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ABSTRACT

User-extensible metaverses need an effective way to dissem-
inate massive and dynamic 3D contents (i.e., meshes, tex-
tures, animations, etc.) to end users, and at the same time
maintain a low consumption of server bandwidth. Peer-to-
peer (or peer-assisted) technologies have been widely consid-
ered as a desirable complementary solution to efficaciously
offload servers in large-scale media streaming applications.
However, due to both the bandwidth constraints of hetero-
geneous users and unpredictable access patterns of latency-
sensitive 3D contents, it is very challenging to cut the server
bandwidth cost in metaverses. In this paper, we propose
a peer-assisted texture streaming architecture to minimize
the server bandwidth consumption without degrading the
end-user satisfaction. We propose a game-theoretic peer
selection strategy which achieves a good trade-off between
performance and complexity. Our algorithm is light-weight,
and can efficiently utilize the bandwidth of users in a fully
decentralized manner by enabling each peer (i.e., user) to
quickly select its content providers which can satisfy the re-
quests of the peer within the latency constraint of the con-
tent. We evaluate our algorithm through an extensive com-
parison study based on simulations using realistic data (i.e.,
avatar mobility traces and textures) collected from Second
Life. The simulation results show that the proposed algo-
rithm can effectively reduce the server bandwidth consump-
tion without degrading the user experience.
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1. INTRODUCTION
Recent years have witnessed a significant growth in meta-

verses, defined as online 3D immersive networked virtual
worlds, where each user, represented by an avatar, can so-
cialize with other users and interact with user-generated
3D contents. Unlike massively multiplayer online games
(MMOGs), where users install the whole static 3D contents
in advance via DVDs or patches downloaded offline from the
Internet, the metaverses need to stream interactive 3D con-
tents to users live over the Internet, according to their visibil-
ity or interests. Specifically, when avatars move around in a
metaverse, their immediate environment will be downloaded
dynamically from the metaverse server to the corresponding
users. Considering the fact that a significant portion (over
50%) of the server bandwidth is consumed by transmission
of the textures1 of 3D contents in metaverses [22], we focus
on texture streaming in this study and refer to 3D contents
as textures throughout the paper.

Most commercial metaverses (e.g., Second Life [27] and
ActiveWorlds [2]) are currently deployed using a client/server
(C/S) scheme, where centralized servers are used to main-
tain the states of metaverses and online users, and to dis-
tribute 3D contents to users. Throughout the paper, we use
the term content, texture, and 3D content interchangeably.
Since users do not store the entire virtual world, but down-
load the contents from dedicated servers when needed, the
server bandwidth costs can be huge when the amount of con-
tents and the number of online users increases. For example,
according to the economic report from Second Life [28] in
the third quarter of 2010, the user hours (i.e., the sum of the
combined length of all user sessions) per month is roughly
35 million hours. From Tables 2 and 3 in Section 5, we can
observe that the average amount of texture data sent from
the servers per user hour is 263 MB. Therefore, roughly 9
petabytes (PB) of texture data will be delivered from the
servers to users monthly. As a consequence, one of the most
important and formidable challenges facing the metaverse
providers is to reduce the server bandwidth consumption.

A natural way to offload servers is to utilize bandwidth
and caches of online users using peer-to-peer (P2P) tech-
nologies, i.e., enable online users to serve one another. We
use the term peer, avatar and user interchangeably there-
after. With the assistance of peers, the server bandwidth
cost can be reduced, and the scalability and affordability of
the system can be improved. More specifically, a peer can
download the required contents from other peers via sending

1A texture is simply a bitmap image that is used to provide
surface coloring for a 3D model.



requests to them, which may send back the corresponding
contents if they have available bandwidth. In order not to
degrade the user satisfaction of metaverses, all the required
contents need to be downloaded within a certain latency

constraint measured in seconds. If a peer fails to download
the required textures from other peers within the latency
constraint, it will send the requests directly to dedicated
servers, thus consume bandwidth on the server side. Since
the server is not replaced but complemented by the peers, we
refer to such systems as peer-assisted systems. To minimize
the server bandwidth cost, peers need to select appropri-
ate peers as their content providers, respecting the available
bandwidth of peers and latency constraints of the contents.

Peer selection strategies, which aim to reduce the server
bandwidth consumption, have been extensively studied in
peer-assisted media streaming systems, including live [17,19]
and video-on-demand (VoD) [16,30] P2P streaming. Unfor-
tunately, current peer selection strategies for live or VoD
P2P streaming systems cannot be easily applied to 3D con-
tent delivery, due to the unpredictable and non-linear re-
quest patterns of 3D content.

More specifically, in live P2P streaming systems, every
peer has the same request pattern and it does not usually re-
quest the contents that precede the playback timestamp (as-
suming it has been stored in its cache if seeking is allowed).
In VoD P2P streaming systems, every peer can (mostly)
predict the contents it needs in the near future. Therefore,
the media contents in both live and VoD streaming systems
are viewed as one-dimensional (i.e., time) data files. In tex-
ture streaming systems, however, the contents are viewed
as data files that are stored in a multi-dimensional space
(i.e., locations). Peers with different download and upload
capacities download the contents on demand according to
their unpredictable behaviors per se, such as walking, run-
ning and flying in metaverses. Moreover, the number of
potential content providers for each peer in live or VoD
P2P streaming systems is large, and thus the sets of con-
tent providers of peers are less overlapping. However, in
texture streaming systems, the potential content providers
of a peer (e.g., an avatar) are mostly its neighbors in the vir-
tual world. Hence the number of potential content providers
is small and the sets of content providers of peers are highly
overlapping. This makes the design of peer-assisted tex-
ture streaming much more challenging compared with live
or VoD P2P streaming systems. Prior research on peer se-
lection strategies in peer-assisted texture streaming systems
has paid little attention to the issue of optimally utilizing
the bandwidth of heterogeneous peers while respecting the
latency constraints of textures.

In this paper, we design a decentralized peer selection
strategy for peer-assisted texture streaming with heteroge-
neous peers. The proposed peer selection strategy has a
rapid convergence rate, and it can minimize the server band-
width consumption while respecting the latency constraints
of textures. It is important to point out that we seek to
reduce the server bandwidth consumption via optimally uti-
lizing the available network capacities of peers, hence the
focus of this paper is not on incentive mechanisms [18] that
aim to increase the available network resources.

Note that a practical peer selection strategy should be per-
formed in a decentralized manner. We believe the peer selec-
tion strategy in such peer-assisted texture streaming systems
can be characterized in a game-theoretic setting, and thus

inherit its decentralized and practical nature. Specifically,
requests sent by peers can be viewed as players in a game,
where each is associated with a weight which is the size of the
requested texture. Each player in the game is selfish and will
try to minimize her own cost. In other words, peers will send
their requests to underloaded providers. We formulate the
server bandwidth minimization problem as an asymmetric
congestion game, and we show that its equivalent problem
is to minimize the potential of the game.

The rest of the paper is organized as follows. We model
the peer-assisted texture streaming system and formulate
the server bandwidth minimization problem in Section 2.
We describe our game-theoretic peer selection algorithm in
Section 3. The convergence time of the proposed algorithm
is analyzed in Section 4. Section 5 details the evaluation of
the proposed peer selection algorithm. The simulation re-
sults show that the proposed peer-assisted system can achieve
a much lower server bandwidth consumption in comparison
with existing algorithms. Finally, we discuss related work
and conclude the paper in Sections 6 and 7, respectively.

2. SYSTEM MODEL
The most popular metaverse today is Second Life [27],

where the virtual world consists of non-overlapping and in-
dependent regions. Each region is managed by a server that
maintains the states of all objects and avatars within the
region. To simply the discussion, we restrict our focus to a
single region in Second Life. Once a peer logs in, it contacts
the server which ensures the persistency of the region by
continually sending relevant updates of objects and avatars
to the peer through the network. In addition, the server de-
termines the relevant subset of data that is required by each
peer according to its location and visibility.

Each peer can freely roam around within the region and
interact with other peers and objects within its area-of-

interest (AoI), which is defined as a circular space around
the peer with a given radius. The peers in the AoI of a peer
are called AoI neighbors. Each peer needs to download the
textures within its AoI that are not stored in its cache as
it is moving in the region. After receiving the demanded
textures, it will store them in its cache, from where a view
is rendered according to the spatial information (e.g., loca-
tion and orientation) of the objects that the textures apply
to. The size of the cache is determined by the metaverse
provider or peers themselves. We assume that the default
cache size of each peer is 128 MB (default cache size of users
in Second Life). A simple but effective cache replacement
algorithm is used in our setting: the cached textures that
are far way from the avatar will be replaced with the newly
downloaded textures when the cache is full.

To cut the server bandwidth cost, every peer is allowed to
download the required textures from other peers by sending
requests to others. If a peer receives requests from other
peers, it is regarded as a content provider of those peers,
and we assume every peer can be a provider to others. These
requests are processed by content providers in a FIFO (First
In First Out) manner. To maintain a good user satisfaction,
all the requested textures must be delivered within a certain
time limit, defined as the latency constraint of textures. If a
peer fails to obtain the requested textures from its content
providers within the latency constraint (due to the upload
constraints of its content providers), it will send the requests
to the server, thus consuming server bandwidth.



2.1 Notations and Definitions
Let P and T denote the set of online peers and the set of

textures in a region, respectively. The size of texture i ∈ T ,
denoted by wi, is measured in units of kilobytes (i.e., KB).
Let rji denote the request sent by peer j for texture i, and the

weight of the request rji be the size of the requested texture
(i.e., wi). The latency constraint for each texture is denoted
by d, measured in seconds. Without loss of generality, we
assume online peers are heterogeneous and have different
upload capacities. Let ui denote the upload capacity of peer
i, measured in kilobytes per second, i.e., KB/s. It is critical
to note that the upload capacity is assumed to be the only
bottleneck in the system, since the bottleneck caused by the
constrained download capacities of peers can be eliminated
by reducing the number of requests accordingly.

Let Ri = ∪j∈P {rji } be the set of requests sent by all
peers for texture i. Since every texture is unique, we have
Ri ∩ Rj = ∅ for any two textures i and j. In order to
avoid receiving duplicate textures which would significantly
increase bandwidth overhead and server bandwidth cost, ev-
ery request is sent to only one of the peers. In other words,
every request has only one provider. Similarly, let Si ⊆ P
be the set of peers that have texture i in their caches. The
information of Si can be piggybacked into the updates sent
by the server through the network. The load of peer i, de-
noted by li, is defined as the total weights of requests sent
to peer i. The height of request rik (sent by peer i) at peer j,
denoted by hi,j

k (since every request is unique and has only
one provider), is defined as the load of peer j directly after
request rik arrives at peer j. The notations that will be used
throughout this paper are summarized in Table 1.

2.2 Problem Formulation
Since the amount of data that can be delivered by peer

i within the latency constraint is d · ui, the server will dis-
seminate the rest of the amount of data, if any, to the corre-
sponding peers that sent their requests to peer i. Therefore,
the server will send max{li− d · ui, 0} of data due to the in-
adequate upload capacity of peer i. Our goal is to minimize
the bandwidth consumption at the server while respecting
the upload capacities of heterogeneous peers, which can be
formally stated as follows:

(F1)min
∑

i∈P

max{
∑

Rk 6=∅

∑

i∈Sk

xj,i

k wk − d · ui, 0} (1)

s.t.
∑

i∈Sk

xj,i

k = 1, ∀rjk ∈ Rk (2)

xj,i

k ∈ {0, 1}, ∀rjk ∈ Rk. (3)

Term Definition

P Set of online peers.
T Set of textures.
ui Upload capacity of peer i ∈ P .
wi Size of texture i ∈ T .
ri
k

Request sent by peer i for texture k.
Rk Set of requests for texture k. Rk = ∪i∈P {ri

k
}

Sk Set of peers that have texture k in their caches.
li Load of peer i ∈ P .

h
i,j
k

Height of request ri
k
at its provider, peer j.

d Latency constraint of textures.

Table 1: List of notations and their definitions.

As shown in Eq. 3, xj,i

k is an indicator variable indicating

whether the request rjk is sent to peer i. Specifically, if rjk is

sent to peer i, xj,i

k = 1; otherwise xj,i

k = 0. Eq. 2 shows that
every request has only one provider. The load of peer i is

li =
∑

Rk 6=∅

∑

i∈Sk

xj,i

k wk. (4)

Note that the equivalent problem of minimizing the band-
width consumption at the server is to maximize the total
amount of data that is transmitted by peers within the la-
tency constraint of textures (i.e., d seconds), which can be
formulated as follows:

(F2) max
∑

j∈P

∑

k∈T

wkx
j,i
k (5)

s.t.
∑

i∈Sk

∑

k∈T

wkx
j,i

k ≤ d · ui, ∀rjk ∈ Rk, (6)

xj,i

k ∈ {0, 1}, ∀rjk ∈ Rk. (7)

It can be observed that the alternative formulation (i.e.,
F2) is a multidimensional knapsack problem [24], which is
NP-complete [13] in general. Many approaches have been
proposed to solve it, such as LP-relaxation [25], the primal-
dual method [6] and dynamic programming [26].

We would like to point out that centralized approaches
are not desirable for the design of peer selection strategies in
peer-assisted texture streaming systems since a global con-
nectivity information and the request information is required
to obtain a feasible solution. Therefore, the computation to
solve F1 (Eq. 1) or F2 (Eq. 5) will be invoked upon churn
(i.e., peer’s leaving or joining) and avatar mobility that sig-
nificantly changes the set of requests. As the number of
peers increases, the overhead of communication and pro-
cessing is not tolerable in practice.

Although there exist decentralized [23] and online [6] [9]
algorithms that compute approximate solutions within poly-
logarithmic communication rounds, they are based on the
assumption that each peer has the same capacity and is
aware of global information, i.e., it knows about loads and
upload capacities of peers, and the connectivity information
between any two peers. However, we consider the scenario
where peers have different upload capacities and each re-
quested texture needs to be downloaded within the latency
constraint. As a result, existing centralized or decentralized
algorithms which aiming to solve Eq. 5 in the formulation
F2 are not suitable for peer-assisted texture streaming. By
combining Eq. 1 and Eq. 4, F1 can be simplified to

min
∑

i∈P

max{li − d · ui, 0}, (8)

where max{li − d · ui, 0} is the amount of bandwidth con-
sumed by the server due to the inadequate upload capacity
of peer i. Therefore, we transform F1 into an asymmetric
load balancing problem: how to distribute the loads on over-

loaded peers (li > d · ui) to underloaded peers (li < d · ui).
The objective of this paper is to design a light-weight peer

selection strategy that can be implemented in a decentral-
ized and online fashion. To this end, we model the peer
selection strategy as a congestion game and thus inherit its
practical and decentralized nature, which has been success-
fully used to model load balancing problems in P2P net-
works as well as many other real world applications due to
its conceptual simplicity.



3. SERVER BANDWIDTH MINIMIZATION
We first describe the concept of congestion games and

Nash equilibrium. Then we present a peer selection strat-
egy based on an asymmetric weighted congestion game to
minimize server bandwidth cost in a decentralized fashion.

3.1 Congestion Games
The classical congestion games have been investigated for

many years. A congestion game, denoted by G, can be
defined as a tuple (N,M, (Ai)i∈N , (fe)e∈M ), where N =
{1, ..., n} denotes the set of players and M = {1, ..., m} de-
notes a set of facilities. Each player i ∈ N is assigned a
finite set of strategies Ai and a cost function fe is associated
with facility e ∈M .

To play the game, each player i selects a strategy ai ⊆
Ai, where Ai ⊆ M is the strategy set of player i. The
strategy profile, denoted by a = (ai)i∈N , is defined as a
vector of strategies selected by all the players. Similarly we
use the notation A = ×i∈NAi to denote the set of all possible
strategy profiles. A congestion game is symmetric if all the
players have the same strategy set, i.e., ∀i, j ∈ N,Ai = Aj ;
otherwise it is asymmetric. A congestion game is weighted

if each player i is specified a weight wi. The cost of player i
for the strategy profile a is given by ci(a) = fai

(a, wi).
The goal of each player in congestion games is to min-

imize her own cost without trying to optimize the global
situation. That is, all players will try to lower their own
cost by changing their strategies individually. A pure Nash

equilibrium is defined as a steady state in which no players
have an incentive to change their strategies.

Definition 1 (Pure Nash equilibrium [21]). A strat-

egy profile a ∈ A is said to be a pure Nash equilibrium of G
if for all players i ∈ N and each alternate strategy a′

i ∈ Ai,

ci(ai, a−i) ≤ ci(a
′
i,a−i), (9)

where a−i = (aj)j∈N\{i} denotes the list of strategies of the

strategy profile a for all players except i.

Congestion games have a fundamental property that a
pure Nash equilibrium always exists [11]. To analyze con-
vergence properties of congestion games (i.e., the time from
any state to a pure Nash equilibrium), we introduce the def-
inition of potential function for congestion games.

Definition 2 (Potential function [10]). A function

Φ : A→ R is a potential for game G if ∀a ∈ A, ∀ai, aj ∈ Ai,

ci(ai,a−i) ≤ ci(aj ,a−i)⇒ Φ(ai,a−i) ≤ Φ(aj ,a−i). (10)

Therefore, a∗ is a Nash equilibrium if and only if

a∗ = argmin
a∈A

Φ(a). (11)

An ǫ-Nash equilibrium is an approximate Nash equilib-
rium, which is defined as a state in which no player can
reduce her cost by a multiplicative factor of less than 1− ǫ
by changing her strategy.

3.2 Minimizing Server Bandwidth Cost
We show that the server bandwidth minimization problem

can be formulated as an asymmetric weighted congestion
game, denoted by G, which is defined as

G = (N,M, (Ai)i∈N , (fe)e∈M ), (12)

where N = ∪k∈WRk and M = ∪k∈WSk correspond to the
set of requests and peers (i.e., providers) in our scenario,
respectively. Each request i ∈ N has a weight wi (i.e., the
size of the requested texture), and each peer i ∈ M has an
upload capacity ui. The strategy set of request i, denoted
by Ai, is the set of peers Mi that have stored the requested
texture in their caches. Since every request is sent to only
one of the peers at a time, G is a singleton congestion game,
i.e., ∀i ∈ N , ai ∈ Ai.

The strategy profile of G, denoted by a = (ai)i∈N corre-
sponds to the peer selection profile, and A = ×i∈NAi corre-
sponds to the set of all possible peer selection profiles. The
cost of request i given a peer selection profile a is defined as

ci(a) = min{max{hi − d · uj , 0}, wi}, (13)

where j = ai is the peer selected by request i and hi is the
height of request i at peer j. Clearly, for each peer j ∈ M ,
the sum of the cost of requests that select peer j is

∑

ai=j

ci(a) =
∑

ai=j

min{max{hi − d · uj , 0}, wi} (14)

= max{lj − d · uj , 0}, ∀ai ∈ a. (15)

Recall that max{lj−d ·uj , 0} is the amount of data that the
server will disseminate to the corresponding peers due to the
upload capacity limitation of peer j. We define the potential
function of G is as the sum of the cost of all requests:

Φ(a) =
∑

j∈M

∑

ai=j

ci(a) =
∑

j∈M

max{lj − d · uj , 0}. (16)

Therefore, the problem of minimizing the server bandwidth
cost can be solved by minimizing the potential function of
the corresponding congestion game. The peer selection pro-
file, i.e., a, has a significant impact on the server bandwidth
cost, which is minimized if a is a pure Nash equilibrium (i.e.,
a = a∗ as shown in Eq. 11).

3.3 Peer Selection Strategy
Based on the established connection between the conges-

tion game G (see Eq. 12) and the server bandwidth cost
minimization problem, an optimal peer selection strategy
can be thought of as an optimal strategy profile, i.e., a pure
Nash equilibrium of G. It has been shown that finding a pure
Nash equilibrium in a congestion game is PLS-complete [11],
hence the number of changes of the strategy profile required
from one state to any pure Nash equilibrium is exponentially
large. Therefore, our goal is to quickly reach an approximate

Nash equilibrium from any state by enabling each peer to
change its strategies for its requests according to a bounded

jump rule (see lines 11 and 14 in Algorithm 1), which will
be discussed later in this section.

It is worth to point out that the offline peer selection
strategies are undesirable in practice due to both the addi-
tional delay they incur to find appropriate content providers
for all peers, and the inefficient utilization of peer bandwidth
(since the peer bandwidth cannot be used to delivery texture
data during the process of finding a good peer selection strat-
egy). Furthermore, metaverses are highly dynamic environ-
ments such that churn, avatar mobility, and time-varying
peer capacities will significantly degrade the feasibility and
efficiency of offline peer selection strategies.

We introduce a light-weight peer selection strategy, shown
in Algorithm 1, which reduces the server bandwidth cost by



enabling each peer to repeatedly update its strategy for each
texture that it requests. More specifically, all requests are
sent by peers in a repeated fashion, i.e., the strategy of each
request can be changed if (1) the current content provider
of the request is overloaded, and (2) the corresponding peer
finds an underloaded provider within the latency constraint.

Algorithm 1: Peer selection for each peer i ∈ P .

1 Let t be the local time of peer i;

2 Let tk be the time when rik is generated;

3 Let ak
i be the provider of the request rik;

4 foreach rik ∈ Rk do
5 Contact a peer j from Sk(d) u.a.r. ;

6 ak
i ← j;

7 Send rik to peer ak
i ;

8 Let hi
k be height of rik at peer j;

9 if hi
k ≤ d · uj then

10 Stop contacting other peers;

11 while t ≤ tk + d and hi
k − (d− t+ tk)uak

i

≥ wk do

12 Contact a peer j′ from Sk(d− t+ tk) u.a.r. ;
13 Let lj′ be the load of peer j′;
14 if lj′ ≤ (d− t+ tk)uj′ then
15 ak

i ← j′;

16 Send rik to peer ak
i ;

17 else
18 Go to line 11;

19 Let hi
k be height of rik at peer j′;

20 if hi
k < wk + (d− t+ tk) · u′

j then
21 Stop contacting other peers;

22 Send the request for texture k directly to the server;

Our approach is an online algorithm such that each peer
performs the peer selection process and the texture trans-
mission process in parallel. Each request is sent to a peer
once it is generated (line 7 in Algorithm 1). Each peer i can
change its strategy for each request in a repeated fashion
if the bounded jump rule is satisfied. Also, our algorithm
is light-weight such that each peer i needs to contact u.a.r.
(i.e., uniformly at random) only one other peer in Sk(d

′)
for each request rik with latency constraint d′ at one time,
where Sk(d

′) = {i ∈ Sk : li < d′ui}. The information of Sk

(the set of peers that have texture k in their caches) is main-
tained at the server and can be piggybacked onto the update
packets in practical implementations. The current latency
constraint (i.e., d′ = d−t+tk) of the request is calculated at
the requesting peer, where t and tk are the current time and
the time when the request is generated, respectively. It is
worth noting that every peer in Sk has the same probability
being selected, although some peers have failed to satisfy
the bounded jump rule in previous rounds. Because both
requests and caches of peers are highly dynamic due to the
avatar mobility.

The key idea of the bounded jump rule is to restrict the
change of strategies such that the potential of the system
decreases monotonically. Since all requests are processed by
their content providers in a FIFO fashion, the peers that
have the requests which can be processed within their la-

tency constraints will not consider changing their current
strategies (see lines 9 and 20 in Algorithm 1). From the per-
spective of congestion games, those requests (i.e., players in
games) have no incentives to change their strategies since
their costs cannot be reduced (for pure Nash equilibrium)
or not significantly reduced (for ǫ-Nash equilibrium).

More formally, for a given request rik (sent by peer i for
texture k) at peer ak

i with a weight wk and a height hi
k(t),

by Eq. 13, the cost of rik at time t is

cri
k

(a(t)) = min{max{hi
k(t)− (d− t+ tk)uak

i

, 0}, wk},

where a(t) is the strategy profile of all peers at t, and (d−t+
tk) is the latency constraint of texture k at t. This implies

cri
k

(a(t)) = wk ⇐⇒ hi
k(t)− (d− t+ tk)uak

i

≥ wk. (17)

Therefore, a peer will consider to change its strategy for its
requests only when the costs of requests equal their weights,
otherwise it will stop contacting other peers (line 21 in Al-
gorithm 1). If the requesting peer of request rik (i.e., peer i)
finds another peer j′ at t (line 12 in Algorithm 1) during the
repeated update process (the loop from line 11 to line 21 in
Algorithm 1) such that lj′(t) ≤ (d − t + tk)uj′ , it will send
the request rik to peer j′. It is worth noting that multiple
peers may find peer j′ and send requests to peer j′ at the
same time. In the worst case, only the first request can be
processed by peer j′ since peers process requests in a FIFO
manner. Finally, the request will be sent to the server if
cri

k

(a(t)) = wk for any t ∈ [tk, tk + d]. It should be noted

that no requesting peer will change its selection mid-way
during a download, since it will stop contacting other con-
tent providers if it can download the request texture from
the current content provider (lines 9 and 20 in Algorithm 1).

With the bounded jump rule, it is easy to observe that
the potential function of game G is monotonically decreasing
such that for a given set of requests and ∀t1, t2, we have

t1 ≤ t2 =⇒ Φ(a(t1)) ≥ Φ(a(t2)). (18)

Furthermore, our algorithm applies to a fully distributed
and concurrent setting such that all peers can change their
strategies for their requests at the same time without a cen-
tralized coordination.

4. ANALYSIS
Recall that the proposed peer selection strategy follows

principles and mechanisms of congestion games, and thus it
is carried out in a repeated fashion (see Algorithm 1). More
specifically, every peer i will repeatedly contact a provider j
in Sk for each texture k that it requests (i.e., rik), and it will
change its strategy for the request (i.e., ak

i ) if the bounded
jump rule (see lines 11 and 14 in Algorithm 1) is satisfied.
In addition, peers perform this process individually without
centralized coordination.

We formulate the problem of minimizing the server band-
width cost as a congestion game, and we define the potential
of the congestion game as the server bandwidth cost (see Eq.
16), which is minimized when a Nash equilibrium (a steady
state) is reached. With the proposed bounded jump rule, a
steady state is a ǫ-Nash equilibrium of the congestion game.
Therefore, a critical question to investigate is how fast does

the system reach a ǫ-Nash equilibrium from any state? In
what follows, we seek to investigate the upper bound of the
convergence time of our peer selection strategy.



Recall that the potential function of the game G with the
bounded jump rule is monotonically decreasing in the pres-
ence of concurrent changes of peers’ strategies (peers update
their content providers (i.e., peers in M) individually), be-
cause peers only consider to change the strategies of the re-
quests that are sent to overloaded peers. More specifically,
peer i will change the content provider of request rik, if and
only if hi,j

k − (d − t + tk)uj ≥ wk (ee Eq. 17 and Line 11
in Algorithm 1), where t and tk are the local time and the
time when the request is generated, respectively. The equiv-
alent condition is hi,j

k + (t− tk)uj −wk ≥ d · uj . Therefore,
we can analyze the convergence rate of the proposed peer
selection strategy via analyzing the convergence rate of the
corresponding congestion game.

Theorem 1. Given a game G = (N,M, (Ai)i∈N , (fe)e∈M )
that satisfies the bounded jump rule, where N = ∪k∈WRk

and M = ∪k∈WSk is the set of requests and content providers,

respectively. Then a ǫ-Nash equilibrium can be reached within

O(log n) rounds, where n is the number of online peers.

Proof. Let Φ(t) be the potential of the game at time t.
According to Eq. 16, we have Φ(t) =

∑

k∈R(t) wk. Similarly,

let S(t) = ∪k∈R(t)Sk(d) be the set of underloaded peers at
time t, where Sk(d) = {i ∈ Sk : li < d ·ui} denotes the set of
underloaded peers that have texture k in their caches. Let
n = |P | and mt = |S(t)| be the number of online peers and
underloaded content providers at time t, respectively.

Note that a pure equilibrium can be reached at time t if
(1) Φ(t) = 0 (all requests can be delivered by peers within
the latency constraint), or (2) mt = 0 (no more underloaded
content providers). Therefore, we introduce a non-increasing
function Ψ(t) = mtΦ(t) to analyze the convergence rate of
proposed peer selection strategy.

At time t+ 1, let x = {x1, x2, ..., xmt
} be a vector, where

xi denote the total size of requests that migrate to peer
i ∈ S(t). Obviously, Φ(t) =

∑mt

i=1 xi. By applying Cauchy-
Schwarz inequality to E[Ψ(t + 1)], which is the expected
value of Ψ(t+ 1), we have the following:

E[Ψ(t+ 1)] = E[mt+1Φ(t+ 1)]

≤
(

E[m2
t+1]E[Φ

2(t+ 1)]
)

1

2 . (19)

Noting that the square root function f : x → √x and the
function g : x→ x2 are convex functions, we apply Jensen’s
inequality to Eq. 19 and get

E[Ψ(t+ 1)] ≤ E[mt+1]E[Φ(t + 1)]

=

mt
∑

m=1

mPr(mt+1 = m)E[Φ(t+ 1)|mt+1 = m], (20)

where m is the number of underloaded content providers in
S(t + 1) at time t + 1. The expected value of the potential
function given m is

E[Φ(t + 1)|mt+1 = m] = Φ(t)−

(

m− 1

mt − 1

)

(

m

mt

)

mt
∑

i=1

xi

=

(

1− m

mt

)

Φ(t). (21)

Combining Eq. 21 and Eq. 20, we have the following:

E[Ψ(t+ 1)] ≤
mt
∑

m=1

m

(

1− m

mt

)

Φ(t)Pr(mt+1 = m) (22)

≤ mt

4
Φ(t)

mt
∑

m=1

Pr(mt+1 = m) =
1

4
Ψ(t). (23)

Let τ be the number of rounds that a ǫ-Nash equilibrium
(i.e., Ψ(t+ τ ) = O(1)) is reached from time t. By Lemma 2
(see right column), we have

E[τ |Ψ(t)] ≤ log

(

Ψ(t)

Ψ(t+ τ )

)

= log (Ψ(t)) . (24)

Note that the maximum value of of Ψ(t) is |T |n2 (|T | is the
total number of textures), which occurs in the case when
every peer requests all the textures in the region. Therefore,
E[τ ] ≤ 2 log(|T |n). By Markov’s inequality, we have that

Pr(τ ≥ 40 log(|T |n)) ≤ E[τ ]

40 log(|T |n) = 0.05. (25)

This implies that Pr(τ ≤ 40 log(|T |n)) ≥ 0.95. As a result,
with a high probability, a ǫ-Nash equilibrium can be reached
from any state within O(log n) rounds.

Lemma 2. Let X1, X2, ... denote a sequence of non-negative

random variables and assume that for all i ≥ 0

E[Xi|Xi−1 = xi−1] ≤ α · xi−1

for some constant α ∈ (0, 1). Furthermore, fix some con-

stant x∗ ∈ (0, x0] and let τ be the random variable that de-

scribes the smallest t such that Xt ≤ x∗. Then,

E[τ |X0 = x0] ≤ 2

log(1/α)
· log

(x0

x∗

)

. (26)

Proof. The complete proof is shown in [12].

Theorem 1 indicates that the proposed peer selection strat-
egy can rapidly reach a ǫ-Nash equilibrium within O(log n)
communication rounds from any state, where n is the total
number of online peers in the region.

5. EVALUATION
We now evaluate our peer-assisted texture streaming sys-

tem using a comprehensive simulation program with input
from realistic traces collected from the most popular meta-
verse application - Second Life. We choose Second Life
to conduct our evaluation, as the Second Life Viewer2 and
OpenMetaverse3 are open source and provide functionalities
to collect the texture information and location information
of avatars from Second Life servers.

For comparisons, we have also simulated the following
three peer selection algorithms using the same implementa-
tion settings with the proposed algorithm: (1) C/S scheme,
where all the requests are solely served by the centralized
server; (2) FLoD [15], where each peer can send its requests
to AoI neighbors; if AoI neighbors fail to respond, it will send
the requests to the server; (3) BAPS [7], which allocates the
upload capacities of peers into channels and each peer will
select the provider that in the currently connected channels;

2
http://wiki.secondlife.com/wiki/Source_downloads

3
http://openmetaverse.org/
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Figure 1: 2D positions of textures in different regions, each of which is 256× 256 meters.
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(a) Freebies (b) Waterhead (c) Orientation Island (d) Mauve (e) Japan Resort

Figure 2: Number of concurrent users in different regions during a day.

Region Number/Size of Textures User Hours
Freebies 2940 / 0.71 GB 201.1

Waterhead 407 / 0.21 GB 580.1
Orientation Island 87 / 0.56 GB 604.7

Mauve 621 / 0.57 GB 270.7
Japan Resort 551 / 0.41 GB 364.5

Table 2: Total number and size of textures and user
hours of different regions during a day.

if the provider is overloaded, it will pick a peer from AoI
neighbors as the provider; if that fails, it will randomly se-
lect a peer beyond of the AoI; eventually the request will go
to the server if no appropriate provider is found.

5.1 Data Collection and Simulation Setup
We collect the realistic texture information of 5 regions

(i.e., Freebies, Waterhead, Orientation Island, Mauve, and
Japan Resort) from Second Life. The 2D positions of tex-
tures, and the distributions of texture sizes of different re-
gions are shown in Figures 1 and 3(a), respectively. The
total size of textures and user hours (i.e., the sum of the
combined length of all user sessions) during a day in these
regions are summarized in Table 2. Before logging into each
region, we clear the cache of our client to store all the tex-
tures after we log in. After logging into each region, we move
our avatar within the region step by step. Specifically, we
stop the avatar at each step and wait for all textures within
the AoI to be downloaded and rendered before moving to the
next step until the whole region is covered and all textures
within the region have been downloaded. When logged into
the regions with cleared cache, a regular client requires 10 to
20 seconds to download all the textures within the avatar’s
AoI. We choose 5 and 10 seconds as two latency constraints
of textures attempting to improve the user experience.

It is worth noting that we only collect the textures of ob-
jects instead of avatars, since the positions of textures on
avatars may change over time due to the mobility and be-
havior of avatars. Since a texture can be applied to multiple
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Figure 3: Distribution of (a) textures sizes, and (b)
peer bandwidth.

objects that exist in different locations, textures can have
multiple positions in our simulations.

We set up a discrete-event simulation using the one-day
avatar mobility traces of the 5 regions from Second Life.
Each collected mobility trace is a time series with a sam-
pling rate of 10 seconds. The unique ID of each avatar
and its trajectory are used to reproduce the movement of
avatars. As shown in Figure 2, the number of concurrent
users changes over time. We assume that every peer joins
the system with a cleared cache, hence peers will request all
the textures in their AoIs immediately after they join the
system. As avatars move around in the virtual world, they
will request the textures within their AoI that are not stored
in their caches. The default cache size is set to 128 MB for
each peer. We use a simple but efficient cache replacement
algorithm which evicts textures that are farther away from
the avatar with newly downloaded textures.

To evaluate the proposed algorithm in a heterogeneous
environment, every peer is assigned an upload capacity and
a download capacity randomly selected from a realistic data
set collected from dslreports.com [5], as shown in Figure 3(b).
Note that peers (especially peers with wireless access) may
have bandwidth (both upload and download) fluctuations,
we assume that each peer can utilize 80% of their assigned



capacities most of the time for downloading or sending tex-
tures. It is worth to point out that the bandwidth distribu-
tion of peers has no impact on the convergence rate of the
proposed peer selection strategy, as shown in Theorem 1.
The AoI radius of each peer is set to be 64 m, which is the
default value in Second Life.

5.2 Server Bandwidth Consumption
Recall that our main objective is to reduce the server

bandwidth consumption via utilizing the network capacities
of participating peers, hence the main performance metric in
our simulation is the average server bandwidth consumption
in one day. Three different algorithms are evaluated using
collected avatar mobility traces during a day. We sum up
the total amount of textures required and total amount of
texture data that is delivered by the server.

Table 3 shows the efficiency of different schemes in terms
of server bandwidth consumption when the latency con-
straint of all textures is set to 5 seconds, i.e., all the required
textures should be delivered (from peers or the server) to the
destinations within 5 seconds. We see that all the algorithms
except the C/S scheme can reduce the server bandwidth
consumption in all the regions via utilizing the bandwidth
of participating peers. It can be observed that the proposed
peer selection strategy outperforms the other alternatives by
a substantial margin in any region.

Table 4 shows the server bandwidth consumption when
the latency constraint of all textures is set to 10 seconds.
Since relaxing the latency constraint of textures increases
the number of requests that peers can satisfy, the server
bandwidth consumption is reduced significantly. It is worth
noting that relaxing the latency constraint of textures in-
evitably degrades the user satisfaction.

In the case when the number of textures is large (e.g., the
Freebies region with 2940 textures), the number of requests
is large. Therefore the server bandwidth consumption is
high due to the inadequate capacities of peers which cannot
satisfy all the demand. Nevertheless, the proposed algo-
rithm can save 23% and 39% of server bandwidth consumed
by the C/S scheme in the Freebies region when the latency
constraints of textures are 5 seconds and 10 seconds, respec-
tively. In the case when the number of textures is relatively
small (i.e., less than 1000), peer-assisted schemes can save
a large amount of server bandwidth. Moreover, we see in
Tables 3 and 4 that the proposed peer selection strategy sig-
nificantly outperforms existing algorithms since it can utilize
the peer capacities more efficiently than FLoD and BAPS.

5.3 Server Request Ratio
Another performance metric we use is the server request

ratio, which is defined as the percentage of requests in the
region that are successfully served by the server. Intuitively,
a higher server request ratio results in both a higher server
bandwidth consumption and a higher server load. Figures 4
and 5 show the distribution of server request ratio of differ-
ent algorithms when the latency constraints of textures are
5 seconds and 10 seconds, respectively.

We observe in Tables 5 and 6 that our peer selection strat-
egy achieves a lower expected server request ratio than other
existing algorithms in all regions and under all implemen-
tation settings. This is because the requests with the pro-
posed peer selection strategy can be sent to underloaded
peers rapidly within the latency constraint of textures, so

Region FloD BAPS Proposed
Freebies 76.3 % 66.3 % 50.5 %

Waterhead 25.1 % 20.1 % 10.2 %
Orientation Island 20.1 % 15.9 % 7.5 %

Mauve 47.4 % 42.1 % 31.8 %
Japan Resort 45.4 % 42.7 % 30.2 %

Table 5: Expected server request ratio (smaller is
better) in different regions, when the latency con-
straint of textures is 5 seconds.

Region FloD BAPS Proposed
Freebies 66.3 % 49.6 % 35.8 %

Waterhead 13.4 % 10.2 % 6.6 %
Orientation Island 12.6 % 8.3 % 5.7 %

Mauve 37.4 % 30.1 % 20.1 %
Japan Resort 35.6 % 32.8 % 19.4 %

Table 6: Expected server request ratio (smaller is
better) in different regions, when the latency con-
straint of textures is 10 seconds.

Region
Communication Overhead

d = 5 Seconds d = 10 Seconds
Freebies 2.36 KB/s 2.16 KB/s

Waterhead 0.26 KB/s 0.12 KB/s
Orientation Island 0.08 KB/s 0.06 KB/s

Mauve 1.02 KB/s 0.86 KB/s
Japan Resort 1.04 KB/s 0.88 KB/s

Table 7: Averaged communication overhead per
peer under different latency constraints (i.e., d) of
textures in different regions.

that the peers’ bandwidth is efficiently utilized. Therefore,
the server load and bandwidth consumption can be reduced
(since fewer requests will be processed). Benefitting from
this, the system scalability can be improved.

5.4 Overhead
Since the protocol overhead incurred is naturally an im-

portant metric for every distributed algorithm, we investi-
gate the communication overhead incurred by the proposed
peer selection strategy in the last group of simulations. We
compute the average overhead per peer as shown in Table 7.
It is easy to observe that the communication overhead of
our algorithm is very low, with a consumption of less than 3
KB/s per peer in all regions. This is because each peer con-
tacts only one peer for each request at each round, and the
sizes of request packets and their corresponding acknowledge
packets are usually small (less than 100 bytes per packet).
Considering that the requests are processed in a FIFO fash-
ion at each peer, we believe that the processing overhead is
reasonable in practice.

6. RELATED WORK
Peer-to-peer or peer-assisted 3D streaming systems for

networked virtual environments have been studied exten-
sively. They allow peers to store the 3D contents they
receives in caches, and share their network resources and
caches to serve others. Varvello et al. [29] proposed a struc-
tured P2P architecture (implemented on the top of Kad [20])
where all the 3D objects are stored in the participating peers
instead of centralized servers. Peers need to query their re-
quired objects in Kad, and wait for the data before rendering



Region
Server Bandwidth Consumption (GB) Fraction of Saved Bandwidth
C/S FLoD BAPS Proposed FLoD BAPS Proposed

Freebies 215.6 201.1 183.5 166.1 6.7 % 14.8 % 23.0 %
Waterhead 17.5 8.4 6.6 2.8 52.2 % 62.2 % 84.1 %

Orientation Island 20.3 11.1 10.5 5.4 45.2 % 48.1 % 73.4 %
Mauve 21.6 17.6 16.4 13.7 18.3 % 23.8 % 36.4 %

Japan Resort 32.6 25.4 24.7 19.4 22.1 % 24.2 % 40.5 %

Table 3: Server bandwidth consumption (smaller is better) and the fraction of saved bandwidth (larger is
better) of different algorithms during a day, when the latency constraint of textures is set to 5 seconds.

Region
Server Bandwidth Consumption (GB) Fraction of Saved Bandwidth
C/S FLoD BAPS Proposed FLoD BAPS Proposed

Freebies 215.6 189.9 161.0 131.4 11.9 % 25.3 % 39.0 %
Waterhead 17.5 5.1 3.0 1.3 70.9 % 82.8 % 92.2 %

Orientation Island 20.3 7.7 6.5 3.2 61.9 % 68.2 % 84.0 %
Mauve 21.6 14.9 12.5 9.3 30.5 % 41.8 % 56.5 %

Japan Resort 32.6 21.3 20.3 12.6 34.6 % 37.9 % 61.3 %

Table 4: Server bandwidth consumption (smaller is better) and the fraction of saved bandwidth (larger is
better) of different algorithms during a day, when the latency constraint of textures is set to 10 seconds.
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Figure 4: Distribution of server request ratio (smaller is better) in different regions during a day, when the
latency constraint of textures is set to 5 seconds.
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Figure 5: Distribution of server request ratio (smaller is better) in different regions during a day, when the
latency constraint of textures is set to 10 seconds.

those objects in their virtual environments. This pure P2P
architecture suffers from low consistency (due to the query
delay) and persistency (due to the avatars’ mobility).

Hu et al. [15] proposed FLoD, which is the first frame-
work for peer-assisted 3D streaming in metaverses. FLoD
enables each peer to send its requests to a randomly cho-
sen AoI neighbor, thus reduce the server bandwidth cost.
If the AoI neighbors fail to respond, the peer will send the
requests to the server. To minimize the server bandwidth
cost in FLoD respecting the bandwidth constraints of peers,
Chien et al. [7] proposed a bandwidth aware peer selection
algorithm, named BAPS, that improves the utilization of
peer bandwidth via bandwidth reservation.

Our objective is to minimize the server bandwidth cost by
enabling peers to rapidly select underloaded content providers
in a decentralized manner. The key idea is to balance the

loads of peers. A number of algorithms have been proposed
for dynamic load balancing, which is modeled as a weighted
congestion game with selfish and non-cooperative users. A
steady state in this context is a pure Nash equilibrium, in
which no user is willing to change her/his strategy. Since the
idea of using a potential function to measure the closeness to
a Nash equilibrium was introduced by Even-Dar et al. [10],
a number of protocols (e.g., [8] [14]) have been proposed to
balance the loads sequentially, i.e., the migration events take
place one at a time, and costs on users are updated imme-
diately. More recently, concurrent protocols (e.g., [4] [3] [1])
for load balancing have been proposed to improve the con-
vergence time by allowing users to change their strategies
concurrently. We adopt the concept of these load balanc-
ing techniques by applying it to peer selection strategy in
peer-assisted 3D streaming systems.



Our system distinguishes itself from all existing systems
in the following two important aspects. First, we consider
the latency requirements of 3D contents, and design a light-
weight peer selection strategy to minimize the server band-
width respecting the latency constraints of contents and the
bandwidth constraints of peers. Second, the peer’ band-
width is optimally utilized in a decentralized manner.

7. CONCLUSION
In this paper we have introduced a peer-assisted texture

streaming system for metaverses that minimizes the server
bandwidth cost without degrading the end-user satisfaction.
We formulate the problem of server bandwidth minimiza-
tion as a congestion game, and use the concept of conges-
tion games to design a peer selection strategy. Our algo-
rithm is light-weight, online, and can efficiently utilize the
bandwidth of heterogeneous peers in a decentralized man-
ner by enabling each peer to repeatedly update its content
providers independently and concurrently. We evaluate our
algorithm through an extensive comparison study based on
simulations using realistic texture information and avatar
mobility traces collected from Second Life. As shown by our
simulation results, the proposed algorithm can effectively re-
duce the server bandwidth cost and increase the scalability
of metaverses. Encouraged by our results from this paper,
we are currently working on a real-world deployment of our
proposal as an extension to Second Life.
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