bounds 5'(A) and 3“(A) on the
service that needs to be provided to this stream to satisfy
the buffer overflow and underflow constraints described in
Section 2. Within any interval of length A, if the service
provided is less than our computed 3'(A), then either the

internal buffer might overflow or the playout buffer might
underflow. Similarly, if the service provided is greater than
the computed 5% (A), then the playout buffer might over-
flow. Following the notation introduced in Section 2, we
use x(t) to denote any arrival pattern of stream objects at
the input of the PE and y(¢) to denote the arrival pattern at
the output of the PE. Recall that the functions x, y and C' al-
ways denote cumulative values over the time interval [0, ¢],
whereas the functions «,, and g take time interval lengths
as the input parameter.

Notation: For any two functions f and g, the min-plus
convolution of f and ¢ is given by: (f ® g)(t) =
infs.0<s<t{f(t — s) + g(s)}. The min-plus deconvolution
of f and g is given by: (f @ g)(t) = sup,,.,,»o{ f(t +u) —
g(u)}. The max-plus convolution of f and g is given by:
(f@9)(t) = supyocsc {f(t — 5) + g(s)}. Weuse f Ag
to denote the infimum of f and g, or the minimum if it ex-
ists, and f V g to denote the supremum of f and g, or the
maximum if it exists.

Let us assume that at time ¢ = 0, the buffer fill-levels
of the playout buffer and the internal buffer of the last PE in
the path of the stream are By and b respectively (see [8] for
an explanation). Then the constraint on the playout buffer
underflow can be stated as (see Figure 2):

y(t) = C(t) — Bo, vt=0 1)

Similarly, the constraint on the playout buffer overflow can
bestatedas: y(t) < C(t)+ B — By, Vt>0)

Finally, the constraint that the internal buffer in the PE
should not overflow, is given by:
y(t) > z(t) — (b—1by), Vt>0 3

The constraints (1) and (3) can be combined and stated as:
y(t) > (C(t) — Bo) V (x(t) — (b — bg)), Vt > 0. Now,
if B1(A) is the minimum number of stream objects that is
guaranteed to be processed by this PE within any time inter-
val of length A, then it can be shown that y(t) > (z®8%)(t),
vt > 0 [1]. Hence, (z® 3Y)(¢) is the minimum value of y(¢)
for any ¢, and therefore the above constraint on y(¢) can be
reformulated as: V¢ > 0,

(2®)(t) = (C(t) = Bo) V (x(t) = (b—bo)) (4

It can be shown [1] that for any functions f, gand h, gh >
fifandonlyif h > f @ g. Using this result, inequality (4)
can be reformulated as: V¢ > 0,

B'(t) = ((C(t) = Bo) V (x(t) = (b = b)) @ z(t) (5)

Inequality (5) therefore gives a lower bound on the service
that needs to be provided by the PE in order to satisfy the
playout buffer underflow and the internal buffer overflow
constraints. If 3“(A) is the maximum number of stream
objects that can be processed by the PE within any time
interval of length A, then it can be shown that y(¢) < (z ®

8*)(t), Vt > 0 [1]. Hence, following the same reasoning as
above, (x ® B")(t) is the maximum value of y(¢) for any ¢,
and by using this, the constraint (2) can be reformulated as:

(z©p")(t) <C(t)+ B—Bo, Vi=0 (6)

Given the functions z(t), C(t) and the values of B and
By, we would like to determine maximum value of 5%(t)
for any ¢ (or the largest possible function g*), for which
inequality (6) is satisfied. Such a 5" would give an upper
bound on the service that can be provided by the PE, which
will satisfy the playout buffer overflow constraint.

It may be noted here that in some cases 3%(t) can be
infinitely large. For example, consider the case where the
arrival pattern of stream objects (given by x(¢)) is exactly
the same as the consumption pattern by the real-time client
from the playout buffer, i.e. z(¢t) = C(¢) forall ¢ > 0.
In this case 5*(t) can be infinitely large, since no matter
how much service is provided by the PE, the playout buffer
can never overflow. In fact, 3%(t) can be infinitely large if
x(t) < C(t)+B—By forall ¢ > 0 (this also follows directly
from the definition of the min-plus convolution operator).

3.1 ServiceBoundsfor a Class of Streams

The above bounds on 3! and 3* are based on a spe-
cific instance of the arrival pattern of a stream, i.e. x(¢).
Hence, these bounds can only guarantee the buffer overflow
and underflow constraints for this specific arrival pattern.
However, we would like to derive the service bounds for a
class of arrival patterns—i.e. all arrival patterns which are
bounded by the arrival curve a,.

Computing the Bound on 3': For a concrete arrival pat-
tern of stream objects given by z(¢), the bound on 3! as
given by inequality (5) can be shown to be equivalent to:
BL(t) > max{(C © x)(t) — By, a%(t)— (b—1bo)},Vt > 0.
Since x(t) > ol (¢) for all ¢ > 0, for any function f,

(fox)(t) < (f@al)(t) forall t > 0. Hence, the above
constraint on 3'(¢) may be reformulated as:

B'(t) > (C@ay)(t) = Bo) V (ag(t) — (b= bo)), ¥t >0

Further, let us assume that the consumption pattern of
stream objects from the playout buffer, as specified by
the function C(¢) is lower and upper bounded by the ar-
rival curve ac, ie. aL(A) < Ct+ A) — Ct) <
ad(A), Vt,A > 0. Then the above constraint on 3¢ can
be finally stated as:

B't) = ((ag @al)(t) — Bo) @)

V(ag(t) = (b—bo)), Vt =0

Inequality (7) therefore provides a lower bound on the mini-
mum service that needs to be provided by the PE, in order to
satisfy the playout buffer underflow and the internal buffer
overflow constraints, where all arrival patterns at the PE are
bounded by «,, and all consumption patterns from the play-
out buffer are bounded by a¢.

Computing the Bound on g*: The upper bound on the
maximum service that can be provided by the PE is given
by the largest possible function 3% which satisfies inequal-
ity (6). We know that any instance of an arrival pattern
x(t) at the input of the PE is upper bounded by «¥, and
the lower bound on the consumption pattern of stream ob-
jects from the playout buffer is given by al.. Hence, the
constraint on 3" can be reformulated as: (a¥ ® 8%)(t) <
al.(t)+B— By, ¥t > 0. Again, given the functions o %, o,
and B, By, we would like to determine the largest function
G which satisfies the above inequality. Towards this, note
that if % (¢) < al.(t)+ B — By, Vt > 0, then 3“(¢) can be
infinitely large for all ¢ > 0. This corresponds to the case
where the rate at which stream objects arrive at the PE is
not high enough to overflow the playout buffer, irrespective
of how fast they are processed.

Now, let us consider the case where, a¥(t;) > aL(t;) +
B — By, fori=1,...,n, and for all other values of ¢,
al(t) < ok (t) + B — By. Assuming that ¢; < t;.; for
i =1,...,n — 1, the largest function 5* is then given as
follows: 0 it £ =0,

ab(t))+B—By Vt<ty

alc(ti+1) +B— By Vt; <t <t (8)
1=1,...,n—1

00 Vit > t,

pU(t) <

A proof of the above may be found in [8]. The above upper
bound on g% therefore guarantees that the playout buffer
never overflows when the arrival pattern of stream objects
at the PE is bounded by «,, and the consumption pattern of
stream objects from the playout buffer is bounded by « ¢.

3.2 ServiceBoundsExpressedin Processor Cycles

The lower and the upper bounds on the service that needs
to be guaranteed by a PE, as given by inequalities (7) and
(8), are specified in terms of the minimum and the maxi-
mum number of stream objects that need to be processed
within any given time interval. However, due to the data-
dependent variability in the execution times of multime-
dia tasks, the number of processor cycles required to com-
pletely process any stream object might be highly variable.
As explained in Section 2, this variability can be captured
by the function -, which we refer to as the workload curve.
It follows from the last subsection that v*(5'(A)) is the
minimum number of processor cycles that must be provided
to a stream within any time interval of length A to guaran-
tee that the playout buffer never underflows and the internal
buffer at the PE never overflows. Similarly, v!(3%(A)) is
the maximum number of processor cycles that may be pro-
vided to a stream within any time interval of length A to
guarantee that the playout buffer never overflows.

Here we would like to point out that from our definition
of the function 3, it follows that 5! (t) > B'(s) + B (t — s)

forall ¢ > 0and 0 < s < ¢. Similarly, 8“(t) < 8“(s) +
Bt —s)forallt > 0and 0 < s < t. However, the
bounds given by inequalities (7) and (8) need not satisfy
these properties. Let us assume that inequality (7) is of the
form B'(t) > f(t), vt > 0 and inequality (8) is of the
form g*(¢t) < g(t), V¢t > 0, i.e. f(¢t) is the right hand side
term of inequality (7) and ¢(¢) is the right hand side term of
inequality (8). Now let us define two functions o' and o
as follows:

0 ifA=0
o) = {7 (F(A)) A1
max{y*(f(A)), ('Bo)(A)} i A>1

(9)
0 ifA=0
o () = { H(g(8)) A =1
min{y!(g(A)), (c* @ c*(A)} fA>1

(10)

The functions o!(A) and o%(A) are therefore defined
over A = 0,1,2,..., and denote the minimum and the
maximum number of processor cycles that should be pro-
vided to a stream within any time interval of length A for
all the buffer overflow and underflow constraints to be sat-
isfied. Moreover, it can be shown that these two func-
tions satisfy the properties that any function which bounds
the service provided by a PE should satisfy, i.e. o'(t) >
ol(s) + ol(t —s) forallt > 0and 0 < s < t and
o%(t) < o¥(s)+o¥(t—s)forallt >0and0 < s <.

3.3 Boundingthe AnalysisInterval

So far, our computation of the service bounds ¢! and o
were based on the fact that the arrival curves o, and o and
the workload curve ~ are known for all possible time inter-
val lengths A > 0. These curves would usually be derived
by simulating the processing or execution of several repre-
sentative audio/video samples on a template platform archi-
tecture, as explained in Section 1. The traces collected from
such a simulation—from the different parts of the platform
architecture, such as the arrival pattern of stream objects in
front of PFE5 in Figure 1—are then analyzed to derive the
different arrival and workload curves. However, since these
representative audio/video samples would always be of fi-
nite length, the curves or bounds derived from the resulting
traces would also be of finite length. But the platform de-
signed on the basis of these finite length traces might later
be used to process larger audio/video samples. Hence, we
would like to guarantee the buffer overflow and underflow
constraints on input streams of any length (provided they
satisfy the bounds dictated by the arrival and the workload
curves), although the analysis and the design of the platform
is based on only finite length representative inputs.

We would like to point out here that in practice the above
issue will not be of major concern to any system designer.

He would use sufficiently long (but finite length) represen-
tative audio/video samples in the initial simulation phase to
derive the bounds (i.e. arrival and workload curves) that
any input belonging to the class represented by these au-
dio/video samples is expected to satisfy. Based on these
bounds, the platform architecture in question would be de-
signed. When such an architecture processes input streams
which are longer in duration than the samples used for de-
signing the architecture, it is assumed that the variability of
the entire stream is bounded by the variability existing in
the sample inputs. Such assumptions are not specific to our
framework and are common whenever a system is designed
based on representative inputs (for example, see [7]). How-
ever, it is also possible to formally address this issue within
our framework, details of which may be found in [8].

3.4 Extendingthe Analysisto Other PEs

The framework presented so far is based on the assump-
tion that the PE being analyzed is the last one in the path of
a stream i.e. its output is directly written into the playout
buffer. Now let us consider a PE, whose output is fed into
another PE i.e. the next PE in the path of the stream. An
example of such a PE is PE; in Figures 1 and 2. To de-
rive the service bounds for this PE, let us denote the arrival
curve corresponding to the arrival pattern of stream objects
at the internal buffer of PE, as a,. Similarly, let the ar-
rival pattern of stream objects at the internal buffer of PE
be bounded by «,, and let the size of this internal buffer be
b1. Then bounds on 3! and 8% (such as those given by in-
equalities (7) and (8)) for PE can be calculated from «, ,
o, and by. However, the only constraint that needs to be
satisfied in this case is that the internal buffer of PE'; should
not overflow. The resulting bounds on the service are there-
fore much simpler than the ones derived above, and hence
we omit them here. This same scheme can be applied to
other PEs in the path of the stream which are away from the
playout buffer. If all of the PEs provide a service in accor-
dance with the bounds computed for them, then it is guar-
anteed that none of the internal buffers in the architecture
will overflow, and the playout buffer will neither overflow
and nor underflow.

4 Computing Processor Frequency Ranges

Given the service bounds ¢! and o for a PE, in this sec-
tion we compute the discrete frequency levels or the fre-
quency range that must be supported by the PE in order
to realize these service bounds. For any given multimedia
application and a class of input streams to be processed,
accurately determining the appropriate processor frequency
range is a non-trivial problem. A straightforward approach
would be to choose a processor frequency that is sufficient
to process stream objects at a rate equal to the long-term
average rate at which stream objects are consumed by the
output real-time client. However, since the input stream

is bursty in nature and there is data-dependent variability
in the execution requirement of stream objects, processing
stream objects at this average rate might lead to buffer over-
flows and underflows. Therefore, the commonly followed
practice is to choose a processor frequency which is slightly
higher than what is required to process stream objects at the
average consumption rate. However, there is no well known
formal guideline on how much higher this chosen frequency
should be. If the chosen frequency is much higher than what
is required to counter the effects of bursts, then complicated
blocking reads and writes must be used, which requires sub-
stantial operating system support.

The situation is much more complicated when the PE in
question has to process multiple classes of input streams
or multiple applications. In such cases, the different in-
put classes might have different computational demands and
hence require different processor frequencies. Here is it im-
portant to determine the range of processor frequencies that
must be supported for each class. If these ranges overlap,
then the processor might support some frequency belonging
to this overlapping range. But if these ranges do not over-
lap, then multiple frequency levels need to be supported.
Further, the processor frequency range to be supported by a
PE is heavily dependent on the size of the on-chip buffers.
A platform designer would therefore be interested in ob-
taining insights into this dependency. Our results presented
below would help in obtaining such insights. These re-
sults can be summarized as follows: (i) For any application
and a class of input streams, we can statically generate fre-
quency schedules for a PE which satisfy all the buffer con-
straints. Such schedules specify the frequency with which
the PE should be run at any time. (ii) We derive a fre-
quency range (fmin, fmax) Such that all feasible frequency
scheduling algorithms will only use frequencies within this
range. Therefore, it would be sufficient if the PE supports
frequencies belonging to this range only. (iii) We also de-
rive a frequency range (fumin, fmax) SUCh that at any time,
choosing any frequency within this range will lead to all the
buffer constraints being satisfied. However, such frequency
schedules will be a subset of all possible feasible frequency
schedules. Further, (fmin, fmax) € (fumin, fmax). The main
difference between the above two frequency ranges is that if
a PE supports only the latter range, then the set of possible
frequency schedules is restricted but the frequency schedul-
ing algorithm is simpler because at any time, any frequency
within this range can be selected. We call the former range
the History-Dependent Frequency (HDF) Range since the
frequency that can be chosen at any time depends on the fre-
quencies chosen at previous time instants. The latter range
is called the History-Independent Freguency (HIF) Range.
The main motivation behind identifying the HDF range is
that it allows more flexibility in choosing a frequency sched-
ule: based on the HDF range, a designer can choose a pro-

cessor which supports only a fixed number of frequency lev-
els and runs this processor using a static frequency schedule
which contains only these frequency levels. However, these
frequency levels might not belong to the HIF range. (iv) Fi-
nally, our framework can also be used to identify how the
bounds (fumin, fmax) @Nd (fmin, fmax) Change by changing
the on-chip buffer sizes (both the playout and the internal
buffers).

For simplicity, we assume that the processor frequency
can be changed at each time unit. Then during any run of the
processor over a time interval of length n, let its frequency
values be fi1,..., fn, i.e. f; is the frequency at which the
processor is run during the time interval ¢ = (¢ — 1,1].
The service being offered to a stream as a result of this
schedule has to be bounded by the service curves ¢! and
o™. Given this constraint, the lower and upper bound on
any f; can be shown to be equal to (see [8] for details):
I =maxicj<ia{o!(1),0M(i = j + 1) = 2, f»}, and
£t = miny g 1 {0 (1), 0% — j + 1) = X7 fo} S}
and f}* depend on all the previous frequency assignments
f1,..., fi—1. To generate a static frequency schedule, we
can choose any f; € [f}, f¥], and the chosen f; will de-
termine the range [f/,,, f]. Now, to compute the HDF
range, that was mentioned above, we first define two func-
tions (E;:j fp)t and (Z;;lj f»)*. The first provides a
lower bound, and the second an upper bound on the sum

fi+ ..+ ficr
i—1
(Z_:fp)l:Kglgx {o'(i - j),0'(i— q) pr

i—1
Qo fo) = min {o"(i-3),0"(G~0) Z £2)'}

Using the above two functions, we now deflne two addi-
tional functions: f™" = max;<j<;—1{c'(1),0'(i — j +
1) = (X2 fp)"} and 2% = ming <j<; 1 {o*(1), 0" (i —
J+1)— (E;:j fp)'}. fmin js the smallest possible proces-
sor frequency that can be assigned during the time interval
(¢ — 1,7], and f™** is the largest possible processor fre-
quency that can be assigned during this time interval. Then
the HDF range is defined as: fuin = min;—1,__,{f™"},
and fuax = max=1,__,{f™**}. The HIF range is de-
fined as: fumin = maxA:L___n{ol(A)/A}, and foax =
mina=1_ ,{c"(A)/A}. As mentioned above, frequency
schedules restricted to this range can choose any frequency
value within this range at any time instant. Details on how
the above results were derived, may be found in [8].

5 Case Study: MPEG-2 Decoder Application

In this section we present a case study to illustrate the
use of the framework developed in the last two sections.
Towards this, we map an MPEG-2 decoder application onto
a platform architecture consisting of two PEs. The goal is
to compute the processor frequency range that needs to be

supported by one of the PEs and also identify how this range
changes with different on-chip buffer sizes.

As shown in Figure 1, the MPEG-2 decoder application
is partitioned into a set of tasks executing in parallel on
two PEs of the platform architecture. PFE; executes the
variable length decoding (VLD) and the inverse quantiza-
tion (1Q) tasks, while P E; executes the inverse discrete co-
sine transform (IDCT) and the motion compensation (MC)
tasks. A compressed video bit stream arrives from the net-
work interface into the input buffer of PE,. After being
processed on PFE+, the partially decoded stream of mac-
roblocks enters the buffer Bs in front of PE,. PE> reads
this buffer, one macroblock at a time, and computes for each
macroblock the IDCT and MC functions. Finally, the video
stream emerges out of PE, as a fully decoded stream of
macroblocks. This stream is written into the playout buffer
B,, which is read at a constant rate by the video output port
Vout- The video output port represents the real-time client
(RTC) in this setup. The rate at which it reads the play-
out buffer B, is determined by the resolution and the frame
rate of the decoded MPEG-2 video sequence. In the above
setup, none of the buffers B, B, and B,, are ever allowed to
overflow, and the playout buffer B,, should never underflow.
Determining the service that must be offered by the PEs to
the stream, and thereby identifying their feasible clock fre-
quency ranges under the given buffer constraints is not an
easy task, for reasons that we have discussed before.

Now, using PFE- as our example, we will demonstrate
how the methodology proposed in the last two sections can
be applied to compute the required service bounds ¢ and
the associated feasible clock frequency ranges for the given
MPEG-2 decoder application.

5.1 Computing the Service Bounds and the Fre-
quency Rangefor PE,

Before we can compute the service bounds o and the cor-
responding HDF and HIF ranges for PE5, we need to ob-
tain the arrival curves a, and «¢, and the workload curve
~ which characterize the stream processed by PFE 5 (that is
consumed by V,..;). In general, there are different possibil-
ities for obtaining these curves. In some cases it might be
possible to derive these curves analytically from a formal
specification of the system and its environment. In other
cases, a simulation and trace-based analysis approach might
be necessary and indeed sufficient for the problem at hand.
In our case, we adopt the latter method to obtain the «,, and
the -y curves. Towards this, we collect execution traces by
simulating an abstract model of the platform architecture
and then we analyze the obtained traces to derive the re-
quired curves. The abstract model of the platform is based
on an instruction set simulator, which we use to obtain the
traces of execution demands of the MPEG-2 decoder tasks.
In our experimental setup we use a customized version of
the SimpleScalar instruction set simulator for this purpose.

x 10

2.5} 7
. ;
8
= 2 .
o
£
5 o
£ 15} = :
5 - o)
9] ’ — o'(a)
€ 1r X(t+A)
p=} -
f=
0.5}
,
0 - L L L L L L
0 01 02 03 04 05 06 07

time interval A [sec]

Figure 3. (¢, a®) and z(t) corresponding to the mac-
roblock stream (for video:) at the output of PE;.

The arrival curves (o, o) of the stream at the output of
PE; can be obtained by measuring the execution demands
of the VLD and IQ tasks for each macroblock in the video
sequence and by taking into account (i) the constant arrival
rate of the compressed bit stream at the input of PF4, and
(if) the number of bits allocated to encode each macroblock
in the stream. In this procedure, we first obtain the cumula-
tive function x(¢) describing the arrival of macroblocks in
the buffer B, shown in Figure 1. We then analyze it us-
ing time intervals of different lengths, to obtain the arrival
curves. Figure 3 shows the arrival curves (a, a%), which
we have obtained by applying the above method to a rep-
resentative 4 Mbps video sequence, which we refer to as
videos.

In a similar way, we also derived the arrival curves
(aL,, o). However, in this case, since we precisely know
the characteristics of the real-time client, we do not need
to rely on simulation. oL, and o can be constructed ana-
lytically, using the fact that the real-time client reads mac-
roblocks from the playout buffer at a specified constant rate.

To obtain the workload curves (y!, %), we first collect a
trace of execution demands for the pair of tasks IDCT and
MC executing on PF5. Using a method similar to the one
used for obtaining the arrival curves «,, we then analyze
this trace to identify the maximum and the minimum pro-
cessing demand imposed by any sequence of & consecutive
macroblocks within the video sequence.

Now we apply the results presented in Section 3 to com-
pute the cycle-based service bounds (o!, o) corresponding
to the service that must be offered by PE5, to any video
stream belonging to the class of streams bounded by the
curves a,, ac and «. The bounds (o', o) corresponding
to the example video sequence video, for two different sys-
tem configurations are shown in Figure 4. The two system
configurations differ only in the sizes of the buffers B, and
B>. By examining the plots in Figure 4, we can see that
even a relatively small change in the available buffer space

35% 10
a3l
1%}
Q
9 25¢ P
(8]
5 -~
@ 2r ,’
@
(5]
IS -
o ,,’
o L5f R
[5} S
o D
E 1 P I 1
2 L G (A) forc1
) P 6"(A) forc1
0.5f - i - GI(A) forc2 ||
- -~ 6Y(A) forc2
|)
o ; ; ; ; ;
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time interval A [sec]

Figure 4. (c',0") for video; for two different sys-

tem configurations C'1 and C2, where C1 = {B> =

4500, B, = 5000} and C2 = {B> = 4000, B, = 5600}.
60— ; « « ' ; ‘ ; ™

581

56

N
oo
T

T 54

=

252 ' for video 1 | -
S == { forvideo 1

S eol |
g 50 1 for video 2

= - f‘ forvideo 2 | |
x

3}

o

©

IS
o
T

I
I
T

N
N

6000 6500 7000 7500 8000 8500 9000 9500 10000
playout buffer size

Figure 5. Dependency of HIF ranges on the playout
buffer size for two different classes of the MPEG-2 video
streams: 4 Mbps (videoi) and 8 Mbps (video2). The size
of buffer B, is fixed to 4000 macroblocks.

can have a considerable impact on the service bounds. Fur-
thermore, the distribution of the total on-chip buffer space
among the different buffers may also have an impact on the
service bounds.

Video sequences belonging to different classes of
streams may have very different on-chip buffer require-
ments. Therefore, the service bounds for these sequences,
and hence their feasible clock frequency ranges might also
be very different. This information on how different these
ranges might be for different classes of video sequences,
can be efficiently obtained from the service bounds o, as
described in Section 4. In our example, using the pro-
posed framework we have computed the HIF ranges for
two classes of video sequences characterized by different
input bit stream rates, i.e. for 4 Mbps and 8 Mbps MPEG-2
streams. The resulting HIF ranges are shown in Figure 5.

Figure 5 also shows the dependency of the HIF range on
the playout buffer size for a 4 Mbps and a 8 Mbps MPEG-2

video buffer sizes schedule | measured backlogs
By | By By | By

I 3335 4763

4000 | 5600 ft 3719 4621

rand 3614 4844

videol rand 3678 4980
Fid 2680 5080

4500 | 6000 ft 4078 4615

rand 3472 3472

rand 3614 4844

v 2479 4525

4000 | 5600 ft 3971 4132

rand 3368 4754

videoo rand 3502 4500
fe 2786 4330

4500 | 5000 Vi 4004 4132

rand 3227 4401

rand 2818 4402

Table 1. The maximum buffer fill levels obtained by sim-
ulating a static frequency schedule for PE; that was de-
rived using the proposed framework. video, and video, are
4 Mbps and 8 Mbps MPEG-2 video streams respectively.

video streams. In this figure it can be seen that the playout
buffer size has a considerable impact on the upper frequency
bound f*. By increasing the buffer size, the maximum fre-
quency with which PE5 can run, also increases. This cor-
responds to the intuitive understanding that the larger the
playout buffer size, the more bursty the incoming stream
can be.

Figure 5 shows an overlap in the HIF ranges of the two
classes of video streams. This implies that for any feasible
playout buffer size and a fixed size of B (set to 4000 mac-
roblocks), we can always find a clock frequency with which
PFE, can be run for video sequences belonging to both the
input classes (i.e. 4 Mbps and 8 Mbps input rates). It may
be noted here, that playout buffers only beyond a certain
size are feasible—meaning that, only for playout buffers be-
yond this size, feasible service bounds o exists. It may also
be noted that in general such a common clock frequency for
any two input classes might not exist for a single system
configuration. In such cases it will be necessary to sup-
port multiple frequency ranges/values, where the frequency
level at which the processor is run depends on the class to
which the input belongs. Alternatively, the configuration
of the system can be changed (for example by increasing
buffer sizes), till the frequency ranges of two input classes
overlap. When this happens, once again it would be suffi-
cient for the processor to support a single frequency level
belonging to this overlapping range. Our methodology can
be used to efficiently identify such design tradeoffs in the
case of configurable platform architectures.

5.2 Validation of the Analytical Bounds

To validate our framework, we simulated the platform
architecture using static frequency schedules derived using
the framework. Towards this, we used a detailed simulator

700

-- lower bound
3 - - - upper bound
schedule 1
N schedule 2

(o2}

o

o
T

a1
o
(=]
T
[

N

o

(=]
T

w

o

o
T

N

o

o
T

clock frequency [MHz]

=
o
o

_A;\/Ay/,\/fflv_ﬂk_"Nf‘_foLA_/ ﬂ.“ﬁNvﬁﬂ.V\

0.2

0 I
o o1

03 04

time [sec]
Figure 6. The HDF range and two randomly generated
schedules obtained from the service bounds o.

0.5 0.6 0.7

of the system shown in Figure 1. The simulator consisted of
a transaction level model of the system architecture written
in SystemC, and the models of PEs were based on a cus-
tomized version of the SimpleScalar instruction set simula-
tor. Using this simulation setup, we measured the maximum
backlogs and recorded any buffer underflows that occurred
as a result of running the system with a static frequency
schedule for PE- (which was generated using our frame-
work). The results of this simulation are summarized in
Table 1.

We evaluated several frequency schedules for PE 5, that
are bounded by the computed HDF and HIF ranges obtained
using the proposed framework. These ranges correspond
to different system configurations and classes of the video
streams. In Table 1 these schedules are indicated as f*, f*,
and rand. f*and f! denote cases where P F5 was run with
asingle clock frequency determined by the upper f,,.. and
the lower f£,,,;, HIF bounds respectively (see Figure 5 for a
reference). rand denotes randomly generated static sched-
ules that satisfy the HDF bounds (f,,in, fmaz), @S €xplained
in Section 4. Two such randomly generated schedules are
shown in Figure 6.

In all the simulations we performed, the maximum back-
logs measured in the buffers never exceeded the buffer sizes.
Furthermore, our simulation results also showed that play-
out buffer underflows never occurred for any of the simu-
lated frequency schedules. These simulations therefore val-
idate the proposed framework and suggest its practicality.
Finally, we would once again like to point out that obtaining
equivalent results using purely simulation based approaches
is extremely time consuming and such approaches usually
fail to provide any formal performance guarantees.

6 Concluding Remarks

Our framework can be used for the design space explo-
ration of parameters or configurations of SoC platform ar-
chitectures for multimedia processing, that contain proces-
sor cores supporting dynamic voltage/frequency scaling. In

10

contrast to simulation based approaches, which usually fol-
low a trial-and-error approach and involve very high sim-
ulation times, the proposed framework can provide useful
insights into the design space and can aid a system designer
in systematically tuning a platform architecture for a class
of multimedia applications.

Acknowledgements. The work reported here has been
partially funded by the NUS URC grant R-252-000-190-
112, through the project “ASTRA: System-Level Design
and Analysis of Architectures for Streaming Applications”.

References
[1] J.-Y.L.Boudec and P. Thiran. Network Calculus - A Theory
of Deterministic Queuing Systems for the Internet. LNCS

2050, 2001.

M. Buss, T. Givargis, and N. Dutt. Exploring efficient op-
erating points for voltage scaled embedded processor cores.
In 24th |EEE Real-Time Systems Symposium (RTSS), 2003.
S. Chakraborty, S. Kiinzli, and L. Thiele. A general frame-
work for analysing system properties in platform-based em-
bedded system designs. In DATE, 2003.

S. Chakraborty, S. Kiinzli, L. Thiele, A. Herkersdorf, and
P. Sagmeister. Performance evaluation of network processor
architectures: Combining simulation with analytical estima-
tion. Computer Networks, 41(5), 2003.

S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multi-
processor SOC for advanced set-top box and digital TV sys-
tems. |EEE Design & Test of Computers, 18(5):21-31, 2001.
I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivas-
tava. Power optimization of variable-voltage core-based sys-
tems. |EEE Trans. on Computer Aided-Design of Integrated

Circuitsand Systems, 18(12), 1999.
K. Lahiri, A. Raghunathan, and S. Dey. System level per-

formance analysis for designing on-chip communication ar-
chitectures. |EEE Trans. on Computer Aided-Design of In-

tegrated Circuits and Systems, 20(6):768-783, 2001.
Y. Liu, A. Maxiaguine, S. Chakraborty, and W. Ooi.

Processor frequency selection for SoC platforms for
multimedia applications. NUS, School of Computing
Technical Report TRC8/04, August, 2004, http://www-

appn.comp.nus.edu.sg/"esubmit/search/.
A. Maxiaguine, S. Kunzli, S. Chakraborty, and L. Thiele.

Rate analysis for streaming applications with on-chip buffer

constraints. In ASP-DAC, 2004.

M. Rutten, J. van Eijndhoven, E. Jaspers, P. van der Wolf,
O. Gangwal, and A. Timmer. A heterogeneous multiproces-
sor architecture for flexible media processing. |EEE Design
& Test of Computers, 19(4):39-50, 2002.

M. Rutten, J. van Eijndhoven, and E.-J. Pol. Design of multi-

tasking coprocessor control for eclipse. In CODES, 2002.
M. Rutten, J. van Eijndhoven, and E.-J. Pol. Robust media

processing in a flexible and cost-effective network of multi-

tasking coprocessors. In ECRTS 2002.
K. Sekar, K. Lahiri, and S. Dey. Dynamic platform manage-

ment for configurable platform-based system-on-chips. In

ICCAD, 2003.
G. Varatkar and R. Marculescu. On-chip traffic modeling

and synthesis for MPEG-2 video applications. |EEE Trans-
actionson VLS, 12(1), January 2004.

(2]

3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

