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Abstract

Recently there has been a lot of interest in the embed-
ded systems community on architectures and design meth-
ods that are targeted towards multimedia applications. This
trend is primarily motivated by the proliferation of resource
and power-constrained portable devices (such as mobile
phones and PDAs), a major portion of whose workload is
made up of multimedia applications. In this paper, we inves-
tigate the tradeoffs between video quality and the processor
cycle requirements in such resource-constrained devices, in
the particular context of MPEG-4 decoding using an open
source codec called XviD. The XviD codec implements a
number of powerful coding tools from MPEG-4, which are
organized as profiles and levels. Given the specification of
an architecture on which an XviD decoder is implemented,
the work presented here would guide a multimedia applica-
tions developer in selecting appropriate profiles and levels
for the corresponding encoder application. While the se-
lection of such profiles has so far been primarily influenced
by the network bandwidth in the case of video streaming,
our work stresses the importance of additionally taking into
account the architecture of the device running the decoder
application. Although the relevance of this observation is
increasingly being realized, sufficient work has not yet been
done to provide guidelines on how to systematically make
such selections. This work attempts to address this short-
coming.

1 Introduction

With the increase in the availability and demand of video
data on the Internet, there arises a need to cater to the en-
tire spectrum of devices that are vying to access such data.
These devices vary from high-speed processors in desktop
computers to power- and resource-constrained devices like
mobile phones and PDAs. The process of decoding video
data to be played on these devices involves some compu-
tationally intensive tasks, whose processor cycle demands
depend on the encoding schemes and encoding parameters

used. A large portion of the video data available today is
compressed according to the MPEG standard. With the de-
velopment of MPEG-4, much attention has been given to
various aspects of this standard. MPEG-4 aims to cover
virtually every possible aspect of multimedia data compres-
sion. It consists of a tool box of coding instruments, where
the combination of specific coding tools is organized as pro-
files and levels. Each profile, and a level in that profile is tar-
geted towards a specific application domain (e.g. portable
devices, DTVs, etc.) and the cost/quality constraints in
that domain. As more multimedia applications continue to
emerge, new profiles are being developed.

Traditionally, the selection of an encoder profile has been
primarily influenced by the available network bandwidth.
For example, there has been a considerable amount of work
with the goal of maintaining a high video quality even at
low bit-rates. Another direction of work attempts to use
scalable encoding techniques where the video quality can
adapt to changing network conditions in the case of video
streaming. With the proliferation of portable devices such
as mobile phones and PDAs, it becomes common to stream
a video clip over a wireless network and play it on such de-
vices. As a result, the video quality not only depends on
network-related issues but also on the resource and power
constraints of the device running the decoder application.
Such constraints do not exist in the case of more powerful
desktop computers. To address this new development, in-
creasingly there is a need to take into account the power
and resource constraints of the device running a decoder
application while selecting the encoder parameters. While
such issues are addressed in the MPEG-4 standard, we do
not know of any work which quantitatively studied how the
resource requirements change with the different encoder pa-
rameters using open source MPEG-4 implementations.

In this paper, we attempt to initiate such a study and re-
port some initial experimental results. While the effects of
encoding bit-rate and quantization on the video quality is
well-known in the multimedia systems domain, our results
provide insights into the tradeoffs between video quality
and processor cycle requirements. More specifically, the



results presented in this paper show the following.

• The processor cycle requirement does not linearly in-
crease with the specified video quality. This brings up
the problem of choosing an encoder parameters that re-
sults in a good tradeoff between the video quality and
the resource/power requirements from the device run-
ning the decoder application.

• We also see that decreasing the video quality beyond a
certain point does not result in significant decrease in
the processor cycle requirements.

• There is a significant difference in processor cycle re-
quirements for video clips having different amounts of
global motion.

• The relative distribution of the processor cycle require-
ments among different tasks of the decoder application
depend on the encoding parameter values and also on
the amount of global motion in the video clips being
decoded.

The last two points can be used as a guideline for em-
bedded system designers while designing MPEG-4 specific
decoder hardware and also for partitioning and mapping a
decoder application on multiprocessor architectures. The
first two observations, on the other hand, can be exploited
by multimedia application developers (e.g. when designing
a web site with video content that will be browsed using
resource-constrained devices like PDAs).

Many of our conclusions can be derived intuitively if one
understands how MPEG-4 compressions work. As far as we
know, however, no such quantitative results based on open
source MPEG-4 implementation is available.

The rest of the paper is organized as follows. In the
next section we describe our experimental setup, follow-
ing which we present our results in Section 3 along with
a discussion of those results. In Section 4 we discuss some
related work and Section 5 concludes the paper.

2 Experimental Setup

We have conducted experiments using version 1.0.2 of
XviD codec, a popular open source implementation of the
MPEG-4 standard (see www.xvid.org). We have pro-
filed the various components of the XviD decoder to ob-
tain the number of instructions executed for each compo-
nent. This was done using the SimpleScalar instruction set
simulator [1] for the ARM processor model. The rationale
behind using the ARM processor is its widespread use in
various portable devices like PDAs. A variety of test video
sequences were encoded using different encoding schemes
and policies, after which the processing requirements in-
volved in decoding these encoded video clips were mea-
sured.

Figure 1: Different encoding schemes in the XviD codec.

2.1 Encoding Options

We first briefly introduce the various encoding options
available in the XviD codec. As shown in Figure 1, differ-
ent encoding levels are available in the XviD codec, which
are specified by a profile and a level in this profile. Given the
profile and the level, we can specify which type of encod-
ing parameters (Quality or Bit-rate) are used. The quality
encoding parameter specifies the target quantization value
and bit-rate encoding parameter specifies the target bit-rate
of the encoded video clip. We can also choose to use one of
the two encoding schemes: Single Pass and Two Pass. Dif-
ferent profiles have different encoding and decoding com-
plexities, each of which can use a different set of MPEG-4
encoding tools. In this paper, we focus only on the Simple
profile. This profile is used for low-end devices like mobile
phones and PDAs which have limited capabilities in terms
of display, computational capacity, and memory. It is lim-
ited to VCD-like resolutions (352×) and bit-rates up to 384
Kbps. It has four levels ranging from L0 to L3, the details of
which are explained in Section 2. It uses only one advanced
MPEG-4 tool, namely Lumimasking.

2.2 Functional Components

We partitioned the XviD decoder application into ten
major functional components/tasks. This partitioning was
done by inserting C code stubs into the XviD decoder code.
As shown in Figure 2, these components are classified into
two main groups: per-frame processing components and
per-macroblock processing components. Since the per-
macroblock processing components impose a higher com-
putational demand and also lead to a more accurate work-
load characterization, in this paper we mostly concentrate
on these components.

2.3 Test Sequences

In order to see the effect of all the combinations of en-
coding parameters on the XviD decoder, we encode video



Figure 2: Main tasks of the XviD decoder application.

clips using all combinations of encoding schemes and pa-
rameters, and then decoded them to evaluate the processing
requirements of the XviD decoder. Towards this, for each
video clip we generated a trace recording the number of pro-
cessor instructions used for decoding each macroblock of
this video clip. The number of instructions were measured
using the “sim-profile” configuration of the SimpleScalar
instruction set simulator for ARM.

The video clips we used in our experiments are standard
test sequences, which represent a wide range of video clips,
with different amounts of details and motion. We restrict
our discussion to four different clips, whose characteristics
are listed below:

• Mobile: very colorful image with constant movement
from left to right.

• Stefan: more colorful than Mobile, with a moving
player in a crowd (movement is random).

• Coastguard: dull colored, less movement than in Ste-
fan.

• Foreman: bright background with zoomed facial
movements (comparatively less movement than in
Coastguard).

Therefore, the amount of motion was the highest in Mo-
bile and the lowest in Foreman.

3 Results and Discussion
The results we obtained for two of the four clips are

shown in Tables 1 and 2. These two tables illustrate two ex-
treme cases—the clip with the least amount of global mo-
tion and the other with the highest amount of global mo-
tion. Each of these tables contains two parts. The first half
shows the results for bit-rate-encoded clips and the second
half shows the results for quality-encoded clips (see Fig-
ure 1). For the bit-rate-encoded clips, L0 denotes the case
with target bit-rate 64Kbps and no other tools enabled, L1
denotes the case with target bit-rate 64Kbps, L2 denotes tar-
get bit-rate 128Kbps, and finally L3 denotes target bit-rate
384Kbps. The tool “adaptive quantization” was enabled for

L1, L2 and L3. For each level chosen, the corresponding
columns show the average bit-rate, the average quantiza-
tion value, the average peak signal-to-noise ratio (PSNR)
per frame, and the average number of instructions required
to process a macroblock. The frame rate for all the clips is
30 fps.

It may be noted that as the level is increased from L0 to
L3, the average number of instructions required to process a
macroblock increases. Similarly, the number of instructions
required to process a macroblock decreases as the quantiza-
tion level is increased. However, both these changes occur
in a non-linear fashion.

Another thing to note from Tables 1 and 2 is the mis-
match between the bit-rate of the encoded clips and target
bit-rate of each level. This mismatch is due to the nature of
the clips we used. The large amount of motion in the clip
Mobile limits the amount of compression possible, causing
the resulting bit-rate to be much larger than the target bit-
rate of the encoded levels.

3.1 Quality versus Processing Requirements

As an illustration, here we study the video quality ver-
sus the processing requirements of the decoder application
when different quality parameter values are used to encode
the clips. To measure the video quality, instead of using
the absolute value of the average PSNR per frame, we use
a relative value of average PSNR per frame. The relative
PSNR value for a video clip encoded using quality parame-
ter value Qi, is defined as the ratio of the average PSNR per
frame encoded using Qi to the average PSNR per frame en-
coded using Q1, where i ranges from 1 to 31. The encoded
video clip achieves the highest quality value when encoded
using Q1. The reason behind using a relative PSNR value
is as follows. It may be noted that the absolute PSNR value
for a higher-motion clip is lower than a lower-motion clip
when the same encoding parameters are used (see Tables 1
and 2). But it can be observed that the subjective quality
of the higher-motion clips is still comparable to that of the
lower-motion clips when the same encoding parameters are
used. Hence, we measured the objective quality of each
video clip using the relative PSNR value.

Figure 3 shows the average number of instructions re-
quired to decode each macroblock of the different video
clips, for different relative PSNR values. The encoder pa-
rameters corresponding to each such PSNR value can be
inferred from Figure 4, which also shows how the relative
PSNR value decreases as the quality parameter value is in-
creased.

Given the processor frequency that is supported by a
portable device, from Figure 3 it is possible to identify the
maximum PSNR value for each video clip that the device
can support (assuming each instruction requires one pro-
cessor cycle, which is valid for RISC-like processors). For



Level Bit-rate(Kbps) Quantization PSNR # instr.

L0 421 29.65 24.39 165750
L1 519 29.74 24.87 175621
L2 519 29.74 24.87 175624
L3 536 29.43 24.90 180468

Q1 20305 1.00 35.19 917331
Q6 3311 6.00 30.87 372704
Q11 1528 11.0 28.44 259046
Q16 887 16.0 26.75 199342
Q21 600 21.0 25.62 162306
Q26 431 26.0 24.84 142552
Q31 334 31.0 24.64 140009

Table 1: The number of processor instructions required by the
decoder for different encoder parameters for the Mobile clip.

Level Bit-rate(Kbps) Quantization PSNR # instr.

L0 143 29.65 33.25 96120
L1 171 29.74 33.64 96193
L2 183 24.80 34.33 102291
L3 445 8.42 37.12 134924

Q1 8454 1.00 42.17 625846
Q6 729 6.00 37.73 134896
Q11 305 11.0 36.02 101680
Q16 193 16.0 34.88 91721
Q21 154 21.0 34.11 87779
Q26 137 26.0 33.61 87019
Q31 128 31.0 33.37 88498

Table 2: The number of processor instructions required by the
decoder for different encoder parameters for the Foreman clip.
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Figure 3: Tradeoff curves showing how the average number of
instructions required to process a macroblock increases as the av-
erage PSNR value per frame is increased.

example, high-end PDAs with a 400-500MHz processor can
decode the Mobile clip with a relative PSNR value of about
0.88. A laptop with a 1.5-2GHz processor can decode all
the four video clips with the highest possible video quality.
When encoding video clips that are meant to be decoded
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Figure 4: The relative average PSNR value per frame correspond-
ing to each quality parameter value.

on such devices, Figures 3 and 4 can be used to estimate
appropriate encoding parameter values.

From Figure 3, it is also possible to identify a good trade-
off between the video quality and the corresponding pro-
cessing requirements of the decoder application. It may be
noted that the relative PSNR values between 0.85 and 0.90
represent the “sweet-spots” for the four selected video clips.
The corresponding quality parameter values to these PSNR
values can be identified from Figure 4. These “sweet-spots”
suggest the most cost-effective frequency values at which a
processor should be run in order to decode these video clips.
Typically, a processor would also run other applications, in
which case these sweet-spots indicate the processor band-
width that should be allocated to the decoder application.

For the Foreman clip, a PSNR value of around 0.89 rep-
resents the “sweet-spot”. A processor frequency of around
100MHz is required to support this PSNR value, which is
well within the reach of low-end PDAs. For the Mobile
clip, the optimal choice of the average PSNR value would
be around 0.87, which can be supported by a high-end PDA
with a 400MHz processor.

3.2 Component Types versus Processing Require-
ments

We also studied the processing requirements of the dif-
ferent tasks of the decoder at the macroblock granularity.
For the clips Mobile and Foreman, Figures 5 and 6 show
the average number of instructions required by each task of
the decoder to decode each macroblock for different quality
parameter values. Table 3 lists the different tasks shown in
these two figures.

From Figures 5 and 6, it may be noted that the pro-
cessor cycle requirements stabilize beyond a certain value
of the quality parameter. As the value of this parameter
is increased, video clips having a lower amount of global-
motion approach this point earlier than those having higher



Abbreviation Full Component Name

MC Motion Compensation
VLD Variable Length Decoding
I-Pred Inverse AC DC Prediction

IQ Inverse Quantization
IDCT Inverse Discrete Cosine Transform
ACU Add Copy Upsampling

Table 3: Decoder tasks and their abbreviations.

amounts of global motion. For example, the processor cy-
cle requirements rapidly decrease for the high-motion Mo-
bile clip till Q26, beyond which there is no significant de-
crease. However, for the low-motion Foreman clip there
is almost no decrease in the cycle requirements beyond the
quality parameter value of Q11. This trend indicates that
there is no reason to encode such clips with parameter val-
ues greater than Q11, with the aim of decreasing the com-
putational workload generated by the decoder application.

It may also be noted that the relative distribution of
the processor cycle requirements among the different tasks
changes with the different quality parameter values. This
distribution may also change with the amount of global mo-
tion present in a video clip. For example, when the quality
parameter value is set to Q1, I-Pred consumes less cycles
than IQ for both Mobile and Foreman clips. However, I-
Pred consumes more cycles than IQ for the Foreman clip
beyond the quality parameter value of Q1, while this hap-
pens for the Mobile clip from Q26 onwards.

The above information on the processing requirements
of the different tasks would allow a designer to understand
which tasks of the decoder account for large differences
in the instruction counts for different encoding parameters.
This information can also help in partitioning and mapping
an MPEG-4 decoder application onto a multiprocessor ar-
chitecture and also identifying candidate tasks which are
more suitable for hardware implementations. Further, for
resource-constrained devices where the architecture is pre-
specified, our results provide insights into the appropriate
choice of the encoder parameters. Lastly, they can also be
useful for designing schedulers when the decoder concur-
rently runs with other applications.

We also measured the processor cycle requirements of
each task for the different video clips. In general, the cy-
cle requirements of a task increase as the quality parameter
value increases and when more global motion is present in
the clip, as shown in Figure 7. Exceptions, however, exist.
As shown in Figure 8, the I-Pred task consumes more cycles
for the higher-motion Mobile clip than for the lower-motion
Stefan clip when the quality parameter value is less than or
equal to Q11, but when the quality parameter value is be-
yond that, more cycles are consumed by the lower-motion
Stefan clip.

4 Related Work
Lately, there has been a considerable amount of work

on various aspects of the MPEG-4 standard. Akramullah
et. al. [2] designed and developed a real-time MPEG-4
video AS Profile encoder at Level 5 on a single chip plat-
form which has a programmable VLIW-based processor.
Similarly, Bereković et. al. [3] describes the implemen-
tation of an optimized software MPEG-4 decoder on a pro-
grammable multi-core system-on-chip architecture, based
on a detailed analysis of the bit-stream statistics.

Complexity analysis of both the MPEG-4 encoder and
decoder has also been a topic of extensive study (see ref-
erence [4]). Techniques have also been proposed to in-
crease the computational scalability of video encoding al-
gorithms, while considering the coding efficiency (in terms
of encoded bit-rate) or video quality (in terms of PSNR)
(see references [5, 6]).

Bhatkar et. al [7] and Zhao et. al. [8] study the ef-
fects of the encoder parameters (as we do in this paper) on
the system energy, but focus only on the encoder applica-
tion. This is useful when, for example, a mobile phone is
used to capture a video image and encode it into an MPEG-
4 clip. However, in our opinion, studying these effects on
the decoder is often more relevant since the decoder is used
more frequently on a portable device. A closely related
work has recently been presented by Zaccarin [9], which
proposes a method for selecting encoding options based on
power constraints to be satisfied by the decoder. Finally, Lu
and Sheinin [10] presents a memory architecture (based on
a Dedicated Video Internal Memory for Systems-on-Chip
architectures) that is specifically designed for video decod-
ing. The encoder is supposed to be aware of this architec-
ture while encoding video clips, such that the decoder can
exploit this architecture to reduce off-chip memory traffic.

However, none of the above papers quantitatively study
the tradeoffs between video quality versus the computa-
tional workload generated by the decoder, as we do in this
paper.

5 Concluding Remarks
In this paper we have studied the effects of different

encoder parameters in MPEG-4 on the processor cycle
requirements of the decoder application, and quantitatively
identified the tradeoffs between video quality and the
processor cycle requirements. Our results can provide in-
sights to multimedia application developers and also guide
the hardware-software co-design of MPEG-4 decoders
on resource constrained devices. The MPEG-4 standard
is likely to be supported in a wide range of devices in
the recent future, and thus we believe that more work in
the direction of this paper will be useful. In future, we
plan to more accurately characterize the MPEG-4 decoder
workload (e.g. measure the variability in the workload)
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Figure 5: Average number of instructions required by each mac-
roblock by the different tasks of the decoder for the Mobile clip.
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Figure 6: Average number of instructions required by each mac-
roblock by the different tasks of the decoder for the Foreman clip.
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Figure 7: Average number of instructions required by the VLD task
to decode a macroblock, for the different video clips.
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Figure 8: Average number of instructions required by the I-Pred
task to decode a macroblock, for the different video clips.

using techniques in the spirit of those described in [11]. It
would also be useful to develop analytical models to predict
the workload generated for different encoder parameters,
especially considering the high simulation times required
to obtain the results presented in this paper. Another
important direction is to study how different encoding
parameters can affect the memory access pattern of the
MPEG-4 decoder, especially since memory accesses are
often a bottleneck in multimedia applications.
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