
DESIGN AND IMPLEMENTATION OF DISTRIBUTED

PROGRAMMABLE MEDIA GATEWAYS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Wei Tsang Ooi

August 2001

c© 2001 Wei Tsang Ooi

ALL RIGHTS RESERVED

DESIGN AND IMPLEMENTATION OF DISTRIBUTED PROGRAMMABLE

MEDIA GATEWAYS

Wei Tsang Ooi, Ph.D.

Cornell University 2001

Multicasting multimedia streams over the Internet is problematic due to net-

work and host heterogeneity. One of the proposed solutions is to place media

gateways inside the network to adopt the media streams for different links and

hosts.

In this dissertation, we investigate several novel extensions to the existing model

of media gateways. First, we make the gateways user extensible by allowing in-

jection of Tcl code that specifies transformations on the media streams. Second,

we improve efficiency in bandwidth consumption by adaptively running the trans-

formations at strategic locations on the Internet. We further reduce bandwidth

consumption and improve throughput by decomposing a transformation into mul-

tiple sub-transformations for execution on different gateways, forming a data flow

pipeline. To realize these extensions, we have designed, implemented, and simu-

lated several components of the media gateways.

We designed and implemented Dali, a low-level software library for building

high-performance, predictable, highly extensible and computationally intensive

multimedia applications. We designed Dali based on a set of design principles

that is different from previous media processing libraries. We sacrificed ease of use

for performance. We exposed the underlying structure of the media data (such as

DCT blocks and motion vectors), forced explicit resource control, and promoted

sharing of memory. As a result, programs written in Dali are fast, more pre-

dictable and highly re-configurable. Dali serves as a case study in API design for

high performance media processing libraries.

We built a prototype of a programmable, application-level media gateway,

called Degas. Using an event-driven, descriptive programming model, users can

write simple programs, called deglets, that can be uploaded into the gateway to

perform operations on input video frames. We perform per-operation optimiza-

tion by mapping a high-level API to low-level Dali code. Our prototype serves as

a framework where many research issues about the design of programmable media

gateways can be explored.

We designed, simulated, and implemented AGLP, which is an application-level

protocol for choosing strategically located Degas gateways on a wide-area network

to run deglets. AGLP minimizes bandwidth consumption, and is able to adapt to

a changing network environment by migrating deglets. We use the announce/listen

paradigm and multicast damping to achieve robustness and scalability. Our exper-

imental results show that AGLP is able to scale up to a large number of gateways

on the network.

Finally, we investigated a mechanism for distributing a deglet onto multiple

gateways. By modelling a deglet as a tree of operations, we use a linear time

algorithm to decompose a deglet into multiple sub-deglets. We also extended

AGLP to locate helper gateways to run these sub-deglets. These sub-deglets form

a pipeline where video streams can flow through. Our experiment results shows

that we are able to improve thoughput and quality over a bottleneck gateway,

without compromising the scalability of AGLP.

Biographical Sketch

Wei Tsang Ooi was born in October, 1971 in Alor Setar in the northern state of

Kedah, Malaysia. After he finished his secondary education at Keat Hwa Sec-

ondary School in 1991, he moved to Singapore to pursue his undergraduate degree

in the Department of Information System and Computer Science, at the National

University of Singapore. He graduated with a First Class Honors Degree in 1996

and joined his alma mater as a senior tutor. In the same year, he took a study

leave and went to Cornell University in Ithaca, New York to pursue a Ph.D. degree

in Computer Science.

iii

To my parents

iv

Acknowledgements

First of all, I would like to thank my advisors Dr. Robbert van Renesse and Dr.

Brian C. Smith. I could not have completed my Ph.D. degree without them.

Robbert took me under his wings during the third year of my graduate study,

and has given me precious advice on research, paper writing, and personal matters.

He continuously supports me in my decisions, and gives me freedom in choosing

my own research path. I am also grateful to him for patiently reading through my

papers and dissertation, and for giving me constructive criticism to improve my

research and writings.

Brian introduced me to the field of multimedia, and gave me a direction for

my research. He never stopped throwing ideas at me. Brian has taught me many

valuable lessons during the early years of my graduate study. He taught me many

skills required for research, including writing papers, reviewing papers, preparing

slides and making presentations. He motivated me to improve my English accent

and social skills as well.

Both Robbert and Brian have made me a better researcher, and a better person

in general.

I also would like to thank Prof. Zygmunt Haas, who has kindly agreed to serve

on my committee as my minor advisor. I am thankful to Prof. Emin Gun Sirer

v

for serving as a proxy for Brian during my B-exam. I would like to thank Dr.

Srinivasan Keshav, Dr. Praveen Seshadri, Dr. Thorsten von Eicken, Prof. Ramin

Zabih, Prof. Lloyd N. Trefethen, Prof. Kenneth Birman, and Prof. Eva Tardos

for their help and valuable advice they have given me during my five years as a

graduate student at Cornell University.

Cindy Robinson has made my life much easier. She has helped me with my

travel arrangements and other administrative matters. Cindy has also encouraged

me to improve myself as a professional, by teasing me and telling me about the

dos and don’ts.

I would like to acknowledge the friendship and mentorship of my fellow graduate

students Soam Acharya, Sugata Mukhopadhyay and Tibor Janosi. They have

helped me greatly when I first joined the Zeno Multimedia Research Group. I am

also grateful to the Dali team, who worked very hard in building and releasing

Dali. I deeply appreciate the quiet late night companions of Chris Hawblitzel,

Deyu Hu and Chi-Chao Chang during my overnight stays in the system lab. The

lab has been very different without them.

The support from the Mash group at the University of California, Berkeley was

invaluable in getting me acquainted with the Mash toolkit. I would like to espe-

cially thank Ketan Mayer-Patel for his help during my one-week visit to Berkeley

and valuable e-mail exchanges about Dali and my work.

I have had the great fortune to be a student of Dr. Leong Hon Wai and Dr.

Tay Yong Chiang during my undergraduate study at the National University of

Singapore. They have inspired me to do interesting research in Computer Science

and played a great role in my decision to come to Cornell.

vi

The National University of Singapore has kindly allowed me to take a 5 years

study leave from my post to pursue my graduate study. I am deeply grateful to

them for this.

Life as a Ph.D. student can be difficult sometimes. I am blessed to have Wei

Hsin Wang by my side. Wei Hsin constantly supports me during my studies and

encourages me when my moral is low. She continues to charm me with her extreme

cuteness. Her love and caring motivates me to achieve my best.

Finally, I am forever indebted to my parents and my family for their teaching,

understanding, and support. They are why I am the person I am today.

vii

Table of Contents

1 Introduction 1
1.1 Network and Host Heterogeneity 2
1.2 Programmable Media Gateways . 3
1.3 Contributions . 4

1.3.1 A High-Performance Media Processing Library 4
1.3.2 User Extensible Media Gateway 5
1.3.3 Adaptive Gateway Location Protocol 6
1.3.4 Distributing Media Processing Over Multiple Gateways . . . 6

1.4 Organization . 7

2 Background and Related Work 8
2.1 Multimedia Multicast . 8
2.2 Software Tools . 12
2.3 Techniques for Multicast Communication 13

2.3.1 Announce/Listen Paradigm 14
2.3.2 Multicast Damping . 15

2.4 Related Work . 16
2.4.1 Existing Multimedia Software Libraries 16
2.4.2 Media Processing in the Network 17
2.4.3 Locating Gateway Services 18
2.4.4 Distributed Media Processing 19

2.5 Conclusion . 21

3 The Dali Multimedia Software Library 22
3.1 Dali By Example . 26

3.1.1 Abstractions . 27
3.1.2 Examples . 29

3.2 Design Principles of Dali . 41
3.2.1 I/O Separation . 42
3.2.2 Sharing of Memory . 43
3.2.3 Explicit Memory Allocation 44
3.2.4 Specialization . 45
3.2.5 Generalization . 46
3.2.6 Exposing Structures . 47

viii

3.3 Implementation . 49
3.3.1 NETPBM . 49
3.3.2 MPEG decoder . 50
3.3.3 JPEG encoding . 50

3.4 Conclusion . 51

4 Extending Media Gateways with Customized Transformations 53
4.1 Design Goals . 55
4.2 Programming Model . 56

4.2.1 Examples . 58
4.2.2 Preconditions for Choosing Gateways 63

4.3 Execution of Deglets . 65
4.4 Performance . 68
4.5 Conclusion . 70

5 An Adaptive Protocol for Locating Degas Gateways 72
5.1 Protocol Description . 74

5.1.1 Quick-Start Phase . 75
5.1.2 Adapting Phase . 78

5.2 Analysis and Simulation . 82
5.2.1 Robustness . 84
5.2.2 Scalability — Memory Requirements 85
5.2.3 Scalability — Networking 86

5.3 Implementation . 93
5.4 Conclusion . 94

6 Distributing Deglets Over Multiple Degas Gateways 95
6.1 Service Model . 97
6.2 Assumptions and Constraints . 98
6.3 Research Goals . 99
6.4 Computation Decomposition . 100

6.4.1 Computation Model . 101
6.5 Extension to AGLP . 104
6.6 Performance of AGLP++ . 108
6.7 Effects on QoS . 113
6.8 Conclusion . 116

7 Conclusion and Future Work 118
7.1 Degas Architecture . 118

7.1.1 Deglet Optimization . 118
7.1.2 Multiple Receivers . 119
7.1.3 Resource Management . 120
7.1.4 Security . 121

7.2 AGLP . 122

ix

7.2.1 Exploiting the Multicast Tree 122
7.2.2 Optimization Metrics . 124

7.3 Distributed Media Processing . 125
7.3.1 Distributing Dynamic Deglets 125
7.3.2 Fairness Among Users . 125
7.3.3 Sharing Sub-computations 126

7.4 Availability of Software . 127

Bibliography 128

x

List of Tables

3.1 Header abstractions in Dali. 30

4.1 A summary of keys in deglet specification. 61
4.2 A summary of available callbacks in deglet specification. 62
4.3 A summary of available frame operations in deglet specification. . 63
4.4 Latencies introduced by the decode-process-encode pipeline and the

CPU load incurred for different deglets. 69

5.1 A summary of message types in AGLP 83

xi

List of Figures

2.1 Multicast . 9
2.2 Parallelism in video processing. (a) temporal parallelism, (b) spa-

tial parallelism, and (c) functional parallelism. 20

3.1 Physical (left) and virtual (right) ByteImages. 31
3.2 Input (top) and output (bottom) of the function PIP. 32
3.3 PIP function written using Dali. 33
3.4 Variables used in function PIP. 34
3.5 Format of an MPEG-1 video stream. 35
3.6 Dali code to decode I-frames from an MPEG video to RGB format. 36
3.7 BitStreamFilter. 38
3.8 Filtering an MPEG Systems stream by copying the first video

stream to another BitStream for processing. 39
3.9 Possible implementations of ByteCopy. 45
3.10 AudioBuffer. 46
3.11 Generalization of an AudioBuffer primitives. 47

4.1 Degas system. 54
4.2 Output (left) and input streams (middle/right) of a Degas system. 55
4.3 Design space of programmable media gateways. 55
4.4 A simple deglet. 59
4.5 A more elaborate deglet example. 60
4.6 An example of using preconditions. 64
4.7 Execution engine in Degas. 66
4.8 Optimized Dali code and dynamic bindings of frame copy. 67
4.9 End-to-end delay between the sender and the receiver. 70
4.10 (a) Inter-frame rendering delay using Degas. (b) Inter-frame ren-

dering delay without Degas. 71

5.1 Different phases in AGLP. 75
5.2 The Quick-Start Phase of AGLP. 76
5.3 The Adapting Phase of AGLP. 79
5.4 Example of score calculation. 81
5.5 Duplicate offer messages for different values of k and G (the number

of gateways). 87

xii

5.6 The delay between sending a request and receiving the first offer. 88
5.7 Duplicate offer messages for k = 2. 88
5.8 The delay between sending a request and receiving the first offer

for k = 2. 89
5.9 Duplicate replace messages. 90
5.10 Number of migrations needed to migrate to an optimal gateway. . 90
5.11 Exchanges of serve and replace messages. 91
5.12 Duplicate replace messages received by a gateway for k′ = 1000. . 92
5.13 Number of migrations to migrate to an optimal gateway for k′ =

1000. 92
5.14 Time to migrate to an optimal gateway for k′ = 1000. 93

6.1 Examples of composable services. 96
6.2 Example of a computation tree. Edges (u, w) and (v, w) divides

the computation tree into three smaller computation trees, which
correspond to the sub-deglets. 102

6.3 Algorithm for finding the minimum cut-set in a computation tree. 103
6.4 The Splitting Phase of AGLP++. 107
6.5 Number of migrations for different number of gateways. 109
6.6 Time of last migration versus number of gateways. 109
6.7 Average number of migrations for different values of Tstable, for 20

gateways, with 95% confidence interval. 110
6.8 Average time of last migration for different values of Tstable, for 20

gateways, with 95% confidence interval. 111
6.9 Average number of sub-deglet executions, with 95% confidence in-

terval. 112
6.10 Average number of help messages, with 95% confidence interval. . 112
6.11 A picture-in-picture deglet used in experiments. 114
6.12 Frame rate versus time. 114
6.13 Data rate versus time. 115
6.14 Inter-frame rendering delay for a single gateway. 116
6.15 Inter-frame rendering delay for multiple gateways. 117

7.1 AGLP and multicast tree . 123

xiii

Chapter 1

Introduction

Internet usage has exploded in recent years. The amount of traffic on the Internet

approximately doubles every year [16]. Data sent over the Internet is no longer

restricted to text and images. Audio and video traffic are increasingly common.

For example, a study at University of Washington shows that at least 18% to

24% of Web related traffic into the university is multimedia content [82]. 20%

to 30% of traffic measured on University of Wisconsin-Madison campus is due to

Napster, a music swapping application [61]. The popularity of digital media will

only increase in the future. Digital video and audio will be accessible not only from

desktop machines, but will be available on devices like PDAs [41, 70], watches [45],

cell phones [37] and even refrigerators [81].

This increase in multimedia popularity is driven by a few factors. First, ad-

vances in compression technology, such as MPEG [28], make it feasible to store

and transport digital video and audio. Second, advances in hardware technology,

such as faster processors and integration of MMX instructions [17] into processors,

improve the speed of media compression and decompression. Third, higher band-

width into the home using DSL and cable modem allows significant improvement

1

2

in the quality of video and audio received via the Internet. Finally, new appli-

cations are utilizing video and audio to deliver contents over the network. These

applications include distance learning, entertainment broadcast, tele-conferencing,

and surveillance.

A common requirement of these applications is many-to-many communication

over the Internet. The original one-to-one communication model of the Internet is

unsuitable for these applications. To address this weakness, IP Multicast [20] was

introduced in the late 80s as an extension to the Internet Protocol (IP). Multicast

allows data packets to be sent to multiple destinations efficiently, by replicating

data packets in routers only when necessary. Hence, even with many receivers, the

sender only needs to send one copy of the packet. Unfortunately, this led to new

problems due to the heterogeneous nature of the Internet.

1.1 Network and Host Heterogeneity

The Internet is an inherently heterogeneous environment, with many different types

of connections, and hosts with different capabilities. The types of connections range

from high speed campus/corporate networks, to medium speed DSL/ISDN/Cable

modems, to slow dial-up connections. End hosts on the Internet include super

computers, powerful desktops, low powered appliances and personal digital assis-

tants (PDA). Due to the decentralized nature of the Internet, the Internet will

likely remain heterogeneous in the future.

Network and host heterogeneity causes problems for delivering multicast media

streaming over the Internet. How can we transmit a single stream that suits

different receivers with different bandwidth? A common solution that many web

3

sites are adopting is to simulcast multiple video streams in different formats and

bit rates for different classes of receivers. This solution is not scalable and wastes

resources. Another common solution is just to send a single stream. However,

using the lowest maximum bit rate that suits every user often sacrifices quality.

Sending a higher bandwidth stream improves quality, but isolates users with slow

connections. Furthermore, this addresses only the issue of bandwidth heterogeneity

and not host heterogeneity.

As bandwidth and CPU speed increase, this heterogeneity gap widens. Mean-

while, the demand for streaming media applications increases as well. This presses

for a solution to the heterogeneity problem.

1.2 Programmable Media Gateways

This dissertation describes an approach to solving the Internet heterogeneity prob-

lem. Our solution places programmable media gateways inside the network. These

media gateways can transform media streams from a multicast session into suit-

able formats for different receivers. Possible transformations include transcoding,

filtering and mixing. Transcoding allows transformation of the media streams into

a different format or bit rate, thus allowing heterogeneous hosts to participate

in the same session over connections with different bandwidths. Filtering allows

hosts to block streams from certain sources. Mixing provides processing on mul-

tiple streams. For example, a gateway can merge incoming video streams into a

single video stream by creating a ”picture-in-picture” or a ”quad-splitter” view, or

a gateway can switch between different streams in a tele-conference based on who

is currently talking.

4

While the primary goal of media processing in the network is to adapt media

streams to heterogeneous end hosts, it can also avoid waste of bandwidth. The

rationale is that we do not want to send unnecessary data that has no use to the

receivers. For example, if a receiver is a PDA that can only display gray scale

video at 5 frames per second, it is wasteful to send a color video stream at the full

frame rate.

Our work extends previous work in media gateways in three ways. Our media

gateway provides user extensibility, network efficiency and distributed processing.

These extensions form the basis of our contributions in this dissertation.

1.3 Contributions

We now present a brief overview of our contributions in this dissertation.

1.3.1 A High-Performance Media Processing Library

In order to build a media gateway that performs processing-intensive operations

on media streams, we need a high-performance media processing software library.

Although many software libraries exist, we found that many of these emphasize

ease of use, and often sacrifice performance. Furthermore, getting these software

libraries to work with each other is a time-consuming task. To address this issue,

we built a new software library, called Dali, that focuses on performance rather

than ease of use. Dali provides a small set of abstractions to represent common

multimedia data types (images, video, audio), and a set of low-level operations

to operate on these abstractions. Throughout the design of Dali, we follow a few

design principles that are different from previous media processing libraries. By

5

exposing structural elements in a media format, explicit resource control and shar-

ing of memory, we make programs written with Dali fast, has better predictability

and highly configurable. We describe Dali and its design principles in detail in

Chapter 3.

Dali is a contribution that is useful independent of building our media gate-

way. It represents a case study in designing an API for a high performance media

processing library. It also benefits the research community as a common toolkit

for media processing. So far, Dali has been used in many multimedia research

projects, including Microsoft, Inktomi, the University of California Berkeley, the

University of North Carolina, and Cornell University.

1.3.2 User Extensible Media Gateway

We implemented a prototype of our media gateway called Degas. Degas allows a

user to submit a small program (known as a deglet) to specify the media transfor-

mation to be performed on the gateways, thus providing an extensible environment

for user customization. Since the evaluation of video and audio quality is often

subjective and user dependent, customization allows users to receive the media

streams the way they prefer. This extensibility also simplifies deployment of new

transformations, and promotes user innovation. Our implementation of Degas

provides a working prototype of a programmable media gateway, where further

research issues can be explored.

To provide a simple and flexible programming model for users to compose their

deglets, we designed an event-based, descriptive programming language for writing

deglets. Our goal is to make writing deglets an easy task, where one can compose

6

a deglet in a few minutes. Degas and the deglet’s programming model is described

in Chapter 4.

1.3.3 Adaptive Gateway Location Protocol

We envision that multiple Degas gateways will be deployed across the network.

Hence, when a user requests a transformation to be performed, we have to choose

one of the gateways to service a client. There are several factors that can affect

the decision. Our solution chooses a gateway for the purpose of reducing network

bandwidth consumption.

We designed, simulated, and implemented an application-level protocol, called

Adaptive Gateway Location Protocol, or AGLP, which locates media gateways in

the network, and chooses a strategically located gateway to service a client. AGLP

can adapt to changes in the environment, including birth and death of senders and

gateways, by migrating services from one gateway to another. Our results show

that AGLP is scalable to a large number of gateways.

We believe that AGLP can be easily adapted to other applications that involve

transforming large amounts of data inside the network, for example, distributed

database and data fusion. We describe AGLP in Chapter 5.

1.3.4 Distributing Media Processing Over Multiple Gate-

ways

Our last contribution is a mechanism to distribute a service over multiple gate-

ways. Services on multiple gateways can be composed to perform a high-level

transformation on a media stream. By flowing through multiple gateways, multi-

ple operations can be performed on a media stream before it reaches the receivers.

7

This in effect creates a data-flow pipeline on the streams. By composing services

on multiple gateways, we can better distribute the load among the gateways. This

can lead to higher throughput. Running an operation over multiple gateways can

also reduce bandwidth consumption further. Lastly, output from an intermediate

service can be shared if it is needed by different users requesting different services.

We extend the AGLP protocol to locate gateways for running composable ser-

vices. We call the new protocol AGLP++. We also present a linear-time algorithm

for decomposing a computation into sub-computations for execution on multiple

gateways. We describe this contribution in Chapter 6.

Together, Dali, Degas, AGLP and AGLP++ contribute towards the realization

of a distributed, programmable media gateway architecture.

1.4 Organization

The rest of the dissertation is organized as follows. Chapter 2 presents some

background information, and describes recent work related to our contributions.

Chapter 3 describes the Dali software library and the design principles behind it.

We present Degas and the deglet programming model for our gateway in Chapter

4. AGLP is described in Chapter 5. Our decomposition algorithm and AGLP++

are described in Chapter 6. We conclude in Chapter 7.

Chapter 2

Background and Related Work

In this chapter, we present the technological backgrounds needed to understand

the rest of this dissertation. This is followed by an overview of various research

work related to our own.

2.1 Multimedia Multicast

IP Multicast

Traditional Internet communication is one-to-one. This communication model is

inefficient for applications that require one-to-many, or many-to-many commu-

nication. To address this weakness, researchers have developed an extension to

IP called IP multicast [20]. IP multicast allows hosts to send a single message

to multiple receivers. Routers duplicate the data packets only when necessary,

hence reducing unnecessary packets inside the network. The paths the packets

flow through form a tree, with the source as root and the receivers as leaves. This

tree is known as the multicast tree (See Figure 2.1).

8

9

RouterHost

Figure 2.1: Multicast

IP multicast provides a group model for communication. Senders and receivers

communicate through a multicast group, identified by a multicast address. The

multicast group provides a level of indirection and decouples the senders from the

receivers. Hence the senders need not know the identities of the receivers. They

simply send data to a multicast group. To receive data, a host simply joins the

multicast group.

In IP multicast, a receiver will receive data from all sources sending to a group

it has joined. There is no provision for preventing traffic from unwanted sources.

This can lead to waste of bandwidth, and possibly denial of service attacks. To

address this issue, Source-Specific Multicast [35] was proposed as an extension

to IP multicasting. Under this new model, a host may join a multicast group,

but only choose to receive data from a particular subset of sources sending to the

group. Unlike IP Multicast, a receiver needs to know the identity of the senders.

At this time of writing, Source-Specific Multicast is still a draft and yet to become

an IETF standard.

Due to its efficiency in one-to-many and many-to-many communications, IP

multicast has been used in applications such as teleconferencing or distance learn-

10

ing to disseminate video streams to multiple receivers. The video streams are often

sent on a UDP channel on top of IP multicast. However, UDP does not provide

enough mechanism to support time-sensitive continuous media data. The needed

mechanisms are added in an application-level protocol, RTP, which we describe

next.

RTP

The Real-time Transport Protocol (RTP) [67] is an application-level protocol that

is designed to meet the needs of transporting continuous multimedia data. It

extends the underlying transport protocol with the following features:

• payload type identification - to identify the type and format of the data

carried by a packet. This lets the receiving application know how the data

should be decoded.

• sequence numbering - for packet loss and packet re-ordering detection.

• timestamping - packets are timestamped with the time when the data carried

is sampled. This timestamp, known as ”RTP timestamp”, is offset by a

random amount for stronger encryption. Hence it does not correspond to

wallclock time. However, this can still be used to determine the play-out

time of the packet since only a relative time difference is needed.

RTP normally runs on top of UDP and IP multicast to provide best-effort,

many-to-many communication for networked media applications.

The Real-Time Control Protocol (RTCP) is a companion control protocol for

RTP. It is used to send control information that provides reception quality feed-

back, cross-media synchronization, and sender identification.

11

Reception feedback is done via RTCP packets known as Sender Report (SR)

and Receiver Report (RR). SR contains information such as the number of bytes

and the number of packets sent so far. The receiver uses SR packets to calculate

the packet loss rate. This loss rate, along with other statistics, such as inter-arrival

jitter is sent using an RR packet back to the sender. Senders can use the RR packet

to identify problems in the network and adjust their output stream rates.

Cross-media synchronization can be done by embedding an NTP [52] timestamp

along with RTP timestamp in SR packets. This allows applications to determine

a mapping between both timestamps. The corresponding sampled time between

two streams can then be derived.

Finally, RTCP packets can contain several fields that describe the source, such

as the name, e-mail, phone number, geographical location, and a textual descrip-

tion of the sender.

RTP was first conceptualized in an audio conferencing tool called vat. Vat is

one of the earliest multicast media applications. In the next section, we give a brief

overview of an early multicast-enabled network called MBone and the historic set

of applications running on it.

MBone and MBone Tools

MBone [22], or Multicast Backbone, is a set of interconnected hosts with a mul-

ticast routing capability. It was originally a virtual network overlayed on top of

the physical Internet to provide multicast capability. MBone links groups of hosts

that run a multicast routing daemon, mrouted, and tunnels through portions of

the network that do not have multicast support using unicast. In recent years,

increasing numbers of routers with native multicast support were deployed into

12

the network. Hence, MBone now interlinks nodes with native multicast capability

and nodes running mrouted.

The MBone served as a testbed for multicast applications in the early 90’s.

Some of the earliest MBone applications include video conferencing tools (vic [50],

nv [26]), audio conferencing tools (vat [39], nevot [66], rat [34]), shared white boards

(wb [40], mb [76]), and session directory tools (sdr [31]). These applications pro-

vided a platform where many research issues in multicast multimedia applications

were studied. In 1998, most of these tools were re-implemented. Their common

functions were abstracted, and were integrated into a toolkit called Mash. We

describe Mash, and the scripting language it is based on, Tcl, next.

2.2 Software Tools

Tcl

Tcl, or Tool Command Language, [55] is an interpreted, scripting language. Tcl

treats all data types as a string, hence is able to provide a simple syntax. Tcl can

be extended with user commands, and can be embedded in applications. Due to

these desirable features, Tcl was chosen to be the base language for Mash.

Mash

Mash [49] is a toolkit for building remote collaborations and streaming media

applications. It was built by merging the functionalities and design ideas from the

MBone tools, the VuSystem from M.I.T [44], and the Continuous Media Toolkit

(CMT) from University of California, Berkeley [71]. Mash is built using C++

and an object-oriented version of Tcl, called OTcl [80]. It consists of a set of

13

reusable and flexible components that can be composed to perform a function.

Since Mash abstracts away many low-level details, such as communication with

video capturing devices and the encoding/decoding process, it allows applications

to be written simply by gluing together these high-level components. For example,

the following two lines of Mash code create a window that displays received media

streams from session 224.8.15.90 at port 4000.

set agent [new VideoAgent "224.8.15.90/4000" ...]

$agent attach [new VideoUI ...]

Classes in Mash can be defined in both OTcl and C++. This split object model

allows a programmer to write low-level code in C++ for performance, and glue

objects together using OTcl for convenience.

2.3 Techniques for Multicast Communication

Now, we look at various techniques used in designing multicast media applications.

Most RTP-based multicast media applications leverage the ”host group” model

from IP multicast. A host that wishes to receive data from a multicast group

simply joins the group. It can leave the group to stop receiving data. Other

members already in the group need not be notified about the joining and leaving

of a member. Similarly, the joining host need not know about other members

already in the group. This loosely-coupled communication model is also known as

the light-weight session architecture [38].

14

2.3.1 Announce/Listen Paradigm

A common technique used to design communication protocols for a light-weight

session is the announce/listen paradigm. An announce/listen-based protocol has

the following properties :

• Multiple parties communicate over a shared multicast channel.

• Each party maintains a state.

• Each party periodically sends update messages to the shared channel.

• States are updated, or refreshed, by the periodic messages. States that are

not refreshed get deleted after a timeout period. Such aging states are also

known as soft states [15].

The announce/listen-based protocol is appropriate when it is sufficient to achieve

”eventual consistency” among the states of the participants. The use of periodic

messages and soft-states allows failures to be detected, and recovery to be per-

formed during normal operation of the protocol. No recovery phase is needed.

States pertained to a failed participant will eventually be deleted, and a recov-

ered participant can be brought up-to-date by periodic messages from other par-

ticipants. Hence, robustness is ”built-in” to the protocol. The announce/listen

paradigm has been used in the design of many protocols. For example, the Inter-

net Group Management Protocol (IGMP) [23] uses announce/listen to maintain

group membership in a router. The Session Announcement Protocol [33] uses

an announce/listen-based mechanism to advertise multicast sessions to session di-

rectories [31]. The Soft State Archive Control (SSAC) Protocol [65] and Active

15

Service Control Protocol (ASCP) [5] are announce/listen-based protocols for ac-

cessing media archiving servers and Active Service clusters respectively.

2.3.2 Multicast Damping

A common problem in designing multicast communication protocols is feedback

implosion. This happens when multiple receivers respond to the sender at once,

causing the sender to be overwhelmed by replies. This can be triggered by a

particular type of messages from the sender, such as a query, or by a lost message.

A widely used technique to avoid implosion is multicast damping. It allows

redundant replies that cannot affect the state of the system to be suppressed.

Multicast damping works as follows. Instead of sending a reply immediately, a

receiver first sets a timer, and waits for a certain amount of time. The receiver

replies after the timer expired. However, if it receives a reply from another receiver

that makes its own reply redundant, the receiver suppresses its reply and nothing

is sent.

Multicast damping is commonly used to improve scalability. IGMP [23] uses

multicast damping to avoid multiple replies when a router queries its subnet for

group membership. Scalable Reliable Multicast (SRM) [24] uses multicast damping

to consolidate NACK messages from the receivers when a lost message is detected.

The Active Service Control Protocol (ASCP) [5] uses it to avoid multiple service

launches when a service is requested.

16

2.4 Related Work

In this section, we review recent research results in areas related to our work.

We begin by looking at existing tools for building processing-intensive multimedia

applications.

2.4.1 Existing Multimedia Software Libraries

There are many libraries for processing multimedia data. Most of these libraries

work on a specific data format. Among the popular libraries, NETPBM [19] pro-

vides processing routines for the PGM, PPM and PBM image formats; IJG JPEG

[30] provides API for JPEG compressed images; gd [10] works on GIF and PNG for-

mats, and ooMPEG [36] provides a high-level API to retrieve frames from MPEG

video streams.

Some use a scripting language for processing multimedia data (VideoScheme

[46], Isis [2], Rivl [73]). These scripting languages are typically high-level, weakly

typed, interpreted languages that support the composition of components and

rapid prototyping. They provide high-level commands for manipulation of multi-

media data. Isis and VideoScheme do not address performance issues in processing.

Rivl addresses performance issues by using optimization techniques such as lazy

evaluation and memory management. However, the optimizations that Rivl can

perform are limited because Rivl combines the interpreter, optimizer and execu-

tion engine into one single monolithic system. This combined function makes Rivl

difficult to extend and debug.

PPE [62] is a multimedia toolkit that uses composable components to construct

multimedia software. For example, PPE includes components such as a Huffman

17

decoder, a zigzag decoder, and an IDCT decoder that can be pipelined to build a

JPEG decoder. PPE is designed to provide configurable modules that can adapt

themselves to the heterogeneous environment, but not for more general multimedia

processing. PPE is meant for building decoders whose components can be easily

replaced. For instance, a fast, inaccurate IDCT can be used instead of a slower,

more accurate IDCT when CPU power is limited.

2.4.2 Media Processing in the Network

Transforming World Wide Web images and text using HTTP proxies to adapt to

heterogeneous network and hosts has been studied by several projects, for instance,

TranSend [25], Mowser [8] and Digestor [9]. These proxies typically perform dis-

tillation on web objects, by re-authoring the HTML contents and reducing image

resolutions, to reduce transmission time and allow display of web contents on a

small screen.

The idea of running video processing within the network was first described

by Turletti and Bolot in [78] and by Pasquale et al. in [57]. Turletti and Bolot

suggest video gateways as a solution for solving the network heterogeneity problem.

Pasquale et al. propose a filter propagation mechanism in multicast dissemination

trees. A filter is a transformer of one or more input streams into an output stream.

By relocating filters to appropiate points in the multicast trees, network efficiency

can be improved.

In [85], Yeadon describes a set of QoS filters that implement the idea by

Pasquale et al. They implemented several filters, including transcoding, low pass

filters and frame dropping, which can sit inside switches or gateways and trans-

form video streams as they flow through. These filters are dynamically instantiated

18

by a filter daemon when requested by users. They also provide a graphical user

interface for end users to reconfigure the filters.

MeGa [4] is an application-level media gateway that performs transcoding on

RTP media streams. It is implemented as a service agent in the Active Service

framework [5]. Active Service provides clusters, which are sets of nodes that pro-

vide services. A user can request instantiation of an application-level service agent

on the cluster. If not available already, the agent can be uploaded. Users can

implement their own service agents in Mash and run them on the clusters.

The Active Service framework provides customized processing in the network at

application-level. There is also much interest on running user code in the network

at the network-level [3, 74, 86]. An Active Network provides programmability

at the packet level, and allows users to customize operations inside routers and

switches, such as routing, caching, retransmissions, and so on. Several projects

have used Active Networking to perform multimedia QoS adaptation and resource

reservation in routers [75, 63, 64].

2.4.3 Locating Gateway Services

Locating services in the network is a common problem and many protocols exist.

For example, DHCP [21] uses a centralized server at a known location to provide

information about the location of local DNS servers. DHCP is intended for local

area networks only – DHCP does not scale, and its centralized design makes it

vulnerable to crashes.

SLP [79] uses another approach, where each server (or service agent in SLP)

periodically announces availability of services to a well-known multicast channel.

A client (or user agent in SLP) can discover services available by listening to

19

the multicast channel. An optional directory agent acts as an intermediate agent

between users and servers by caching service advertisements on behalf of the users.

A client can send a request for service either to the directory agent, or multicast

the request to all servers. Other protocols similar to SLP exist, for instance, SDS

[18] and Jini [51]. All of these protocols are aimed at discovery of a wide range of

services, such as printers, fax machines and music repositories.

Other discovery protocols not only discover services, but try to locate services

at a strategic location. MeGaDiP (Media Gateway Discovery Protocol) [84] is one

such protocol. MeGaDiP is used to locate media gateways for transcoding media

streams from a sender to a receiver. It uses centralized directory agents called

dealers to maintain a list of available gateways. An end host contacts a local

dealer to find a gateway. If no gateway is available, the dealer forwards the request

to another dealer along the end-to-end path. Lists of dealers along the path are

obtained using traceroute and modified DNS lookup.

MeGaDiP saves network traffic by locating a media gateway near the sender or

the receiver based on the property of the transcoding operation to be performed. If

the operation reduces bandwidth of the media stream, then discovery is performed

by the sender. Otherwise, it is performed by the receiver. By sending the request

from the appropiate end host, MeGaDiP can improve bandwidth consumption.

Furthermore, locating a gateway along the end-to-end path reduces increments in

propagation delay caused by the gateway.

2.4.4 Distributed Media Processing

Video processing contains a high level of parallelism. This parallelism is exploited

and studied in Parallel Software-Only Video Processing (PSVP) [48, 47]. They em-

20

ployed multiple hosts in a network-of-workstation environment to exploit temporal

parallelism and spatial parallelism in video processing. In temporal parallelism, a

host demultiplexes a video stream and sends different frames to different hosts for

processing. The results are then sent to another host, which merges them into the

resulting stream. For example, the demultiplexing host can send odd numbered

frames to one host and even numbered frames to another. In spatial parallelism,

different regions of a video frame are sent to different hosts for processing. A third

type of parallelism, functional parallelism, allows multiple hosts to perform differ-

ent operations on a video stream as it flows through the hosts. This parallelism,

however, is not exploited in PSVP. The three types of parallelism are illustrated

in Figure 2.2.

Process Process

Process

Process

Process

Process

(a)

(c)

(b)

Figure 2.2: Parallelism in video processing. (a) temporal parallelism, (b) spatial

parallelism, and (c) functional parallelism.

21

Distributed media processing is also used in the Active Service [5] framework

in the form of service composition. In Active Service, a media gateway running

as a service agent can act as a client to request another media gateway to be

instantiated as its server. This can continue recursively and result in a chain of

media gateways, forming a ”higher-level” service to serve the client.

Several wide-area network services allow composition of their services. CANS

[27] (Composable, Adaptive Network Services) composes its services in response

to a client’s request using a centralized plan manager. The composition of services

is transparent to the client. The plan manager constructs a data path through the

services, using a heuristic to maximize the minimum bandwidth available along

the path. Ninja [29] uses a different heuristic to compose its services. Their

automatic path creation facility first maps a user request to a data path with a

minimum number of operators, and then assigns these operators onto the least

loaded servers on the network.

2.5 Conclusion

We described the basic networking technology we use in our work. The Degas

media gateway is designed to process RTP-based, multicast video streams and is

backward compatible with the MBone tools. We use the announce/listen-based

protocol and multicast damping to achieve robustness and scalability. Degas and

AGLP are built using the Mash toolkit to leverage existing building blocks for

constructing a networked media application.

Next, we gave an overview of related research. Our contributions draw upon

the strength of this previous work, and address some of its weaknesses.

Chapter 3

The Dali Multimedia Software

Library

Our research in building a distributed programmable media gateway is aligned

with recent trends in multimedia research. Traditionally, the multimedia research

community has focused much of its efforts on the compression, transport, storage,

and display of multimedia data. These technologies are fundamentally important

for applications such as video conferencing and video-on-demand, and results from

the research community have made their way into many commercial products. For

example, JPEG [60] and MPEG [28] are now ubiquitous standards for image and

audio/video compression.

Although many research problems remain in these areas, the research commu-

nity has begun to examine the systems problems that arise in multimedia data

processing, such as content-based retrieval and understanding [59, 69], video pro-

duction [83], and transcoding for heterogeneity and bandwidth adaptation [1, 4].

Our work falls into the last category.

22

23

The lack of a high-performance toolkit that the community can use to build

processing-intensive multimedia applications is hindering this research. Currently,

researchers have several options (none of which are adequate). They can de-

velop code from scratch, but the complex nature of common multimedia encoding

schemes (e.g., MPEG) makes this approach impractical. For example, several

person-years of work went into writing the Berkeley MPEG player (mpeg play)

[58].

A more commonly used option is to modify an existing code base to add the de-

sired functionality. For example, many researchers have ”hacked up” mpeg play to

test their ideas. However, this approach requires understanding thousands of lines

of code and usually results in complex, unmanageable systems that are difficult to

debug, maintain, and reuse.

A third option is to use standard libraries, such as ooMPEG [36] or the Inde-

pendent JPEG Group (IJG) software [30]. Such libraries provide a high-level API

that hides many of the details of the underlying compression scheme. However,

since programmers cannot penetrate the ”black-box” of the API, they can only

exploit limited optimizations. For example, to extract a gray scale image from

an MPEG frame, the programmer must convert the RGB image returned by the

ooMPEG library into a gray scale image. A much more efficient strategy is to

extract the gray scale image directly from the MPEG frame data, since it is stored

in a YUV color space. The ooMPEG abstractions do not support this optimiza-

tion. Another problem is that these libraries usually provide functions for specific

multimedia formats, making interoperability between the libraries difficult. For ex-

ample, it is difficult to transcode an MPEG I frame into a JPEG image, although

both of them are DCT coded.

24

These concerns have led us to develop Dali, a library for constructing processing-

intensive multimedia software. Dali consists of a set of simple, inter-operable, high-

performance primitives and abstractions that can be composed to create higher

level operations and data types. Dali lies between the high-level APIs provided

by common libraries and low-level C code. It exposes some low level operations

and data structures but provides a higher level of abstraction than C, making

it possible to compactly write high-performance, processing-intensive multimedia

software. Dali’s mechanisms include:

• Resource control. Programmers have full control over memory utilization and

I/O. With few exceptions, Dali routines do not implicitly allocate memory or

perform I/O - such functions are always explicitly requested by the program-

mer. This feature gives programmers tight control over performance-critical

resources, an essential feature for writing applications with predictable per-

formance. Dali also gives programmers mechanisms to optimize their pro-

grams using techniques such as data copy avoidance and structuring their

programs for good cache behavior.

• ”Thin” primitives. Dali breaks complex functions into simple functions that

can be layered. This feature promotes code reuse and allows optimizations

that would otherwise be difficult to exploit. For example, to decode a JPEG

image, Dali provides three primitives: (1) a function to decode the bit stream

into three SCImages, one for each color component (a SCImage is an image

where every ”pixel” is a structure containing DCT coefficients), (2) a function

to convert each SCImage into a ByteImage (an uncompressed image whose

pixels are integers in the range 0..255), and (3) a function to convert from

YUV color space to RGB color space. Exposing this structure has several

25

advantages. First, it promotes code reuse. For instance, the inverse DCT

and color-space conversion functions are shared by the JPEG and MPEG

routines. Second, it allows optimizations that would be difficult to exploit

otherwise. For example, compressed domain processing techniques [4, 69, 59,

72] can be implemented on SCImages.

• Exposing Structure: Dali provides functions to parse compressed bit streams,

such as MPEG, JPEG, and GIF. These bit streams consist of a sequence of

structural elements. For example, an MPEG-1 video bit stream consists

of a sequence header followed by one or more group-of-pictures (GOPs –

Figure 3.5). Each GOP is a GOP header followed by one or more pictures.

Each picture is a picture header followed by encoded picture data. While

other libraries hide these structures from programmers, Dali exposes them.

Dal provides five functions for each structural element: find, parse, encode,

skip, and dump. The functions operate on data in a memory buffer (call a

BitStream). Find locates that element in the BitStream, parse reads the

element into an associated data structure, encode writes a data structure

into the BitStream, skip moves the BitStream cursor past that structural

element, and dump copies the element from one BitStream to another. These

routines allow a programmer to operate on a bit stream at a high level,

but to perform operations that are impossible with conventional libraries.

For example, writing a routine that counts the number of I frames in an

MPEG sequence is trivial: one simply finds each picture header, parses it,

and increments a counter if it is an I frame (indicated by the type field in

the picture header structure). Similarly, writing a program to demultiplex

MPEG Systems streams or analyze the structure of an MPEG sequence is

26

very easy. Similar considerations hold for other formats, such as GIF and

JPEG.

The challenge of Dali was to design a library of functions that (1) allowed us

to write code whose performance was competitive with hand-tuned C code, (2)

allowed us to perform almost any optimization we could think of without breaking

open the abstractions, and (3) could be composed in interesting, unforeseen ways.

We believe that we have achieved these goals. For example, a Dali program that

decodes an MPEG-1 video into a series of RGB images is about 150 lines long, runs

about 10% faster than mpeg play, and can be easily modified for new environments.

The contributions of this research are two-fold. First, we believe that Dali

provides a fairly complete set of operations that will be useful to the research com-

munity for building processing-intensive multimedia applications. Second, this re-

search is a case study in designing high-performance multimedia APIs. It provides

a model for what APIs operating systems should provide to programmers.

The rest of this chapter is organized around these contributions. To show how

Dali is used, we describe Dali in Section 3.1 through three illustrative examples.

Section 3.2 describes the design principles of Dali. Finally, the implementation

and its performance are briefly discussed in Section 3.3.

3.1 Dali By Example

This section is intended to give the reader a feel for programs written using Dali.

We first outline the major abstractions defined by Dali and then present three

examples of programs written with Dali that illustrate its use and power.

27

3.1.1 Abstractions

To understand Dali, it is helpful to understand the data types Dali provides. The

basic abstractions in Dali are:

• ByteImage - a 2D array of values in the range 0..255.

• BitImage - a 2D array of 0/1 values.

• SCImage - an image where each ”pixel” is a structure that represents the run-

length-encoded DCT blocks found in many block-based compression schemes,

such as MPEG and JPEG.

• VectorImage - an image where each ”pixel” is a structure that represents

the motion-vector found in MPEG or H.261.

• AudioBuffer - an abstraction to represent audio data (mono or stereo, 8-bit

or 16-bit).

• ImageMap - represents a look-up table that can be applied to one ByteImage

to produce another ByteImage.

• AudioMap - a look-up table for AudioBuffer.

• BitStream/BitParser - a BitStream is a buffer for encoded data. A BitParser

provides a cursor into the BitStream and functions for reading/writing bits

from/to the BitStream.

• Kernel - 2D array of integers, used for convolution.

• BitStreamFilter - a scatter/gather list that can be used to select a subset

of a BitStream.

28

These abstractions can be used to represent common multimedia data objects.

For example,

• A gray-scale image can be represented using a ByteImage.

• A monochrome image can be represented using a BitImage.

• An irregularly shaped region can be represented using a BitImage.

• An RGB image can be represented using three ByteImages, all of the same

size.

• A YUV image in 4:2:0 format can be represented using three ByteImages.

The ByteImage that represents the Y plane is twice the width and height of

the ByteImages that represent the U and V planes.

• The DCT blocks in a JPEG image, an MPEG I-frame, or the error terms in

an MPEG P- and B-frame can be represented using three SCImages, one for

each of the Y, U and V planes of the image in the DCT domain.

• The motion vectors in MPEG P- and B-frame can be represented with a

VectorImage.

• A GIF Image can be represented using three ImageMaps, one for each color

map, and one ByteImage for the color-mapped pixel data.

• 8 or 16-bit PCM, (µ-law or A-law) audio data (mono or stereo) can be rep-

resented using an AudioBuffer.

Dali also has abstractions to store encoding-specific structures. For example,

an MpegPicHdr stores the information parsed from a picture header in an MPEG-1

29

video bit stream. The header abstractions in the current implementation are listed

in Table 3.1.

3.1.2 Examples

Although the set of abstractions defined in Dali is fairly small (9 general purpose

and 13 header abstractions), the set of operators that manipulate these abstractions

is not. Dali currently contains about 500 operators divided into 12 packages. The

rationale for defining so many operators is discussed in Section 3.2. It is neither

practical nor productive to describe all the operators here. Instead, we present

three examples that illustrate the use of the Dali abstractions and give you a

feel for programs written using Dali. The first example shows how to use Dali to

manipulate images, the second shows how to use Dali for MPEG decoding, and the

last shows how to use a Dali BitStreamFilter to demultiplex an MPEG Systems

stream.

Image Primitives

The first example uses Dali to perform a picture-in-picture operation (Figure 3.2).

Before explaining this example, we must describe the ByteImage abstraction in

detail. A ByteImage consists of a header and a body. The header stores informa-

tion such as the width and height of the ByteImage and a pointer to the body.

The body is a block of memory that contains the image data. A ByteImage can

be either physical or virtual. The body of a physical ByteImage is contiguous

in memory, whereas a virtual ByteImage borrows its body from part of another

ByteImage (called its parent). In other words, a virtual ByteImage provides a form

30

Table 3.1: Header abstractions in Dali.

PnmHdr NETPBM image header

WavHdr WAVE audio header

GifSeqHdr GIF file sequence header

GifImgHdr GIF file image header

JpegHdr JPEG image header

JpegScanHdr JPEG scan header

MpegAudioHdr MPEG-1 audio (layer 1, 2, 3) header

MpegSeqHdr MPEG-1 video sequence header

MpegGopHdr MPEG-1 video group-of-picture header

MpegPicHdr MPEG-1 video picture header

MpegSysHdr MPEG-1 system stream system header

MpegPckHdr MPEG-1 system stream pack header

MpegPktHdr MPEG-1 system stream packet header

31

of shared memory - changing the body of a virtual ByteImage implicitly changes

the body of its parent (see Figure 3.1).

HeaderHeader

Pixel Data

Figure 3.1: Physical (left) and virtual (right) ByteImages.

A new physical ByteImage is allocated using ByteNew(w,h). A virtual ByteImage

is created using ByteClip(b, x, y, w, h). The rectangular area whose size is w × h

and has its top left corner at (x, y) is shared between the virtual ByteImage and

the physical ByteImage b. The virtual/physical distinction applies to all image

types in Dali. For example, a virtual SCImage can be created to decode a subset

of a JPEG image.

We now show how to use Dali to create a ”picture in picture” (PIP) effect on

an image (Figure 3.2). We choose this example because it is simple, yet involves

basic operators that illustrate the principles of Dali.

The steps to create the PIP effect can be briefly stated as follows: given an

input image, (1) shrink the image by half, (2) draw a white box slightly larger

than the scaled image on the original image, and (3) paste the shrunk image into

the white box.

32

Figure 3.2: Input (top) and output (bottom) of the function PIP.

Figure 3.3 shows a Dali function that performs the PIP operation. The function

takes in three arguments: image, the input image; borderWidth, the width of the

border around the inner image in the output, and margin, the offset of the inner

image from the bottom right edge of the outer image. (See Figure 3.4).

Line 5 to line 6 of the function query the width and height of the input image.

Line 7 to line 10 calculate the position and dimension of the inner picture. Line

13 creates a new physical ByteImage, temp, which is half the size of the original

image. Line 14 shrinks the input image into temp. Line 15 creates a virtual

ByteImage slightly larger than the inner picture, and line 18 sets the value of

the virtual ByteImage to 255, achieving the effect of drawing a white box. Line

19 de-allocates this virtual image. Line 20 creates another virtual ByteImage,

corresponding to the inner picture. Line 21 copies the scaled image into the inner

picture using ByteCopy. Finally, line 22 and 23 free the memory allocated for the

ByteImages.

33

1 void PIP(image, borderWidth, margin)

2 ByteImage *image;

3 int borderWidth, margin;

4 {

5 int w = ByteGetWidth(image);

6 int h = ByteGetHeight(image);

7 int destW = w/2;

8 int destH = h/2;

9 int destX = w - destW - margin;

10 int destY = h - destH - margin;

11 ByteImage *dest;

12 ByteImage *temp;

13 temp = ByteNew(destW,destH);

14 ByteShrink2x2(image, temp);

15 dest = ByteClip(image,

16 destX-borderWidth, destY-borderWidth,

17 destW+2*borderWidth,destH+2*borderWidth);

18 ByteSet(dest, 255);

19 ByteFree(dest);

20 dest = ByteClip(image, destX, destY, destW, destH);

21 ByteCopy(temp, dest);

22 ByteFree(dest);

23 ByteFree(temp);

24 }

Figure 3.3: PIP function written using Dali.

34

h

w

destW

destH

(destX, destY)

borderWidth margin

outer picture

inner picture

Figure 3.4: Variables used in function PIP.

This example shows how images are manipulated in Dali through a series

of simple, thin operations. It also illustrates several design principles of Dali,

namely (1) sharing of memory (through virtual images), (2) explicit memory con-

trol (through ByteClip, ByteNew and ByteFree), and (3) specialized operators

(ByteShrink2x2). These design principles will be discussed in greater detail in

Section 3.2.

MPEG and BitStreams Primitives

Our next example illustrates how to process MPEG video streams using Dali. Our

example program decodes the I-frames in an MPEG video stream into a series

of RGB images. Before discussing the example, we briefly review the format of

MPEG video streams and the relevant Dali abstractions and functions.

To parse an MPEG video stream, the encoded video data is first read into a

BitStream. A BitStream is an abstraction for input/output operations - that is,

it is a buffer. To read and write from the BitStream, we use a BitParser. A

35

BitParser provides functions to read and write data to and from the BitStream,

plus a cursor into the BitStream.

seq header end sequence

picture pictureGOP header

Picture header Picture body

GOP GOP

Figure 3.5: Format of an MPEG-1 video stream.

An MPEG video stream consists of a sequence header, followed by a sequence

of GOPs (group-of-pictures), followed by an end of sequence marker (Figure 3.5).

Each GOP consists of a GOP header followed by a sequence of pictures. Each

picture consists of a picture header, followed by the compressed data required

to reconstruct the picture. Sequence headers contain information such as the

width and height of the video, the frame rate, the aspect ratio, and so on. The

GOP header contains the time code for the GOP. The picture header contains

information necessary for decoding the picture, most notably the type of the picture

(I, P, B). Dali provides an abstraction for each of these structural elements (see

Table 3.1), and five primitives for each structural element: find, skip, dump, parse,

and encode. For example, the MpegPicHdrFind function advances the cursor to

the next picture header, and MpegSeqHdrParse decodes the sequence header into

a structure.

Given this background, we can describe the Dali program shown in Figure 3.6,

which decodes the I-frames in an MPEG video into RGB images. Lines 1 through

4 allocate the data structures needed for decoding. Line 8 associates inbp to inbs.

36

// filename is the name of the MPEG file to parse
1 BitStream *inbs = BitStreamMmapReadNew (filename);
2 BitParser *inbp = BitParserNew ();
3 MpegSeqHdr *seqhdr = MpegSeqHdrNew ();
4 MpegPicHdr *pichdr = MpegPicHdrNew ();
5 int w, h, vbvsize, status;
6 ScImage *scy, *scu, *scv;
7 ByteImage *y, *u, *v, *r, *g, *b;

8 BitParserWrap(inbp, inbs);

9 MpegSeqHdrFind(inbp);
10 MpegSeqHdrParse(inbp, seqhdr);

11 w = MpegSeqHdrGetWidth(seqhdr);
12 h = MpegSeqHdrGetHeight(seqhdr);
13 vbvsize = MpegSeqHdrGetVbvSize(seqhdr);

14 r = ByteNew(w, h);
15 g = ByteNew(w, h);
16 b = ByteNew(w, h);
17 y = ByteNew(w, h);
18 u = ByteNew((w+1)/2, (h+1)/2);
19 v = ByteNew((w+1)/2, (h+1)/2);
20 scy = ScNew((w+15)/16, (h+15)/16);
21 scu = ScNew((w+31)/32, (h+31)/32);
22 scv = ScNew((w+31)/32, (h+31)/32);

23 while (1) {
24 status = MpegPicHdrFind (inbp);
25 if (status == DVM_MPEG_NOT_FOUND) break;
26 MpegPicHdrParse (inbp, pichdr);
27 if (pichdr->type == I_FRAME) {
28 MpegPicIParse (inbp,scy,scu,scv);
29 ScToByte (scy, y);
30 ScToByte (scu, u);
31 ScToByte (scv, v);
32 YuvToRgb420 (y, u, v, r, g, b);
33 }
34 }

Figure 3.6: Dali code to decode I-frames from an MPEG video to RGB format.

37

The cursor of inbp will be pointing to the first byte of the buffer in inbs, which

is a memory-mapped version of the file. Lines 9-10 move inbp to the beginning of

a sequence header and parse the sequence header into seqhdr.

We extract vital information such as width, height and the minimum data that

must be present to decode a picture (vbvsize) from the sequence header in lines

11-13. Lines 14 through 22 allocate the ByteImages and SCImages we need for

decoding the I-frames. The variables scy, scu, and scv store compressed (DCT

domain) picture data, y, u, and v store the decoded picture in YUV color space,

and r, g, and b store the decoded picture in RGB color space.

The main loop in the decoding program (lines 23-34) starts by advancing the

BitParser cursor to the next MPEG picture header (line 24). If the picture header

is not found, we exit the loop (line 25). Otherwise, we parse the picture header

(line 26) and check its type (line 27). If it is an I-frame, we parse it into three

SCImages, (line 28), convert the SCImages to ByteImages (lines 29-31), and convert

the ByteImages into RGB color space (line 32).

Breaking down complex decoding operations like MPEG decoding into ”thin”

primitives makes Dali code highly configurable. For example, by removing lines 30

to 32, we get a program that decodes MPEG I-frame into gray scale images. By

replacing line 29 to 32 with JPEG encoding primitives, we get an efficient MPEG

I-frame to JPEG transcoder. Similarly, we can just as easily write a Motion-JPEG

to MPEG I-frame transcoder.

BitStreamFilters

Our final example illustrates how we can filter out a subset of a BitStream for

processing. BitStreamFilters were designed to simplify the processing of bit

38

streams with interleaved data (e.g., AVI, QuickTime, or MPEG Systems streams).

BitStreamFilters are similar to scatter/gather vectors - they specify an ordered

subset of a larger set of data.

A common use of filtering is processing MPEG Systems streams, which consists

of interleaved audio or video (A/V) streams (Figure 3.7). In MPEG, each A/V

stream is assigned an unique id. Audio streams have ids in the range 0..31; video

streams ids are in the range 32..47. The A/V streams are divided up into small

(approximately 2 kilobytes) chunks, called packets. Each packet has a header that

contains the id of the stream, the length of the packet, and other information (e.g.,

a time code).

v a v v v

v v v v v

a a

....

....

filtering

Figure 3.7: BitStreamFilter.

In this example, we build a BitStreamFilter that can be used to copy the

packets of the first video stream (id = 32) from a system stream stored in one

BitStream to another. Once copied, we can use the Dali MPEG video processing

primitives on the video-only BitStream. The Dali code for building this filter is

shown in Figure 3.8.

39

1 #define SIZE (128*1024)

2 int len, offset, start = 0;

3 MpegPktHdr *hdr = MpegPktHdrNew();

4 BitStream *bs = BitStreamNew (SIZE);

5 BitParser *bp = BitParserNew ();

6 BitStreamFilter * filter = BitStreamFilterNew();

7 BitParserAttach (bp, bs);

8 BitStreamFileRead (bs, file);

9 offset = MpegPktHdrFind (bp);

10 while (!eof(file) && !EndOfBitstream(bp)) {

11 MpegPktHdrParse (bp, hdr);

12 if (hdr->id == 32) {

13 len = hdr->len;

14 BitStreamFilterAdd(filter, offset, len);

15 start += UpdateIfUnderflow (bp,bs,file,SIZE/2);

16 offset = start + MpegPktHdrFind(bp);

17 }

18 }

Figure 3.8: Filtering an MPEG Systems stream by copying the first video stream

to another BitStream for processing.

40

Lines 2 through 8 allocate and initialize various structures needed by this pro-

gram. The variable offset stores the byte offset of a packet in the bit stream,

relative to the start of the stream. Line 9 advances the cursor to the beginning of

the first packet header and updates offset. The main loop (lines 10-18) parses

the packet header (line 11) and, if the packet belongs to the first video stream, its

offset and length are added to filter (line 14). EndOfBitstream is a macro that

checks the position of the bit stream cursor against the length of the data buffer.

Once the BitStreamFilter is constructed, it can be saved to disk, or used as

a parameter to functions such as BitStreamFileFilter, which reads the subset

of a file specified by the filter, or BitstreamDumpUsingFilter, which copies the

data subset specified by a filter from one BitStream to another.

This example illustrates how Dali can be used to demultiplex interleaved data.

The technique is easily extended to other formats, such as QuickTime, AVI,

MPEG-2 and MPEG-4. Although this mechanism uses data copies, the cost of

copying is offset by the performance gain when processing the filtered data. An-

other option (one we initially tried) is to integrate the filter mechanism directly

into the bit-at-a-time parsing functions provided by the BitParser. Although this

design avoids unnecessary data copies, we found the overhead of checking if the

cursor was at a filter segment boundary on each function call too high to make

this design practical. A better option would be to provide hardware support for

scatter/gather vectors [14].

These three examples illustrate Dali programs. Interested readers may con-

sult the Dali web site at http://www.cs.cornell.edu/dali for more details and

examples.

41

3.2 Design Principles of Dali

One of the contributions of this research is that it provides a case study in the de-

sign of high-performance software libraries for processing multimedia data. Many

of the design decisions we made differ from other libraries because Dali emphasizes

performance over ease of use. This goal put us at an unusual point in the design

space. In this section, we highlight the principles that emerged during the design

of Dali.

Three themes emerge from these principles. The first theme is predictable

performance. We designed Dali to allow programmers to easily predict the perfor-

mance of their code. We believe it is important that programmers have a simple,

well-defined cost model for the functions provided by a library. Predictable per-

formance is important for writing high-performance code because it simplifies the

analysis required when making design decisions between alternative implementa-

tions of a program. It is also important for writing programs that are well-behaved

in real-time environments.

The cost of functions in existing libraries can be difficult to predict. This un-

predictability has several sources. Often, functions will perform hidden, expensive

operations, such as I/O or memory allocation. How much these operations cost,

and when they occur, is hidden behind the abstractions provided by the API.

For instance, many video-decoding libraries provide a function to ”get the next

frame.” But the execution time for this function can be vastly different when de-

coding MPEG video, depending on the frame type (I, P, or B). Another source of

unpredictability is that the execution time of a function can be very non-linear,

depending on the value of the parameters. For example, scaling an image down by

42

a factor of 2 can be significantly faster than scaling an image down by a factor of

1.9 if interpolation is used.

The second, closely related theme in the design of Dali is resource control.

We wanted to give programmers better control over the machine’s resources (at

the language level, not the OS level). Predictable performance gives programmers

control over their use of the CPU, but memory and I/O are very important re-

sources in multimedia applications. Dali provides several mechanisms for giving

the programmer tight control over memory allocation and I/O execution, and for

reducing or eliminating unnecessary memory allocation.

The final theme is replaceability and extensibility. We wanted Dali to be usable

in many applications, not just the ones we envision. For example, Dali would

be useful in building a multimedia database. Since most database management

systems perform their own I/O, we separated the Dali I/O functions from the

computation functions. Throughout the design, we tried to make Dali extensible

and pieces of it replaceable.

In summary, the design problem we faced was providing an API that was

coarse enough to provide a useful level of abstraction to the programmer, yet fine

enough to give the programmer tight control over their code. The following sections

describe the mechanisms we use to solve this problem in detail.

3.2.1 I/O Separation

Few Dali primitives perform I/O. The only ones that do are special I/O primitives

that load/store BitStream data. All other Dali primitives use BitStream as their

data source.

43

This separation has three advantages. First, it makes the I/O method used

transparent to Dali primitives. Other libraries use integrated processing and I/O.

A library that integrates file I/O with its processing is difficult to use in a network

environment, since the I/O behavior of networks is different from that of files.

Second, the separation of I/O also allows control of when I/O is performed. We

can build a multi-threaded implementation of Dali that will allow us to use a double

buffering scheme to read and process data concurrently. Third, by isolating the

I/O calls, the performance of the remaining functions becomes more predictable.

3.2.2 Sharing of Memory

Dali provides two mechanisms for sharing memory between abstractions. These

mechanisms are called clipping and casting. In clipping, one object ”borrows”

memory from another object of the same type. An example usage of clipping

can be seen in Figure 3.3. Clipping functions are cheap (they only allocate an

image header structure), and are provided for all Dali image and audio data types.

Clipping is useful for avoiding unnecessary copying or processing of data. For

example, if we only want to decode part of the gray-scale image in an MPEG

I-frame, we could create a clipped SCImage that contains a subset of DCT blocks

from the decoded I-frame and then perform the IDCT on that clipped image. The

advantage of this strategy is that it avoids performing the IDCT on encoded data

that we will not use.

While clipping is the sharing of memory between objects of the same type,

casting refers to the sharing of memory between objects of different types. Casting

avoids unnecessary copying of data. Casting is often used in I/O, since all I/O

must be done through a BitStream. To avoid copying data, a section of the

44

BitStream buffer can be shared with another object. For instance, we can read a

PGM image file into BitStream, parse the headers, and cast the remaining data

into a ByteImage.

3.2.3 Explicit Memory Allocation

In Dali, the programmer allocates and frees all non-trivial memory resources using

new and free primitives (e.g., ByteImageNew and ByteImageFree). Functions never

allocate temporary memory - if such memory is required to complete an operation

(scratch space, for example), the programmer must allocate it and pass it to the

routine as a parameter. Explicit memory allocation allows the programmer to

reduce or eliminate paging, and make the performance of the application more

predictable.

To illustrate these points, consider the ByteCopy function, which copies from

one ByteImage to another. One potential problem is that the two ByteImages

might overlap (e.g., if they share memory, via clipping). One way to implement

ByteCopy is shown on the left side of Figure 3.9. This implementation allocates a

temporary buffer, copies the source into the temporary buffer, copies the temporary

buffers into the destination, and frees the temporary buffer. In contrast, the Dali

ByteCopy operation assumes that the source and destination do not overlap, so it

simply copies the source into the destination. The programmer must determine if

the source and destination overlap, and if so allocate a temporary ByteImage and

two ByteCopy calls (Figure 3.9, right).

A third possible implementation is to only allocate a temporary buffer if the

source and destination overlap. This implementation has the drawback that its

45

ByteCopy(src, dest) { ByteCopy(src, dest) {

temp = malloc (); memcpy src to dest;

memcpy src to temp; }

memcpy temp to dest;

free (temp); temp = ByteNew ();

} ByteCopy(src, temp);

ByteCopy(temp, dest);

ByteCopy(src, dest); ByteFree (temp);

Figure 3.9: Possible implementations of ByteCopy.

performance would be difficult to predict. If the source and destination overlap,

the function could take 2-3 times longer to complete than if they do not.

3.2.4 Specialization

Many Dali primitives implement special cases of a more general operation. The

special cases can be combined to achieve the same functionality of the general op-

eration, and have a simple, fast implementation whose performance is predictable.

ByteCopy is one such primitive - only the special case of non-overlapping images

is implemented.

Another example is image scaling (shrinking or expanding the image). In-

stead of providing one primitive that scales an image by an arbitrary factor, Dali

provides five primitives to shrink an image (Shrink4x4, Shrink2x2, Shrink2x1,

Shrink1x2, and ShrinkBilinear) and five others to expand an image. Each prim-

itive is highly optimized and performs a specific task. For example, Shrink2x2 is a

specialized function that shrinks the image by a factor of 2 in each dimension. It is

implemented by repeatedly adding 4 pixel values together and shifting the result,

an extremely fast operation. Similar implementations are provided for Shrink4x4,

46

Shrink2x1, and Shrink1x2. In contrast, the function ShrinkBilinear shrinks an

image by a factor between 0.5 and 2 using bilinear interpolation. Although arbi-

trary scaling can be achieved by composing these primitives, splitting them into

specialized operations makes the performance predictable, exposes the cost more

clearly to the programmer, and allows us to produce very fast implementations.

3.2.5 Generalization

The drawback to specialization is that it can lead to an explosion in the number of

functions in the API. Sometimes, however, we can combine several primitives with-

out sacrificing performance, which significantly reduces the number of primitives

in the API. We call this principle generalization.

A good example of generalization is found in the primitives that process Audio-

Buffers. AudioBuffers store mono or stereo audio data. Stereo samples from the

left and right channels are interleaved in memory (Figure 3.10).

L0 R0 L1 R1 L2 R2 L3 R3

x0 x1 x2 x3 x4 x5 x6 x7 x8

....

Figure 3.10: AudioBuffer.

Suppose you were implementing an operation that raises the volume on one

channel (i.e., a balance control). One possible design is to provide one primitive

that processes the left channel and another that processes the right channel (Figure

3.11(a)). However, we can combine the two without sacrificing performance by

modifying the initialization of the looping variable (1 for right, 0 for left). This

implementation is shown in Figure 3.11(b).

47

(a)

process_left(x)

for (i = 0; i < n; i+= 2) {

process x[i]

}

process_right(x)

for (i = 1; i < n; i+= 2) {

process x[i]

}

(b)

process(x, offset)

for (i = offset; i < n; i+= 2) {

process x[i]

}

Figure 3.11: Generalization of an AudioBuffer primitives.

In general, if specialization gives better performance, it should be used. Oth-

erwise, generalization should be used to reduce the number of functions in the

API.

3.2.6 Exposing Structures

Most libraries try to hide details of encoding algorithms from the programmer,

providing a simple, high-level API. In contrast, Dali exposes the structure of com-

pressed data in two ways.

First, Dali exposes intermediate structures in the decoding process. For exam-

ple, instead of decoding an MPEG frame directly into RGB format, Dali breaks the

process into three steps: bit stream decoding (including Huffman decoding and de-

quantization), frame reconstruction (motion compensation and IDCT), and color

48

space conversion. For example, the MpegPicParseP function parses a P frame from

a BitStream and writes the results into three SCImages and one VectorImage. A

second primitive reconstructs pixel data from SCImage and VectorImage data,

and a third converts between color spaces. The important point is that Dali ex-

poses the intermediate data structures, which allows the programmer to exploit

optimizations that are normally impossible. For example, to decode gray scale

data, one simply skips the frame reconstruction step on the U/V planes. Further-

more, compressed domain processing techniques can be applied on the SCImage or

VectorImage structures.

Dali also exposes the structure of the underlying bit stream. As described

in the introduction and Section 3.1.2, Dali provides operations to find structural

elements in compressed bit streams. This feature allows programmers to exploit

knowledge about the underlying bit stream structure for better performance. For

example, a program that searches for an event in an MPEG video stream might

cull the data set by examining only the I-frames initially, since they are easily

(and quickly) parsed, and compressed domain techniques can be applied. This

optimization can give several orders of magnitude improvement in performance

in some circumstances, but since other libraries hide the structure of the MPEG

bit stream from the programmer, this optimization cannot be used. In Dali, this

optimization is trivial to exploit. The programmer can use the MpegPicHdrFind

function to find a picture header, MpegPicHdrParse to decode it, and, if the type

field in the decoded header indicates the picture that follows is an I-frame, call

MpegIPicParse to decode the picture.

49

3.3 Implementation

Dali is currently implemented as a C run time library with approximately 50K lines

of code. A Tcl binding is also available. It has been ported to Win95/NT, SunOS

4, Solaris, and Linux. The Dali library is divided into several packages according

to their functionality and data type support. Supported data type includes PNM,

GIF, JPEG, WAV, MPEG-1 and AVI. The code can be downloaded from http:

//www.cs.cornell.edu/dali/

One might wonder whether the layered architecture of Dali has any negative

impact on performance. To answer this question, we compared three programs

written in Dali to similar programs widely used in the research community. These

benchmarks include the Berkeley MPEG decoder, the IJG JPEG encoder, and a

use of the NETPBM toolkit. Our results show that Dali performs as well as these

programs or better.

3.3.1 NETPBM

To compare Dali with NETPBM, we used the following task: convert a 1600x1200

GIF image to a 320x240 gray scale image. On a Sparc 20 workstation, the command

giftopnm input.gif | ppmtopgm | pnmscale 0.2 > /dev/null takes 2.6 sec-

onds. The Dali program that performs the same function takes 1.5 seconds and is

about 110 lines long.

The Dali program performs better because the implementation of NETPBM is

not optimized and overhead is incurred when data is piped from one program to

another. These shortcomings could be addressed by writing a single C program

that combines code from giftopnm.c, ppmtopgm.c, and pnmscale.c, but this is a

50

time-consuming task. In contrast, the Dali program to perform the task can be

easily optimized. For example, since Dali exposes the color table of a GIF image

(as an ImageMap), we can perform the RGB-to-gray conversion on the color table

instead of the RGB image. This modification improved the performance by 13%

and required changing four lines of code.

3.3.2 MPEG decoder

We compared Dali with the Berkeley MPEG decoder (mpeg play). Our full func-

tion MPEG to PPM converter required about 150 lines of Dali code. On a Sparc

20 workstation, the Dali program ran about 10% faster than the mpeg play on a

large variety of streams. We believe that Dali’s specialized primitives for decoding

I, P, and B frames contributes to the performance gain.

3.3.3 JPEG encoding

Dali JPEG encoding performance is comparable to the Independent JPEG Group’s

encoder (cjpeg). The IJG encoder will compress a 1600x1200 PPM image in 1.0

seconds of CPU time on a Pentium II 266 MHz WinNT workstation with 64MB of

memory. The straightforward version of the equivalent Dali encoder, which reads

the whole PPM image into three ByteImages, converts them into the YUV color

space, performs the DCT, and encodes the result, takes about 20% longer. We

believe that the data copies associated with de-multiplexing the RGB data in the

I/O buffers into the ByteImages is responsible for the lesser performance of our

version.

Not satisfied with this result, we rewrote the Dali encoder to divide the ByteImages

into horizontal strips using Dali’s clipping mechanism. We then performed color-

51

space conversion, DCT, and bitstream encoding on each strip separately. This

design gives superior caching performance. The improved version of JPEG en-

coder also takes 1.0 seconds to encode the image.

These experiments show that the design principles that we adopted for Dali

do not hurt performance. Rather, they allow flexible, optimized programs to be

constructed with minimal effort.

3.4 Conclusion

The multimedia research community has traditionally built software from scratch

in C or by using high-level libraries. We believe that neither approach is sat-

isfactory. We therefore developed Dali, a software library for high-performance

multimedia processing that provides lower level abstractions than most libraries,

but much higher level than C. Dali is designed for high-performance, and is based

on several design principles such as explicit resource management, resource sharing

and thin operations.

We described Dali through examples and presented the design principles that

make Dali a high performance library. These design principles can be used as

a case study in designing high performance media processing library. We think

that Dali is a useful tool to the research community because it allows efficient,

processing-intensive multimedia software to be built with relatively small effort,

and provides a vehicle through which research groups building this software can

exchange their results.

52

Dali is being used as the processing engine inside our Degas media gateway. We

discuss the design and architecture of Degas, along with the programming model

in the next chapter.

Chapter 4

Extending Media Gateways with

Customized Transformations

In this chapter, we present the design of a programmable, application-level media

gateway called Degas.1 Degas allows users to “inject” user-defined programs, called

deglets, into a gateway to perform customized processing on RTP-based video and

audio streams.

Figure 4.1 shows an example of a Degas system. Multiple Degas gateways are

distributed across the Internet. The existence of these gateways is transparent

to the various senders that multicast video streams onto their respective sessions.

Such transparency allows current MBone applications such as vic [50] and ivs [77]

to be used with Degas without modification.

A user who is interested in receiving videos from a session through Degas runs

a Degas client. The client program (called degasclient) is a modified version of

vic. It is extended with the abilities to communicate with the gateways and has

a user interface to select and use a deglet. The client first requests a service from

1Named after French impressionist Edgar Degas.

53

54

Degas Gateways

Senders
Receiver

Figure 4.1: Degas system.

Degas. Degas selects a gateway to service the request. The client then uploads

its deglet into this gateway. The gateway joins the session requested by the client.

Input video streams are processed according to the specification in the deglet, and

the resulting video stream is sent to a new multicast session, which the client is

listening to. A reliable control channel is also established between the client and

the gateway. This control channel allows the user to interact with the deglet and

the gateway, for example to reconfigure the deglet, send user interface events (say,

mouse clicks), or migrate the deglet to another gateway. The gateway can use

the same control channel to send error messages back to the client for debugging.

Figure 4.2 shows an example output stream produced by a Degas gateway.

This chapter describes how we extend a media gateway with user customized

operations. We first explore the possible design space in Section 4.1. We then

explain how a deglet can be written in Section 4.2. The optimization and execution

of deglets are described in Section 4.3. We provide performance data in Section

4.4. Finally, we conclude in Section 4.5.

55

Figure 4.2: Output (left) and input streams (middle/right) of a Degas system.

4.1 Design Goals

We designed Degas to be flexible and easy to use. These two goals differentiate our

system from other related research projects. We compare the existing systems with

our work using these two metrics: flexibility, which measures the degree of freedom

that end users have in customizing the system, and simplicity, which measures how

easily the customization can be performed.

Simplicity

Flexibility

QoS Filters

Degas

MeGa

Figure 4.3: Design space of programmable media gateways.

Figure 4.3 shows the design space of current programmable media gateway sys-

tems. As described in Section 2.4.2, the work on QoS Filters [85] by Yeadon et

al. provides a fixed set of media transformations for the users to choose from.

56

Although users can configure these filters via a graphical user interface (simple),

they cannot extend the system with their own filters (inflexible). MeGa and Ac-

tive Services [5] allow users to upload new transformations in the form of a service

agent (flexible). However, users have to write the service agent in OTcl using Mash

objects (complex). Furthermore, users are limited to transformations implemented

inside Mash. Adding a new type of transformation, for instance, to change bright-

ness, would require implementing the transformation in C++, recompiling Mash,

and reinstalling the gateway. The installation of gateways is usually restricted to

administrators and not available to the end users.

Our goals are to build a media gateway that has a high degree of extensibility

and that is simple to extend. These two desired properties are highly dependent

on the programming model of deglets. A deglet must be easily specified, yet

powerful enough to perform useful operations on media streams. We discuss our

programming model for a deglet in the next section.

4.2 Programming Model

The main consideration in selecting a programming model for deglets is simplicity

while retaining flexibility and power. We want to make deglets easy to write, so

that a user can specify one in a few minutes. This consideration favors the use

of scripting languages. For Degas, we chose Tcl [55] for compatibility with the

toolkits we used to build Degas, namely, Dali and Mash. We also chose to use

a declarative model for programming deglets. A declarative model lets the user

specifies what to do, but not how to do it. The user should not be concerned

with how the deglet is going to be executed. The optimal way to perform the

57

video operations depends heavily on the properties of the input streams, such as

the encoding formats and sizes. By decoupling the properties of the source media

streams from the deglet specification, the same specification can be used on sources

with different properties. Furthermore, the users do not have to worry about cases

where sources change the properties of their streams in the middle of a session.

The underlying execution engine determines the best way to perform a task.

We expose a single abstraction that users can manipulate: a frame from a video

stream. Users can specify a sequence of operations on a frame. Our API hides the

encoder and decoder operations, as well as the underlying representations from the

users. This allows a deglet to be written in relatively few lines of code, yet allows

flexible customization to be performed on the operations inside the gateway. Using

this model, we believe we have achieved our goals of simplicity and flexibility.

We made some tradeoffs in the design. To achieve the goal of simplicity, we

restricted the computations that can be performed on the video streams. We

chose to provide extensibility by allowing users to compose a program using a

fixed set of APIs. Users cannot define their own frame processing operations,

nor can they extend the gateway with new video formats. However, our design

allows Degas to be updated with new operations easily. The frame operations

are currently implemented as dynamically loadable Tcl packages. We can include

mechanisms to download new packages that implement new or updated versions

of frame operations from a trusted authority. This would greatly simplify the

deployment and maintenance of the gateways.

58

4.2.1 Examples

To better understand how a deglet is written, we present two examples in Figure

4.4 and Figure 4.5. We explain these two examples in detail in the rest of this

section.

Figure 4.4 shows a simple deglet that transcodes a video stream from host

seminar.cs.cornell.edu into a M-JPEG video stream of quality 40. A deglet

is a text file that starts with a list of key-value pairs. The key sources spec-

ifies a list of sources we are interested in (line 1) using multiple host addresses

or a regular expression such as *.cornell.edu. In this case, we are only inter-

ested in one source. num of sources indicates the maximum number of sources.

input video session indicates the multicast address and port number of the

input video session. output format specifies the format of the processed video

stream. In this example, we want to receive a 176 × 144 M-JPEG stream with

quality 40.

The remainder of the deglet specifies the operation to perform when an event

happens. Line 5 to 7 define a callback function to be called whenever a frame

is received. The function body is defined using Tcl. We use a predefined API

frame copy to copy the input frame inf into the output frame outf. frame copy

performs the necessary scaling and transcoding operations to convert the output

frames into the format specified above. The argument src id identifies the source

of the input stream. Since we have only one source in this case, it is not used. We

show how src id is used in our next example.

Our second example reads video streams from multiple sources, and outputs a

”split” video stream that consists of video from the current speaker and previous

speaker. Video streams from other sources are suppressed. For simplicity, we

59

1 sources {seminar.cs.cornell.edu}

2 num_of_sources {1}

3 input_video_session {224.4.4.4/4444}

4 output_format {JPEG 40 QCIF}

5 recv_frame_callback { src_id inf outf } {

6 frame_copy $inf $outf

7 }

Figure 4.4: A simple deglet.

assume that the number of sources is always larger than two. We explain this

deglet below.

Line 1 - 5 specify the input and output parameters. The function init callback

in line 6 to 12 is called at the beginning of the deglet execution. Here, we split the

output frame into the left half and the right half, denoted by variables lf and rf

respectively. We also initialize the variables curr and prev that denote the source

id of the current speaker and the previous speaker. The function on line 13 to 18

(talk start callback) is called whenever a talk spurt is detected. The parameter

src id indicates the source of the talk spurt. In this function, we simply update

the variables curr and prev. Note that variables set in one callback is accessible

from other callbacks. In line 19 to 25, recv frame callback checks if the input

frame is from source curr or prev. If it is from either of these, we copy the frame

into the left half or the right half of the output frame. Finally, line 26 to 29 define

the function to call when the deglet exits. We free the memory allocated for lf

and rf here.

We summarize the lists of available keys, callbacks and frame operations in

Table 4.1, 4.2, 4.3 respectively. These lists are by no means complete, as we plan

60

1 sources {*}

2 num_of_sources {*}

3 input_video_session {224.4.4.4/4444}

4 input_audio_session {224.4.4.5/4444}

5 output_format {H261}

6 init_callback { outf } {

7 set w2 [expr [frame_get_width $outf]/2]

8 set lf [frame_clip $outf 0 0 $w2 [frame_get_height $outf]]

9 set rf [frame_clip $outf 0 $w2 $w2 [frame_get_height $outf]]

10 set prev 0

11 set curr -1

12 }

13 talk_start_callback {src_id} {

14 if {$src_id != $curr} {

15 set prev $curr

16 set curr $src_id

17 }

18 }

19 recv_frame_callback { src_id inf outf } {

20 if {$src_id == $curr} {

21 frame_copy $inf $rf

22 } else if {$src_id == $prev} {

23 frame_copy $inf $lf

24 }

25 }

26 destroy_callback {} {

27 frame_free lf

28 frame_free rf

29 }

Figure 4.5: A more elaborate deglet example.

61

Table 4.1: A summary of keys in deglet specification.

sources The sources this deglet is interested in.

num of sources Maximum number of sources this deglet can process.

input video session, input audio session Specify the input video and au-

dio session respectively.

output format, output size, output fps, output bps Specify the format,

dimension, frame rate and bit rate of the output stream.

preconditions The conditions that a gateway must satisfy before it can serve

this deglet.

description Textual description of what this deglet does.

controlling clients Clients that are allowed to control and modify this deglet.

62

Table 4.2: A summary of available callbacks in deglet specification.

init callback(outf) Executed when the deglet starts. outf is the output

frame.

destroy callback Executed when the deglet stops.

new source callback(src id, inf) Executed when a new source is detected.

src id is the the source identifier. inf is the input frame.

del source callback(src id) Executed when a source identified by src id

leaves the session.

recv frame callback(src id, inf, outf) Executed when a frame from source

src id is received. inf is the received frame. outf is the output frame.

mouse click callback(x, y) Executed when a mouse click is detected at co-

ordinate (x,y) on the output window of the client.

input resize callback(src id, inf) Executed when input dimension of source

src id is changed.

talk start callback(src id) Executed when a talk spurt is detected from

source src id.

talk stop callback(src id) Executed when the beginning of a silence period

is detected from source src id.

63

Table 4.3: A summary of available frame operations in deglet specification.

frame new w h Return a new frame of width w and height h.

frame copy src dest Copy the content of frame src into frame dest, scale if

necessary.

frame clip f x y w h Create a ”virtual” frame from frame f, at offset (x, y)

and with dimension w × h.

frame free f Deallocate frame f.

frame get width f Return the width of frame f.

frame get height f Return the height of frame f.

frame set color f r g b Set the color of the frame f to (r, g, b).

to add more operations to Degas. In particular, it would be interesting to add

vision-related routines such as face detection and object tracking, thus allowing

the possibility of encoding different regions in a frame with different qualities.

4.2.2 Preconditions for Choosing Gateways

Besides the key-values pairs described above, a deglet may contain a set of pre-

conditions. The purpose of preconditions is to allow users to restrict their deglets

to be run on gateways that meet certain criteria. The user might impose some re-

strictions to improve quality of the output, or for security concerns. For example,

a user might want to run his deglet on a low-load, high-capacity gateway in the

same domain. Possible preconditions are as follows:

64

• address test: a regular expression that matches the host addresses or IP

addresses of the gateways eligible to run the deglet.

• latency test: the maximum latency between the client and the gateway.

This can prevent an “out-of-the-way” gateway to be assigned to the client.

• load test: the maximum acceptable CPU load on a gateway.

An example of using preconditions is shown in Figure 4.6. This test restricts

gateways to those in domain *.cornell.edu, or gateways that are within 500 ms

away. Many other tests are possible. For instance, the user might want to select

gateways with sufficient memory, or gateways with special hardware for media

processing. If the user has to pay for services on a gateway, gateways below a

certain price can be selected.

preconditions {

[address_test *cornell.edu] ||

[latency_test] < 500

}

Figure 4.6: An example of using preconditions.

When a client requests a service, the preconditions are sent along with the

request. A gateway that receives a request first performs the test, and offers its

service only if the test succeeds. This process will be discussed in greater detail in

the next chapter.

As illustrated in the examples above, a deglet is a high-level, declarative style

specification. They are short and simple to write. One of our more complicated

deglets creates a ”task bar” of incoming video streams, and lets users maximizes

65

or minimizes a video stream by clicking on the task bar. This code is less than

100 lines. Our examples also illustrate how a user can construct the output stream

using ”frame” as an abstraction, without knowing what the input formats are.

The Degas execution engine is responsible for translating these specifications into

optimized low-level code. We describe the execution of deglets next.

4.3 Execution of Deglets

The Degas execution engine is responsible for parsing the deglet specification and

for efficient execution of the callbacks. The execution engine must recognize op-

timizations and translate the high-level API into appropriate low-level code. For

instance, in Figure 4.4, if the input video stream is also in M-JPEG format, then

we can employ compressed domain processing techniques to scale and copy the

input frames to output frames efficiently. Furthermore, if the input video streams

are already in the format requested by the user, the execution engine should simply

copy the streams without decoding it.

We use Dali as our target for the translator. The execution engine is just a

Tcl interpreter extended with Dali commands. Since Dali is designed with high-

performance in mind, it gives programmers (or in our case, the translator) the

flexibility of writing highly optimized programs. Also, Dali gives the programmers

full control over memory usage and I/O. These features make Dali ideal for forming

the basis of our execution engine.

The optimizations and executions are carried out as follows. We define a set

of optimized versions of Dali subroutines for each high-level APIs. These high-

level APIs are then bound, at run-time, to one of the subroutines based on input

66

and output formats, dimensions and color decimation. Each call to a high-level

function will cause the optimized version of the function to be executed. The

high-level functions are re-bound whenever a change in input video properties is

detected. Figure 4.7 shows the execution engine of Degas.

Vision−

Processing
Based

Pixel
Domain
Processing

Degas

API
Frame

Dynamic Binding

frame_set
frame_copy
frame_new

DCT
Domain
Processing

...Dali
Packages

:

Mash EncoderMash Decoder

Execution Engine

Figure 4.7: Execution engine in Degas.

Figure 4.8 shows some examples of the optimized operations and how binding

is done. Line 1 to 11 are the definition of the frame copy operation. It checks if a

low-level method for copying frames with the same properties as the input source

and destination already exists. If not, it generates the required method (line 8)

and evaluates it (line 10). Line 12 to 24 show part of the method for binding the

high-level API to low-level Dali procedures. In particular, line 18 to 21 compare

the dimension of the source and destination. If the source is twice the size of the

destination, we bind frame copy to the low-level Dali procedures that shrink an

image by half for the particular type and color decimation. Line 25 to 32 are

examples of low-level Dali procedures for shrinking an image by half. The first

procedure (line 25 to 29) shrinks color images while the second one (line 30 to 32)

operates on gray scale images.

67

1 proc frame_copy {src dest} {

2 set sw [frame_get_width $src]

3 set dw [frame_get_width $dest]

4 set sh [frame_get_height $src]

5 set dh [frame_get_height $dest]

6 set type [frame_get_type $dest]

7 if {[info commands frame_copy($type,$sw,$dw,$sh,$dh] == ""} {

8 bind_frame_copy_proc $src $dest $type $sw $dw $sh $dh

9 }

10 eval frame_copy($type,$sw,$dw,$sh,$dh) $src $dest

11 }

12 proc bind_frame_copy_proc {src dest type sw dw sh dh} {

13 :

14 set ssh [frame_get_hsubsample $src]

15 set ssv [frame_get_vsubsample $src]

16 set dsh [frame_get_hsubsample $dest]

17 set dsv [frame_get_vsubsample $dest]

18 if {($sw >> 1) == $dw && ($sh >> 1) & == $dh} {

19 proc frame_copy($type,$sw,$dw,$sh,$dh) { src dest } \

20 [info body \

21 shrink_2x2($type,[expr $ssh/$dsh],[expr $ssv/dsv])]

22 } elseif {

23 :

24 }

25 proc shrink_2x2(yuv,1,2) {src dest} {

26 byte_shrink_2x2 [frame_get_y $src] [frame_get_y $dest]

27 byte_shrink_2x1 [frame_get_u $src] [frame_get_u $dest]

28 byte_shrink_2x1 [frame_get_v $src] [frame_get_v $dest]

29 }

30 proc shrink_2x2(gray,1,2) {src dest} {

31 byte_shrink_2x2 [frame_get_y $src] [frame_get_y $dest]

32 }

Figure 4.8: Optimized Dali code and dynamic bindings of frame copy.

68

4.4 Performance

To better understand the overhead introduced by a Degas gateway, we ran some

experiments to measure the delay caused by various components in Degas. In

our experiments, we ran a Degas gateway on a Pentium II 266 MHz PC. Video

streams were sent using vic from hosts connected to the gateway using an 100 MB

Ethernet. Receivers, running either vic or degasclient, were located on the same

LAN. We ran NTP [52] on all hosts to get a reasonably accurate measurement of

end-to-end delay.

To verify that our execution model is efficient, we ran an experiment to measure

the overhead introduced by our optimizer and the savings caused by the optimiza-

tion. In the first experiment, the sender sent a 352 × 288 H261 video stream at 8

frames per second. The client requested the gateway to transcode the stream into

a Motion JPEG video stream of size 176 × 144. We measured the time spent in

the Dali interpreter for each frame received.

In the first scenario, we let the optimizer decide how to scale the frames. The

optimizer detects that the output size is half the input size, and calls a specialized

subroutine that shrinks the frame by half. The average time spent in scaling a

frame was 2.84 ms. In the second scenario, we bypassed the optimizer, and called

the optimized scaling routing ourselves. The average time spent in scaling is 2.31

ms. This experiment confirmed our belief that the overhead in optimizing is small.

Finally, we turned the optimizer off, and used a general purpose scaling routine to

scale the frames. The average time spent in scaling a frame increased significantly

to 43.8 ms.

We also measured the total delay introduced by the decoder, encoder and the

Dali interpreter when running different deglets. While these measurements were

69

performed on specific deglets only, they give some intuition about the latency

introduced by Degas’s processing pipeline. A summary of our measurements is

listed in Table 4.4. The table shows that the delay introduced by the decode-

process-encode pipeline is reasonably small.

Table 4.4: Latencies introduced by the decode-process-encode pipeline and the

CPU load incurred for different deglets.

Operation Input 1 Input 2 Output CPU Time

1 Shrinking H261 352×288 10 fps H261 176×144 10 fps 14% 9.76 ms

2 Shrinking JPEG 320×240 6 fps JPEG 160×120 6 fps 18% 27.5 ms

3 Pic-in-pic H261 352×288 10 fps H261 176×144 10 fps H261 176×144 20 fps 40% 20.4 ms

4 Pic-in-pic H261 352×288 10 fps H261 176×144 10 fps JPEG 176×144 20 fps 60% 32.4 ms

Our next two experiments measured the total end-to-end delay between the

source and the receiver. This is a measurement between the time a frame is

captured at the source and the time the frame is rendered at the receiver. In the

first experiment, we collected the data using degasclient. The gateway was running

a deglet that shrinks the size of an incoming Motion JPEG video stream by half at

6 frames per second (deglet 2 in Table 4.4). For comparison, we collected the same

data using vic, which received the original stream. The end-to-end delays for both

experiments are shown in Figure 4.9. The difference between the two measurements

is small, and is about the same as the total time spent in the decode-process-

encode pipeline (27.5 ms). We also measured the inter-frame rendering delays in

the same experiments. Figure 4.10(a) and Figure 4.10(b) show that Degas gateway

introduces some jitter, but are within a tolerable range (within 20 ms).

All our performance measurements shown above are done with a single client.

When the gateway serves multiple clients, the jitter increases significantly to as

much as 200 ms. There is also a difference between the QoS received by the clients.

70

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 9001000

La
te

nc
y

(m
s)

Frame Number

degasclient vic

Figure 4.9: End-to-end delay between the sender and the receiver.

The reason is that we have not implemented any resource management in Degas

yet.

4.5 Conclusion

This chapter describes the programming model of a flexible and extensible media

gateway system, called Degas, which allows users to request customized processing

on media streams. We designed Degas to be efficient and simple to use, while

being compatible with existing popular MBone tools.

Degas is implemented using C++ and the Mash toolkit. A preliminary proto-

type is available from our web site at http://www.cs.cornell.edu/degas.

This prototype programmable media gateway serves as a platform where many

reseach issues can be explored. One of the issues that we have been studying is how

to locate an appropiate gateway for serving a client’s request. We have developed

a decentralized, adaptive protocol to solve this problem. We describe this protocol

in the next chapter.

71

0

50

100

150

200

0 100 200 300 400 500 600 700 800 9001000

D
el

ay
 (

m
s)

Frame Number
(a)

0

50

100

150

200

0 100 200 300 400 500 600 700 800 9001000

D
el

ay
 (

m
s)

Frame Number
(b)

Figure 4.10: (a) Inter-frame rendering delay using Degas. (b) Inter-frame rendering

delay without Degas.

Chapter 5

An Adaptive Protocol for

Locating Degas Gateways

In this chapter, we present a solution to choosing an appropriate gateway for

running a deglet requested by some user. Running the deglet on a gateway that is

strategically located in the network could use network bandwidth more efficiently.

For example, if the output video stream requires lower bandwidth than the input

stream, then the deglet should be run on a gateway that is close to the sender.

On the other hand, if the deglet outputs a higher bandwidth stream, the deglet

should be run close to the receiver.

The problem of determining the best gateway is an optimization problem. The

dynamic nature of the network prevents us from solving the problem using a cen-

tralized, combinatoric algorithm. Senders and receivers may join and leave video

sessions, new gateways may be added and deleted, and the underlying network

behavior changes continuously. Therefore, we opted for a distributed, adaptive

algorithm in Degas.

72

73

We designed an application-level protocol, called the Adaptive Gateway Lo-

cation Protocol (AGLP), for choosing a gateway that minimizes bandwidth con-

sumption. Although we designed AGLP to work with Degas, we believe that it

can be modified to suit other applications as well.

AGLP is a soft-state protocol based on the announce-listen model widely used

in MBone tools. The simplicity of the model allows us to build a scalable, robust

protocol that is resilient to crashes and message loss. AGLP adapts to chang-

ing network conditions, as well as the birth and death of gateways, senders, and

receivers, by migrating deglets (also called services) between gateways. An addi-

tional requirement on our protocol is that it assigns a new service to a gateway

rapidly.

We designed our protocol to be compatible with existing MBone tools. No

changes are required at the senders. This means that traditional MBone tools

such as vic [50] and ivs [77] can be used as the video sending application. This

makes it possible to deploy our protocol without affecting the existing MBone

community.

Our simulations support that AGLP achieves its goals of rapid assignment

and adaptive placement, while keeping the load on the network low. The rate

of migrations is small, and a good gateway for such a migration can be selected

within a minute.

The rest of this chapter is organized as follows. We describe the AGLP protocol

in Section 5.1. We analyze the performance in Section 5.2. We briefly address some

implementation issues in Section 5.3 and conclude this chapter in Section 5.4.

74

5.1 Protocol Description

Before we describe our protocol, we present the symbols and terminology used in

our description:

• g is a well-known multicast channel used for exchanging control messages

among the gateways, and between the gateways and client. Every gateway

and client listens to g.

• s is a multicast session.

• C is the client that requests some processing to be done on video streams.

• G0, G1, .., Gm are gateways available for running a deglet requested by C.

One of the gateways will be selected to service C. Without loss of generality,

we let G0 be the current gateway servicing C.

• S0, S1, .., Sk are video senders participating in video session s. These senders

can be normal MBone video sources. They need not be aware of the existence

of the gateways or C.

AGLP uses propagation time as a parameter to decide whether a gateway is

suitable to service a client. It does not take geographical locations, topology or

number of hops into consideration. Previous study [7] shows that there is little

correlation between these parameters. We use propagation time as this directly

corresponds to end-to-end delay, a parameter we care about.

For simplicity, we assume that each client can submit only one deglet at a

time, and each deglet can read from only one session. We also assume that all

participants run the network time protocol NTP [52], which we rely on to measure

75

the propagation delay of a packet. However, in the absence of NTP, we can use

other schemes to estimate propagation delay, such as SPAND [68], or simply ping.

Our protocol consists of two phases (see Figure 5.1). The first phase, Quick-

Start Phase, chooses a gateway G0 that is close to C, without worrying about

optimizing bandwidth consumption. The second phase, the Adapting Phase, min-

imizes the bandwidth consumption by migrating services to a better gateway. We

describe these two phases in Section 5.1.1 and Section 5.1.2 respectively.

Evaluation Selection Handoff

Adapting Phase

Quick−Start Phase

Figure 5.1: Different phases in AGLP.

5.1.1 Quick-Start Phase

There are two reasons why the Quick-Start Phase is necessary. First, we want to

reduce the start-up latency experienced by the user. Secondly, we do not have

any knowledge about the behavior of the deglet requested by the client, nor do

we know anything about the session (such as the identity of the senders, and

bandwidth of incoming video streams). The gateway we select at the Quick-Start

Phase serves as a temporary gateway. This gateway collects information so that

further optimization can be done. The Quick-Start Phase works as follows (see

Figure 5.2).

The client C who wants to request some processing to be done on the gateway

first multicast a request message onto the common multicast channel g. The request

message contains the preamble section of a deglet. Specifically, it contains the

76

ClientGateway Gateway Gateway Gateway

Upload

REQUEST

OFFER

SERVE

timeout

SERVED
BY

G1 G2 C G4G0

Deglet

Figure 5.2: The Quick-Start Phase of AGLP.

77

address of the input session s and a set of preconditions. Each gateway evaluates

the preconditions to see if it is eligible to service the client C.

A gateway Gi that is available and eligible to serve C replies with an offer(C)

message. However, instead of replying immediately, we employ multicast damping

(Section 2.3.2) to reduce the number of offer messages received by C. Each Gi

waits for time Toffer,i before multicasting the offer onto g. Moreover, a gateway will

suppress its offer(C) message if it has received an offer(C) message from another

gateway while waiting.

Client C listens to g and accepts the first offer that it receives. Without loss of

generality, let the first offer that C receives be from gateway G0. C subsequently

creates a TCP connection with G0 at port p, where p is a port number embedded

in the offer(C) message. Subsequent offers from other gateways will be ignored by

C. C sends the deglet, along with the multicast address of the output session s′,

to G0 using the TCP connection.

After G0 has received all the necessary information, G0 joins the session s,

processes incoming video streams, and multicasts the output onto channel s′. C

listens to channel s′ to receive the post-processed video it requested. At this point,

we enter a state where gateway G0 is serving client C. G0 and C periodically

announce this relationship onto g. Every Tserve seconds, G0 announces a serve(C)

message onto g. Similarly, C sends a served-by(G0) message to G0 every Tserved−by

seconds.

The receipt of serve(C) message by C indicates that the Quick-Start Phase has

completed successfully. If C does not receive any serve(C) message in a period of

length Trequest, C will restart the whole process by sending another request message.

Otherwise, the Quick-Start is successful, and AGLP proceeds to the next phase.

78

5.1.2 Adapting Phase

During the Adapting Phase, a service for C may be migrated from the current

gateway G0, to another more suitable gateway, as more information about the

session is discovered and changes in the environment are detected. The Adapting

Phase consists of three stages: evaluation, selection and replacement (see Figure

5.3 for an example). In the evaluation stage, each gateway evaluates itself against

G0 to check if it is more suitable than G0 for serving C. Once a gateway determine

that it can serve G0 better, it will notify G0. G0 periodically runs a selection

process, to select the best alternate gateway. Once a replacement Gr is chosen, G0

hands-off the service for C to Gr. We explain these three stages in greater detail

in the following subsections.

Stage 1: Evaluation

We first introduce a few variables that corresponds to the criteria used to perform

evaluation:

• bi: the bandwidth of video stream from sender Si

• bC : the bandwidth of the output video stream

• di,j: the distance between gateway Gi and sender Sj

• di,C: the distance between gateway Gi and client C

We now describe how this information is collected and how the evaluation is per-

formed.

After joining session s, G0 starts to collect information about the current ses-

sion. This information includes the identity of the senders in the session, band-

widths of the input streams and the output stream, and the distance (or latency)

79

ClientGateway Gateway Gateway Gateway

SERVE

REPLACE

OK

G3C

x = −14

HANDOFF

Upload
Script

HANDOFF

select G3

G1 G2 G0

x = 50 x = 100

Figure 5.3: The Adapting Phase of AGLP.

80

d0,j from each sender Sj. This information can be learned from RTCP [67] packets.

The identity of the senders can be found by looking at the source of a RTCP sender

report. The sending bandwidth can be derived from the byte count included in a

sender report. Finally, the distance can be calculated by comparing current time

to the NTP timestamp embedded in a sender report. The information about the

current session and the preamble section of the deglet are included in the serve

messages and multicast onto group g.

Each gateway Gi, that is available and eligible to serve C, maintains a table

of distances to itself from the sources, Dself = di,0..di,k. This table is maintained

as soft-states, and is refreshed by periodically joining session s, and listening for

RTCP packets. A distance can be calculated by subtracting the NTP timestamp

of a sender report from the arrival time.

Each gateway, upon receiving a serve(C, s) message from G0, starts the evalua-

tion test to compare the suitability of serving client C. The test produces a score,

xi. This score is calculated as follows. First, let Ui be

Ui =
k∑

j=0

(bj × di,j) + bC × di,C

Intuitively, Ui corresponds to the bandwidth consumption. We calculate xi as

xi = U0 − Ui

A score xi > 0 indicates that Gi is better than G0 for serving C.

Figure 5.4 shows an example on how the score is calculated. Suppose both S1

and S2 are sending streams at 32Kbps and our gateway is transforming these two

input streams into a single stream at 48Kbps. The value of U1 is (32× 2× 0.03)+

(48× 0.15) = 9.12Kb and the value of U0 is (32× 2× 0.1) + (48× 0.05) = 8.8Kb.

Hence the score x1 is −0.32.

81

50ms

100ms

30ms 30ms

150ms

100ms

S1 S2 S1 S2

C C

G0

G1

Figure 5.4: Example of score calculation.

Each gateway with a score larger than ε will try to replace the current gateway.

We choose a threshold ε instead of 0 for two reasons. First, a score between

0 and ε indicates that the gateway is only slightly better than G0. The small

improvement that we gain is not worthy of the overhead caused by the replacement

process. Second, by ignoring gateways that are only slightly better, we can avoid

unnecessary oscillation caused by small changes in network conditions. We discuss

how a replacement is selected by G0 next.

Stage 2: Gateway Replacement

After evaluation, each gateway with a score larger than ε will notify the current

gateway, and wait for a reply. This process is similar to the Quick-Start Phase.

Again, we use multicast damping for scalability reasons. The gateways start a timer

and wait for Treplace,i seconds. When the timer expires, gateway Gi multicasts a

replace(C, xi) message onto g. If Gi receives another replace(C,xj) message from

another gateway Gj and xj > xi, then Gi suppresses its own replace message.

82

The current gateway keep tracks of the gateway with the lowest score so far,

which we call the replacement gateway Gr. Tadapt seconds after G0 receives the

first replace message, gateway G0 unicasts a message handoff(C,p) to Gr. G0 then

establishes a TCP connection to Gr at port p through which G0 sends the deglet

to Gr. Gr subsequently starts the service, and multicasts a handoff-ok(C,G0,s
′′)

announcement, where s′′ is a new multicast address where the processed media

stream is going to be sent.

Stage 3: Service Handoff

Gr joins session s, starts processing the input video streams, and sends the out-

put onto session s′′. Gr also begins the periodical announcement of serve(C, s′′)

messages.

At this stage, both Gr and G0 are providing service for C. Upon receiving both

handoff-ok(C,G0,s
′′) and serve(C,s′′), C knows that another more suitable gateway

has been found and this new gateway is ready to serve C. C can now switch from

group s′ to group s′′. C stops announcing served-by(C,G0) and starts announcing

served-by(C,Gr). G0 stops processing video streams from s eventually after no

served-by(C,G0) is received for Tbye seconds.

We provide a summary list of messages involved in this protocol in Table 5.1.

5.2 Analysis and Simulation

In this section we evaluate our protocol. In particular, we want to confirm that

our protocol satisfies two desirable properties:

• robustness:

83

Table 5.1: A summary of message types in AGLP

request(d) A request for service by a client. d is the preamble section of

the deglet.

offer(C, p) A response to a request message from client C. Indicates that

the sending gateway is available to serve C. C should contact this

gateway at port p for details.

serve(C, S, D, d) The sending gateway is currently running a service for

C. S is the list of session members, D is a vector containing distances

from each member in S as well as the distance from C. d is the

preamble section of a deglet.

served-by(G) Response to the gateway serving C to notify that C is still

listening to output from G.

replace(C, x) Notify others that the sending gateway is more suitable for

serving C. x indicates how much better the sending gateway is.

handoff(C, p) Message from the current gateway to G′ to indicate that G′

has been chosen to replace the current gateway for serving C. G′

should listen to port p for service specification.

handoff-ok(C, G, s′) Announcement from a new gateway G′ that it is

ready to replace G to serve C. s′ is the new multicast address where

the output from the service will be sent.

84

– a gateway eventually runs the service requested by a client;

– all services are eventually terminated when no client is listening;

– the service is eventually moved to the optimal gateway.

• scalability:

– as the number of gateways increases, the number of states maintained

and the number of messages exchanged does not increase significantly.

5.2.1 Robustness

We achieve robustness by maintaining only soft-states which are periodically for-

gotten and need to be refreshed. Soft-state protocols are used in many light-weight

protocols in MBone applications such as SDP [32] and RTCP [67]. Failure recovery

is automatic in soft-state protocols, since the failure of a gateway or network link

will cause refresh messages to be lost and states to be forgotten. Refresh mes-

sages in AGLP include serve and served-by—we illustrate how they support failure

recovery by describing two scenarios below.

• Suppose that the gateway that is serving C crashes. The periodic serve

message will cease and C will eventually forget that some gateway is servicing

it. C will start requesting service again by entering the Quick-Start phase.

• Suppose that the message handoff-ok is lost on its way to C. C will not switch

to the new gateway. Even though the new gateway has started serving C, it

will not receive a served-by message from C. The new gateway will eventually

timeout after Tbye seconds, and end its service.

85

We simulated AGLP in networks with up to 50% loss rate. Although this

caused somewhat longer start-up/handoff latencies and redundant requests, the

protocol still worked correctly.

5.2.2 Scalability — Memory Requirements

We envision that the number of gateways running in the network |G| will be large

(up to thousands), and the number of clients requesting service to be in the same

range. The number of senders per client, |S|, however, is expected to be small

(say, less than 10). Similarly, because the processing requested by client could

be computation intensive, we expect the maximum number of clients that can be

served by each gateway, |C|, to be small as well.

Each gateway maintains the following soft-states:

• A list of clients it is currently serving;

• The gateway with the best score so far for each client it serves;

• A table that records the distance to all senders for each client it serves (and

available to serve, for evaluation purposes);

• A table that records the bandwidth of all input streams and output streams

for each client it serves (and available to serve, for evaluation purposes).

On the client side, the only soft-states that are maintained are the sessions to listen

to, and the gateway currently serving the client.

The size of the state maintained in the gateway is thus O(|S| × |C|), and is

O(1) for the client. Since a gateway does not keep state for every other gateway,

and both |S| and |C| are expected to be small, our protocol is scalable in terms of

memory size.

86

5.2.3 Scalability — Networking

Multicast damping is a widely used technique to improve scalability in one-to-

many protocols (e.g., it is used in IGMP [23] and SRM [24]). As described in

Section 5.1, we use multicast damping for the request-offer and serve-replace mes-

sage exchanges to avoid implosion of messages. The effectiveness of this technique,

however, depends heavily on the timeout values chosen, Toffer and Treplace. Even

though there is extensive work done in analyzing the effect of timers in multicast

damping (see, for example, [24] and [53]), there are some unique requirements for

our timers. Toffer should be proportional to the distance from the client, so that

the first reply received by the client comes from the gateway that is closest to the

client. For Treplace, the timer value should be inversely proportional to the score of

a gateway. We discuss these two parameters in this section.

In order to evaluate the performance of AGLP under these parameters, we

simulate our protocol using the ns2 network simulator and run it on a 500-node

topology generated using the gt-itm toolkit [13]. We place gateways and the client

at random locations in the generated network.

In AGLP, we set the value of Toffer to k × d, where k is a constant and d

is the propagation delay between gateway and client, measured using an NTP

timestamp embedded in the request message. A small value of k results in a lower

start-up latency, but a larger number of duplicates. The number of duplicates also

depends on the distribution of gateways in the network. If gateways are sparsely

distributed, then the number of duplicates increases.

We tried different values of k in our simulations. In Figure 5.5 we show the

average number of duplicate offer messages received by the client for different values

of k in cases where the number of gateways G is either 50, 100, or 200. A value

87

of k ≥ 2 causes the number of duplicates to stay below 3 even as the number

of gateways increases up to 200. Figure 5.6 shows the latencies that the client

experiences.

0

2

4

6

8

10

0 1 2 3 4 5

N
um

be
r

of
 O

ffe
rs

k

G=50
G=100
G=200

Figure 5.5: Duplicate offer messages for different values of k and G (the number

of gateways).

We conclude that k = 2 works well in reducing the number of duplicates while

keeping the start-up latency within a reasonable time. In Figures 5.7 and 5.8 we

show the behavior of multicast damping as a function of the number of gateways in

more detail, along with a 95% confidence interval for each measurement. Our ex-

periments indicate that AGLP scales well for k = 2. In the remaining experiments

we are using this value for k.

We set the value of Treplace to k′/x, where x is the score. In Figure 5.9 we

show the number of duplicate replace responses as a function of k′. We see that

for k′ > 200 the number of duplicates is under 10, which we consider acceptable.

88

0

2

4

6

8

10

0 1 2 3 4 5

S
ta

rt
-u

p
La

te
nc

y
(s

)

k

G=50
G=100
G=200

Figure 5.6: The delay between sending a request and receiving the first offer.

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500

D
up

lic
at

e
O

ffe
rs

Number of Gateways

Figure 5.7: Duplicate offer messages for k = 2.

89

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500

La
te

nc
y

Number of Gateways

Figure 5.8: The delay between sending a request and receiving the first offer for

k = 2.

Figure 5.10 shows that the average number of migrations before a service reaches

the optimal gateway does not increase with k′. We were surprised by this result.

After all, as k′ goes up, it becomes less likely that the client will receive a response

from the optimal gateway within Tadapt. However, after further consideration we

are able to explain this.

After the current gateway gets the first replace response, it waits Tadapt seconds

before selecting a gateway to hand-off to. That is, after sending the last serve

message, it waits a total of RTT1+k′/x1+Tadapt seconds, where RTT1 is the round-

trip time to the first responding gateway, and x1 is the score at that gateway. In

order for the optimal gateway’s response to be received in time, we need to have

the following condition (see Figure 5.11):

RTToptimal +
k′

xoptimal
< RTT1 +

k′

x1
+ Tadapt

90

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000

N
um

be
r

of
 R

ep
la

ce
s

k’

G=50
G=100
G=200

Figure 5.9: Duplicate replace messages.

0

0.5

1

1.5

2

0 200 400 600 800 1000

N
um

be
r

of
 M

ig
ra

tio
ns

k’

G=50
G=100
G=200

Figure 5.10: Number of migrations needed to migrate to an optimal gateway.

91

We can rewrite this as:

RTToptimal − RTT1 − Tadapt

(1
x1
− 1

xoptimal
)

< k′

Thus, increasing k′ does not decrease the chances that the optimal gateway

responds in time, as reflected in Figure 5.10.

k’/x 1
k’/x optimal

Tadapt

pick
best
gateway

SERVE

G0
Gateway GatewayGateway

G1 G optimal

REPLACE

Figure 5.11: Exchanges of serve and replace messages.

In the following experiments, we use k′ = 1000 as a conservative choice. For this

value of k′, we find that there are no more than 10 replace messages received (see

Figure 5.12) even if we run a gateway on all 500 nodes in the network. There were

at most two migrations in all runs of our simulations (see Figure 5.13 for averages

and 95% confidence intervals). In Figure 5.14 we show how this translates into

time. On average, all services were migrated to the optimal gateway within 40

seconds, which we find acceptable.

92

0

5

10

15

20

0 100 200 300 400 500

N
um

be
r

of
 R

ep
la

ce
s

Number of Gateways

Figure 5.12: Duplicate replace messages received by a gateway for k′ = 1000.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500

N
um

be
r

of
 M

ig
ra

tio
ns

Number of Gateways

Figure 5.13: Number of migrations to migrate to an optimal gateway for k′ = 1000.

93

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500

T
im

e
of

 L
as

t M
ig

ra
tio

ns

Number of Gateways

Figure 5.14: Time to migrate to an optimal gateway for k′ = 1000.

5.3 Implementation

We have implemented AGLP in our Degas system using Mash. We made several

improvements to the basic AGLP design to make AGLP more usable in practice.

• When a gateway starts running a deglet, there is an overhead in loading the

Dali libraries. As a result, we found that the measurements of propagation

time are not accurate for a short time after a deglet starts running. To

counter this behavior, we do not send out session information along with

serve messages for a brief period of time (30 seconds in our implementation).

• The propagation time between two hosts can vary greatly in practice, de-

pending on load in the network. This causes our scores to fluctuate and

results in unnecessary migrations. We modified AGLP to take a weighted

average of the previous scores to smooth out the scores. Additionally, we

94

migrate a deglet only when scores are larger than threshold ε consecutively

for a certain number of times (4 times in our implementation).

5.4 Conclusion

In this chapter, we presented an adaptive control protocol called AGLP for running

services on media processing gateways in the Internet. Our protocol supports the

following functionality:

• allowing the client to request a service, and submit a deglet to a gateway;

• deciding which gateway should be used to perform a service;

• migrating services to more suitable gateways (adaptability).

AGLP builds on the announce-listen paradigm and uses soft-states to maintain

information. As a result, our protocol is both scalable and robust. AGLP is

compatible with existing MBone tools, so that no changes are required at the

senders. Furthermore, the existence of gateways and clients is transparent to the

senders.

Although AGLP is designed for the Degas system, the protocol can be modified

for any application that needs to decide where to run certain services inside the

network. With the increasing interest in the research community to move compu-

tation, traditionally performed at the edge of the network, into the network itself,

we believe applications for AGLP will increase in the future.

Chapter 6

Distributing Deglets Over

Multiple Degas Gateways

In Chapter 5, we discussed how a deglet can be assigned to a single gateway for

execution. In this chapter, we describe a mechanism to partition a deglet into

multiple sub-deglets for execution on multiple gateways.

Amir et al. introduced the notion of composable services for media gateways in

[5]. By flowing through multiple gateways, multiple operations can be performed

on a media stream before it reaches the receivers. This in effect creates a data-flow

pipeline on the streams.

To clarify this approach, consider an operation that transcodes a H.261 video

into MJPEG format and scales the frame size by half. This can be divided into

two operations, one that transcodes the video, and another that resizes the video

streams (see Figure 6.1(a)). These two operations form a linear pipeline. More

complicated pipelines, in the form of a tree, are also possible. Consider an operation

that creates a ”quad-splitter” view by scaling four video streams, and merging

them into one output stream. Such an operation would be useful, for example, for

95

96

previewing what is being shown on multiple multicast channels. This operation

can be performed on five gateways – four to scale the video streams, and one to

combine the outputs from the first four gateways into a ”quad-splitter” view (see

Figure 6.1(b)).

Gateway

(a)

Sender/Receiver

(b)

Resize

Resize

Resize

Transcode

Resize

Resize

Merge

Figure 6.1: Examples of composable services.

There are several advantages in using multiple gateways to service a media

stream, as opposed to using a single gateway. First, computation load can be better

distributed among the gateways. This can lead to higher throughput and better

load balancing. Second, by transforming media streams at appropriate locations,

we can reduce bandwidth consumption. For instance, in the examples described

above, the scaling operations are performed near the sources, and merging and

transcoding are performed near the receivers, thus minimizing the amount of data

97

that is sent into the ”middle” of the network. Finally, it is possible for output

from a sub-deglet to be shared by different users requesting different services. For

example, if the transcoding service in Figure 6.1(a) shared a common source with

the ”quad-splitter” service, then the output from the scaling gateway could be

shared by both services.

In this chapter, we present our preliminary work on composable services in

media gateways. The rest of the chapter is organized as follows. Section 6.1

details our service model. Section 6.2 describes some constraints of our model.

Section 6.3 presents the core problem that we wish to solve. Section 6.4 describes

an algorithm for decomposing deglet into sub-deglets. Section 6.5 describes how

we extend AGLP to locate gateways and assign sub-deglets to them. We present

performance results of our protocol in Sections 6.6 and 6.7, and conclude in Section

6.8.

6.1 Service Model

There are two possible approaches to extend our service model in Degas with

service composition. The user can explicitly request multiple services from the

gateways. The user sets up the pipeline by linking the input sessions and output

sessions of these services. The second approach is to hide service composition from

the user. This is the approach we adopted. We let the gateway servicing the

client decide how to decompose a deglet and how to distribute them across other

gateways. We chose this approach to simplify the usage of the system and to avoid

non-optimal configuration that can occur if a user did not set up the services and

pipelines properly.

98

Under the new service model, the gateway servicing the client, called the main

gateway, decomposes the deglet on the media streams into one main deglet and

multiple sub-deglets. The sub-deglets are submitted to other gateways for execu-

tion. A gateway that runs sub-deglets is called a helper gateway. The main deglet

remains on the main gateway and will be responsible for collecting input from the

video sources and/or helper gateways, and performing final transformations on the

output stream before sending the result to the client.

6.2 Assumptions and Constraints

We assume that a helper gateway can subscribe to any subset of sources in a

multicast session, since a sub-deglet may only need certain streams as input. This

is not possible currently as a receiver must receive data from all sources in the

session the receiver subscribes to. However, this can be done in the future using

Source-Specific Multicast [35] and Internet Group Management Protocol (IGMP)

version 3 [12], which currently is an IETF draft.

There is a major disadvantage in sending a stream through multiple gateways

– the latency between the sources and the receiver may increase because of the de-

coding and encoding operations that need to be performed at each gateway along

a pipeline. We have shown in Section 4.4 that passing a stream through a gateway

can introduce up to 30 ms of latency due to the decoding and re-encoding process.

However, there is an important class of non-interactive applications where latency

is less important, such as watching pre-recorded video streams. Furthermore, users

can specify maximum latencies that they can tolerate in the system using precon-

ditions (Section 4.2.2). We can constraint the system to split off a sub-deglet only

99

if the total resulting end-to-end latency is smaller than the one specified by the

user.

Another constraint of our system is that the service performed should not

change its operations frequently. Otherwise, the involved deglet needs to be re-

decomposed and re-assigned. An example of frequently changing deglets is one that

filters input streams depending on who is the current speaker of a teleconferencing

session (see Figure 4.5).

6.3 Research Goals

A research issue that arises is how the main gateway should decompose and dis-

tribute the deglet. There are several concerns. One concern is the resource require-

ments of the deglet. A sub-deglet should be assigned to a gateway that matches

its resource requirements. For instance, we should assign a memory intensive sub-

deglet to a gateway with sufficient memory. A main gateway with high CPU load

should spawn off as many sub-deglets as possible.

A second concern is maximizing sharing between different services. A gateway

can take sub-deglets that are already running on other gateways into consideration

and try to share those services if they share the same sources and operations. A

third concern is network bandwidth consumption. We should distribute the deglet

so that the traffic between the gateways is as small as possible. A fourth concern is

propagation delays. We should make sure that a gateway that is assigned to run a

sub-deglet is not “out of the way”. It should be located relatively close to the path

between the sender and the receiver. Making decisions based on multiple concerns

100

that may conflict with each other is a complex problem. In this dissertation, we

restrict ourselves to minimizing network bandwidth consumption.

We can express our goal as a graph problem: given a graph G representing

gateways and links in the network, and a tree T representing the deglets, how to

map the nodes in T onto nodes in G such that consumed network bandwidth is

minimized? A polynomial solution to the problem can be found, but is not practical

since the network environment is highly dynamic and a topology of all gateways

in the network cannot be obtained easily. Therefore we opt for a decentralized

approach, and decouple the problem into two independent subproblems: deglet

decomposition and helper gateway assignment.

Hence, our research goals are to build a system that (1), automatically splits a

high-level service requested by a user into sub-deglets, and (2), assign sub-deglets

to gateways with the goal of reducing bandwidth consumption.

6.4 Computation Decomposition

In this section, we describe the algorithm we use to split a deglet into sub-deglets.

As we decouple the problem of decomposing deglets and gateway assignments, we

do not take network conditions or gateway topology into consideration. Instead,

our algorithm tries to be optimistic and assume that a gateway is always available

between a source and the main gateway to run the sub-deglet. Our algorithm uses

the estimated size of compressed videos as a parameter to decide how to split a

deglet, since we do not know what the actual size of the video will be at the time

the decomposition occurs. We conservatively use the compression ratio of 50:1 for

H.261 videos and 10:1 for MJPEG videos as estimates.

101

Our algorithm limits the number of gateways a stream can flow through to

two. This greatly simplifies the decomposition algorithm. However, a stream may

still flow through more than two gateways on its way to the receiver. A helper

gateway can optionally act as a main gateway, and decompose the sub-deglet that

is assigned to it using the same algorithm. These sub-sub-deglets can then be

spawned off by the helper gateway to other gateways for execution.

6.4.1 Computation Model

We model the operations on a video stream as a tree. Leaf nodes in the tree corre-

spond to the source of the video, and non-leaf nodes correspond to the operations

performed on the video frames. An edge in the tree carries video frames and is

associated with a weight value. The weight value corresponds to the data size of

the video streams.

Formally, define a computation tree as a tree G = (VG, EG) with a set of leaf

nodes Vleaf ⊂ VG and a root node Vroot ∈ VG. Define a weight function on the

edges as w : EG → R+, and a cut (S, T) as a partition of VG into two subsets S

and T , such that Vleaf ⊆ S and Vroot ∈ T . We denote root(G) as the root of tree

G and cost(E) as the sum of the weights of all edges in a set E. An edge (u, v) is

said to cross a cut (S, T) if u ∈ S and v ∈ T . The set of all edges that cross a cut

(S, T) is called a cut-set for (S, T). A deglet is split into sub-deglets by removing

edges that cross a cut. Each set of non-leaf nodes that still connect to each other

after removing a cut-set corresponds to a sub-deglet. The sub-deglet that contains

Vroot will be the main deglet. See Figure 6.2 for an example.

As we assume that the sub-deglets will be assigned to different gateways for

execution, the weight of the edges across the cut corresponds to the amount of

102

S2S1

w

vu Scale 0.5

GG

Scale 0.25

21

Scale 0.5Scale 0.25

S2S1

w

u v

640x480x0.1

320x240x0.1

320x240x0.1

640x480x0.1320x240x0.1

80x60x0.1

320x240x0.1

80x60x0.1
5fps 5fps

5fps 5fps

Overlay

Overlay

5fps 5fps

5fps5fps

Figure 6.2: Example of a computation tree. Edges (u, w) and (v, w) divides the

computation tree into three smaller computation trees, which correspond to the

sub-deglets.

103

data to be sent across the network. Hence to find a cut that minimize network

bandwidth consumption, we need to find a cut-set with minimum total weight,

that is, we want to minimize
∑

w(u, v), u ∈ S and v ∈ T . Figure 6.3 shows our

algorithm for finding the minimum cut-set (or mincut).

MinCut(G)

1. Ecut ← {}
2. for each subtree Gi of root(G) do

3. if Gi is a single node then

4. Ecut ← Ecut ∪ {(root(Gi), root(G))}
5. else

6. E ′
cut ← MinCut(Gi)

7. if cost(E ′
cut) > w(root(Gi), root(G))

8. Ecut ← Ecut ∪ {(root(Gi), root(G))}
9. else

10. Ecut ← Ecut ∪ E ′
cut

11. return Ecut

Figure 6.3: Algorithm for finding the minimum cut-set in a computation tree.

Our algorithm runs in time linear to the size of the computation tree, since

it visits each edge exactly once. We provide an outline of the correctness proof

below.

The proof is by induction on the depth of the computation tree. Consider the

base case when the depth of the tree is one, that is, the tree consists of only the

root node and the leaf nodes. In this case the algorithm will return Ecut = EG.

104

This is the minimum cut-set since there is only one possible cut. Now assume that

the algorithm works for trees with depth < k. Consider a tree of depth k. All

subtrees must be of depth < k and therefore MinCut will find the minimum cut-

set of any subtree correctly. Now, consider the edge e that connects the root to a

subtree Gi. A mincut of G must include either e or the mincut of Gi. Furthermore,

if the weight of e is less than the cost of Gi’s mincut, then e must be a member

of the mincut of G. Otherwise we can replace the mincut of Gi with e and get a

cut-set with lower cost and achieve a contradiction. Therefore, line 6 - 10 correctly

find the edges that belongs to the mincut of G. By induction, we conclude that

MinCut correctly finds the minimum cut-set of computation tree G.

We note that our algorithm works because we model the deglet as a tree, and is

a special case of the general max flow/min cut problem. This is sufficient for most

of the deglets we are interested in. A more generalized model of deglet, such as

directed acyclic graph, would require a more complex algorithm. Such generalized

computation models are required when sharing of sub-deglets is allowed among

services, and are a subject of future research.

Once the main gateway uses MinCut to create a series of sub-deglets, it will

need to locate other gateways to run these sub-deglets. We will describe our

protocol for locating gateways in the next section.

6.5 Extension to AGLP

In this section, we describe how a main gateway locates and assigns sub-deglets

to helper gateways. Our protocol extends AGLP. We call the extended version

AGLP++. The process of locating helper gateways is very similar to the process

105

of locating the main gateway by the client. However, instead of doing it in two

stages (quick-start and adapt), we can do it in one since startup latency is no

longer a concern.

We add a new phase, Splitting Phase, between the Quick-Start Phase and the

Adapting Phase. The goal of the Splitting Phase is to split the deglet, and to

request other gateways to help with the execution of the sub-deglets.

It is important that we defer the Adapting Phase until all the helper gateways

are identified and initialized. The optimal locations to execute the main deglet

and sub-deglets depend on each other, hence performing both the Adapting Phase

and the Splitting Phase simultaneously will cause unnecessary migrations. The

Adapting Phase is delayed by suppressing session information in the serve message.

Without the session information, other gateways cannot evaluate and try to replace

the main gateway.

The current gateway, G0, initiates the Splitting Phase by multicasting a help-

request message to all other gateways. The help-request message contains informa-

tion about the sub-deglet to be executed on a gateway, including the input session

and identities of the sources to the sub-deglet, the bandwidth of each input stream,

and the distance of the main gateway from each source. This information is the

same as the information sent with serve messages, except that only the subset of

sources for the sub-deglet are sent.

A gateway that is available to help G0, upon receiving a help-request message,

evaluates itself to see if it is better than the main gateway for running the sub-

deglet. The evaluation is carried out by calculating a score in a similar manner as

the evaluation in the Adapting Phase.

106

Without loss of generality, let S0..Sk′ be the subset of sources to the sub-deglet,

and define b′0 be the output bandwidth of the sub-deglet. We define U ′
i as

U ′
i =

k′∑

j=0

(bj × di,j) + b′0 × di,0

and score x′
i of a gateway Gi as

x′
i = U ′

0 − U ′
i

where di,i = 0. If a gateway gets a score larger than a threshold, the gateway

waits for a certain amount of time before multicasting a help-offer message back to

gateway G0. A help-offer message is similar to a replace message. G0 waits for a

certain amount of time before picking a gateway with the highest score to run the

sub-deglet. Let Gh be the one selected. G0 then multicasts a help-accepted message,

and hands off the sub-deglet to Gh. Gh subscribes to the sources, processes the

video, and starts multicasting the processed video to G0.

While G0 is trying to find helper gateways to run the sub-deglets, G0 continues

to process the input streams using the un-decomposed deglet. Once G0 knows that

Gh is ready, G0 reconfigures its deglet by removing the subtree that corresponds

to the sub-deglet assigned to Gh. G0 subscribes to the output session of Gh. Gh

and G0 periodically multicast a helping and helped-by message to each other to

maintain the soft state relationship that Gh is helping G0.

Just like the original AGLP, we need to be able to adapt to changing network

conditions. Gh includes in its helping message the information about the session,

and other gateways can evaluate themselves to see if they can replace Gh to help

G0. Gh can then hand off the sub-deglet to a better helper, and G0 will switch its

input from Gh to the new helper.

107

G3

Upload

G0

x’ = 50

HELPED−BY G3

Sub−deglet

HELPING G0

HELP−ACCEPTED

HELP−OFFER

x’ = 150

Gateway

G1

Gateway

G2

Gateway Gateway

HELP−REQUEST

x’ = −40

select G3

Figure 6.4: The Splitting Phase of AGLP++.

108

If no gateway replies to the help-request message from G0, this implies that the

best place to run the sub-deglet is on G0, and the sub-deglet is not spawned. After

a sub-deglet is assigned to a helper gateway, migrations might cause a sub-deglet

and the main deglet to run on a same gateway again. These deglets can then be

merged, by grafting the sub-deglet’s computation tree back into the main deglet’s

computation tree.

The main gateway will initiate the Adapting Phase once it believes that it has

reached a “stable” state, that is, it does not receive any more help-offer messages

in Tstable seconds.

6.6 Performance of AGLP++

One particular issue that concerns us is how these changes to AGLP will affect the

performance, in particular, how it will affect the number of migrations and time to

reach the set of optimal gateways. We implemented the extension to AGLP in the

ns2 simulator [6] and ran simulations on randomly generated 500-node networks

using the gt-itm random topology generator [13]. We used a deglet similar to

Figure 6.1(b) with three sources. The deglet is decomposed into three sub-deglets

that resize the input streams, and a main deglet that merges the stream. In this

section, we present our simulation results.

Figure 6.5 shows the number of migrations of the main gateway for AGLP and

AGLP++. The result shows that the average number of migrations for AGLP++

is about the same as the original AGLP.

However, as we deferred the Adapting Phase until we assigned sub-deglets

to helper gateways, the time it takes to migrate the main deglet to the optimal

109

0

0.5

1

1.5

2

0 100 200 300 400 500

N
um

be
r

of
 M

ig
ra

tio
ns

Number of Gateways

AGLP++
AGLP

Figure 6.5: Number of migrations for different number of gateways.

0

20

40

60

80

100

0 100 200 300 400 500

T
im

e
of

 L
as

t M
ig

ra
tio

n
(s

ec
on

ds
)

Number of Gateways

AGLP++
AGLP

Figure 6.6: Time of last migration versus number of gateways.

110

gateway increases significantly. Figure 6.6 shows the time to reach the optimal

gateway, plotted against the number of gateways. We used Tstable = 30 seconds in

this simulation. The time to reach the optimal gateway increases by about 50 - 60

seconds.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50

N
um

be
r

of
 M

ig
ra

tio
ns

Tstable (seconds)

Figure 6.7: Average number of migrations for different values of Tstable, for 20

gateways, with 95% confidence interval.

Tstable is a parameter that we can tune to trade the number of migrations and

the time to reach stability. A small Tstable causes optimal gateways to be found

faster, but will cause the number of migrations to increase. The effect of this

parameter is shown in Figure 6.7 and Figure 6.8.

An interesting observation from Figure 6.7 is that the average number of mi-

grations drops significantly when Tstable is larger than 30 seconds. For values of

Tstable less than 30 seconds, the Adaptive Phase starts before all sub-deglets are

111

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

T
im

e
of

 L
as

t M
ig

ra
tio

n
(s

ec
on

ds
)

Tstable (seconds)

Figure 6.8: Average time of last migration for different values of Tstable, for 20

gateways, with 95% confidence interval.

assigned to helper gateways, and may unnecessarily migrate the main deglet to a

gateway near the sources.

Figure 6.9 shows the average number of times helper gateways start execut-

ing sub-deglets. As the main gateway in our simulation requested help for three

sub-deglets, a value of 3 indicates that all sub-deglets are assigned to their respec-

tive optimal helper gateway the first time. A value larger than 3 implies some

migrations of sub-deglets. This graph shows that the number of migrations per

sub-deglet is not much larger than 1, indicating that we are able to locate good

helper gateways to run the sub-deglets with one migration most of the time.

Figure 6.10 shows the average number of help-offer messages that the main

gateway receives per number of sub-deglets. Just as the replace messages during

the Adapting Phase, we use multicast damping to avoid feedback implosion. The

112

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500

N
um

be
r

of
 S

ub
-c

om
pu

ta
tio

ns

Number of Gateways

Figure 6.9: Average number of sub-deglet executions, with 95% confidence interval.

0

5

10

15

20

0 100 200 300 400 500

N
um

be
r

of
 H

el
p

O
ffe

rs
/S

ub
-c

om
pu

ta
tio

n

Number of Gateways

Figure 6.10: Average number of help messages, with 95% confidence interval.

113

graph shows that this number increases very slowly as the number of gateways goes

from 50 to 500. A caveat here is that this graph shows the number of messages per

sub-deglet. The number of help-offer messages increases linearly with the number

of sub-deglets, and hence does not scale well. One solution to this problem is to

request help for the sub-deglets sequentially, instead of simultaneously. This can

spread the help-offer messages over a period of time and avoid implosion. However,

this can increase the time to reach optimal configuration significantly.

In summary, our simulation results show that AGLP can be extended to locate

media gateways for running composable services, while still maintaining a low

number of migrations, and a low number of messages at the expense of more time

to reach optimal gateways.

6.7 Effects on QoS

In this section, we present experimental results of our system to study the effects of

distributed media transformation on the quality of video received by the receiver.

The deglet that we used in these experiments is shown in Figure 6.11. This deglet

merges two high quality MJPEG streams into a low-quality, 5 fps H.261 stream.

We first ran the deglet on a single gateway. To simulate the situation of an

overloaded gateway, we chose a slow machine, a Sun SPARCstation-5 with 32 MB

of RAM (called host A) as our gateway. In the second experiment, we split the

same deglet into three operations u, v and w, and distributed the operations onto

three gateways. We used two Sun Ultra-80 computing servers as helper gateways

to run operations u and v, and ran operation w on host A as the main gateway.

114

S2S1

w

u v

MJPG 6fps 160x120MJPG 15fps 160x120

H261 5fps 88x72 H261 5fps 176x144

H261 5fps 176x144

Figure 6.11: A picture-in-picture deglet used in experiments.

0

1

2

3

4

5

6

0 50 100 150 200

F
ra

m
e

R
at

e
(f

ra
m

e/
se

co
nd

)

Time (s)

AGLP
AGLP++

Figure 6.12: Frame rate versus time.

115

Figure 6.12 shows the number of frames per second received by the client for

both experiments. In the case where a single gateway is used, the receiver only

receives about 3.3 fps. The CPU load on host A is about 85%. By assigning some

computing intensive sub-deglets to helper gateways, we are able to lower the CPU

load on host A to about 25%, and improve the frame-rate close to 5 fps. Figure

6.13 shows the corresponding data rate received in the experiments.

0

5

10

15

20

25

30

35

40

0 50 100 150 200

D
at

a
R

at
e

(K
bp

s)

Time (s)

AGLP
AGLP++

Figure 6.13: Data rate versus time.

We measured the period between rendering of frames for both experiments.

The results are shown in Figure 6.14 and Figure 6.15. Our result shows that we

are able to reduce jitter significantly by using multiple gateways.

A surprising result from these experiments is our measurement of end-to-end

delays. We expected the end-to-end delay for running a deglet on multiple gateways

to be larger than running it on a single gateway. However, we found that the end-

to-end delay is about 600ms higher when we ran the deglet on a single gateway.

116

This is because the frame processing time on host A is much larger than the time

spent in the extra decoding/encoding process when the stream is passing through

a second gateway.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000

In
te

r-
fr

am
e

D
el

ay
 (

s)

Frame

AGLP

Figure 6.14: Inter-frame rendering delay for a single gateway.

The results of our experiments are very encouraging. They validate our believe

that by distributing media transformation over multiple gateways, we are able to

improve throughput. In cases when a single gateway becomes bottleneck, helper

gateways can help reduce jitter and end-to-end delay, thus improving the quality

of the video streams received by the user.

6.8 Conclusion

In this chapter, we described mechanisms to distribute a deglet over multiple gate-

ways for execution. The deglet is first decomposed into sub-deglets, and is assigned

to helper gateways using a modified version of AGLP. Our simulations show that

117

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000

In
te

r-
fr

am
e

D
el

ay
 (

s)

Frame

AGLP++

Figure 6.15: Inter-frame rendering delay for multiple gateways.

our extension does not affect AGLP significantly, and experiments show that dis-

tributing deglets can improve the QoS of the resulting stream.

Our work in distributed deglet execution is only preliminary. There are many

problems that remain to be solved. We outline these problems in the next chapter.

Chapter 7

Conclusion and Future Work

Our work in Dali, Degas, AGLP and AGLP++ has contributed toward the realiza-

tion of a distributed programmable media gateway service on a wide-area network.

However, there are still many issues that need to be addressed. We present these

issues in this chapter.

7.1 Degas Architecture

We built Degas as a prototype of a programmable, application-level media gateway.

Our prototype serves as a framework where many research issues about the design

of programmable media gateways can be explored.

7.1.1 Deglet Optimization

Currently, we only perform per-operation optimization when we execute a deglet.

We translate a frame operation to the optimal sequence of corresponding Dali

operations. However, we did not perform optimization over a sequence of frame

operations. Instead, we rely on the programmer to write an efficient deglet.

118

119

To provide a complete solution, a compiler is needed. The compiler takes in a

high-level program that describes the operations on the video streams, optimizes

the program, and generates low-level Dali calls. Optimization strategies similar

to the ones in Rivl [73] can be used. Rivl rearranges the operations to run those

that reduce data size first. For example, cropping of a frame is performed before

scaling. It also calculates the regions in the inputs that are needed in the output,

and only processes those regions. Hence, if we are overlaying video frame A onto

a video frame B, the area on B that is covered by A need not be computed. Our

decomposition algorithm described in Section 6.4 should be integrated with this

compiler.

7.1.2 Multiple Receivers

In the current design of Degas, we assume that clients are independent. In practice,

multiple clients may be interested in sharing the same services from Degas. We

can easily allow multiple clients to receive post-processed streams from gateways.

Since the post-processed video stream is multicast to an output session, a host

that is interested in a post-processed stream can tune in to the session to receive

the stream. This can be done as follows.

We can augment the Session Description Protocol [32] to include information

about services currently provided by the gateways. A user can view the list of

services available using a GUI front end, and join any desirable session. The cor-

responding host will periodically announce served-by messages onto the common

multicast channel. The served-by messages from multiple receivers can be consol-

idated by using multicast damping: if a receiver R receives a served-by message,

then R reschedules the announcement of its own served-by message. This reduces

120

the total number of served-by message sent. If the original client C that initiated

the service quits, the gateway will continue serving the other receivers as it is still

receiving served-by messages.

Two problems arise. First, what if the gateway servicing the receivers fails after

C quits? The other receivers do not have access to the original deglet submitted

by C, and therefore cannot restart the service. One possible solution to the first

problem is to have each receiver download the program from the gateway (if C

permits it) as they join the output session. Another solution is to let the gateway

periodically multicast the program onto a separate channel.

The second problem concerns the calculation of scores during evaluation. Since

the output from the gateway is now multicast to multiple receivers, how can we

characterize the bandwidth consumption of the output stream? We can estimate

the propagation delay from the gateway to all receivers by using receiver report

RTCP packets, but since resources are shared in the multicast tree, we cannot

simply sum the products of the bandwidth and the distances.

7.1.3 Resource Management

Resource management is a crucial component in a user-extensible media gateway.

First, we need to prevent users from submitting malicious resource-hogging deglets,

such as one that runs in infinite loops or unnecessarily allocates huge amounts of

memory. Secondly, we need to ensure that resources are distributed fairly among

users, or at least the deglets in a gateway. An interesting issue is when and how

to revoke resources from a running deglet. Revoking CPU time and bandwidth

can affect the QoS received by the client. Revoking allocated memory blocks may

require changing the behaviour of the deglet itself.

121

There are a few common strategies we can employ to manage resources. Re-

sources can be reserved at the beginning of the execution of a deglet. The resource

manager then has to police the resource usage of each deglet, and notify the deglet

to reduce resource consumption when it exceeds the reservation. Reservation of

existing deglets may be involuntarily reduced when new deglets start, in order to

ensure fairness. A problem with reservation-based schemes is that they often lead

to over-reservations and waste of resources. Another common approach is market-

based resource allocation, where each deglet starts out with some ”money” which

it can use to bid for resources. The price for the resources increases when it is in

demand (for example, when the number of deglets running increases). A deglet

has to relinquish some of its resources when it runs out of money.

In both schemes described above, resources can be dynamically revoked (when

a deglet runs out of money, or when it uses more than what it reserved). We can

implement a scheme similar to [54] in Degas. Degas can force a deglet to reduce

the quality of the output stream when resources need to be revoked. This includes

reducing the size (resolution) of the output video and converting the output video

to gray-scale. These reductions can free up some of the resources, including CPU,

memory and network. If the deglet still consumes too much resources, the gateway

can force the deglet to be migrated to another gateway. The user can specify a

preference to the action performed when resources are revoked. A drawback of this

approach is that constantly changing the quality of video might irritate the users.

7.1.4 Security

Security is another common concern in extensible architectures. However, we

believe that these concerns can be easily addressed in Degas. As in Safe-Tcl [56],

122

we can restrict the set of functions available to a deglet. This set can depend on

the client that submitted the deglet. In this case, the client would have to sign the

deglet, and include its digital certificate (e.g., X.509 [11]). Gateways would have

access to a user database that describes access control policies.

7.2 AGLP

AGLP minimizes bandwidth consumption by executing deglets at strategic loca-

tions in the network. AGLP currently based its decision solely on the measured

propagation time between the hosts. Other possibilities exist.

7.2.1 Exploiting the Multicast Tree

AGLP does not take the multicast tree into consideration when it locates gateways

for services. This works well enough when we have a single, remote host that

requested a gateway service. However, if there are other near-by hosts participating

in the same session, this could affect the optimal location of the gateway. We

illustrate this in an example shown in Figure 7.1.

Figure 7.1 (a) shows a multicast tree with node a as the source. Both node

b and c are media gateways. Figure 7.1 (b) shows the scenario where node e

requests a service to be performed on the video stream from node a. Supposing

that the service e requested is one that reduces the bandwidth, AGLP will assign

the service to a gateway that is near node a, in this case, node b. The output

stream is transmitted through path b− c− e to reach e.

Now suppose that node d decides to receive the stream directly from node a.

(See Figure 7.1 (c)). The original video stream now flows through the path b−c−d

123

a b c d

e

a b c d

e

a b c d

e

(a)

(b)

(c)

Figure 7.1: AGLP and multicast tree

124

to reach the destination d. In this case, choosing node b as the servicing gateway

is not a good choice, since both the original and processed stream flow through

b− c. A better gateway is node c.

Discovering the topology of the multicast tree so that it can be coorperated into

AGLP is not trivial. A possible solution is described in [43]. Each participating

host performs a trace of the multicast path periodically using the multicast version

of traceroute called mtrace. They then share the path information with each

other so that a tree can be constructed. We plan to look into how to do this in

AGLP in a scalable manner.

7.2.2 Optimization Metrics

AGLP picks a gateway that minimizes bandwidth consumption. There are many

other metrics we could consider when deciding which gateway should run a deglet.

Resource Availability. Available resources, such as the amount of available

CPU, memory and network bandwidth should be considered when assigning deglets

to gateways. Availability of special hardware, such as decoding and encoding

hardware or media processing chips should be considered as well.

Load Balancing. There are cases when it is desirable to balance the load of

multiple gateways. Hence AGLP should look at the loads on multiple gateways

and assign the deglet such that the loads are as balanced as possible.

However, it is not clear how to integrate these different and often contradicting

metrics into one variable in order to decide which gateway is more suitable to

service a particular client.

125

7.3 Distributed Media Processing

7.3.1 Distributing Dynamic Deglets

One of the constraints on running composable services efficiently is that the services

performed must be relatively static, that is, the computation does not change

frequently depending on the inputs. We find that this limits the application of

composable services in Degas, as many interesting applications of our gateway

involve deglets that change their operations dynamically. For instance, in a video

chat-room application where participants join and leave often, or in a distance

learning application where we switch the output video streams between the lecturer

and the audience based on who is currently talking. Even for a deglet that is static,

the resource manager might still force the deglet to change its resolution or color

space when its resources are revoked. Due to the importance of this class of deglets,

we plan to relax this constraint in the future.

A challenge for distributing frequently changing deglets is to adapt to changes

efficiently and in a responsive manner. The computation might need to be re-

decomposed and redistributed to the helper gateways. The helper gateways need

to be notified of the changes. We believe some kind of incremental algorithm can

be used to adapt to the changes efficiently.

7.3.2 Fairness Among Users

The resource management policy in the gateway maintains fairness among different

running deglets. However, one user might still use more resources than others.

This can happen when a user runs multiple deglets, or when a deglet is distributed

among different gateways. Hence, fairness among users should be maintained as

126

well. We want the total resources consumed by a user over all gateways to be as

fair as possible.

Ensuring fairness among users is difficult since it requires a global view of all

gateways. Furthermore, finding the optimal assignment that maximizes fairness

is a generalized case of non-uniform load balancing problem and is NP-complete

[42]. We are looking at different strategies to achieve approximate fairness in a

decentralized and scalable manner. A possible strategy that we have tried is as

follows. Each gateway periodically notifies nearby gateways about the deglets

that consumed the most and the least resources relative to their fair share. The

gateways exchange these deglets if the exchanges will result in an improvement in

overall fairness. Although we are able to increase overall fairness, there is room

for improvement in our results.

7.3.3 Sharing Sub-computations

A particularly interesting idea that surfaced from distributing a deglet over mul-

tiple gateways is the notion of sub-computation sharing – sub-computations from

different deglets that perform the same operations on the same video streams

can be shared, hence only one copy need to run. Opportunity for sharing sub-

computations seems to be rare in small sessions. However, the probability of

sharing increases as the session size increases. For a large session such as live video

broadcast of a concert, common operations such as transcoding into a popular

format should be shareable.

A problem that needs to be solved is how such shareable sub-computations

can be identified. A gateway needs to know what nearby gateways are currently

running. Such information can be periodically multicast along with AGLP’s serve

127

and helping messages. Although determining whether two sub-computations are

equivalent is unsolvable in the general case, we can restrict ourselves to simple

sequences of operations, such as scaling by half and transcoding. By comparing

the operations, identical sub-computations can be identified and shared.

7.4 Availability of Software

In this dissertation, we propose a solution to the problem of efficient media deliv-

ery over heterogenous networks. We developed several components of the media

gateways. First, we built Dali, a high-perfomance software library that forms

the execution engine for our gateways. Next, we built Degas, a prototype of our

media gateways system, which serves as a framework for exploring research is-

sues in programmable media gateways. Finally, we simulated and implemented

AGLP and AGLP++, two protocols for locating media gateways in the network

to perform transformations. All of these components are publicly available through

our web sites. Dali can be downloaded from http://www.cs.cornell.edu/dali,

while Degas and the media gateway location protocols are available at http:

//www.cs.cornell.edu/degas.

Bibliography

[1] S. Acharya and B. C. Smith. Compressed domain transcoding of MPEG. In
Proceedings of the International Conference on Multimedia Computing and
System (ICMCS), pages 295–304, Austin, Texas, June 1998.

[2] S. Agamanolis. Isis - A multilevel scripting environment for responsive
multimedia. Software Online, http://isis.www.media.mit.edu/projects/
isis/.

[3] D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis, J. Moore,
C. Gunder, S. Nettles, and J. Smith. The SwitchWare active network archi-
tecture. IEEE Network, 12(3):29–36, May 1998.

[4] E. Amir, S. McCanne, and Z. Hui. An application level video gateway. In
Proceedings of 3rd ACM International Multimedia Conference and Exhibition,
pages 255–266, San Francisco, CA, November 1995.

[5] E. Amir, S. McCanne, and R. Katz. An Active Service framework and its
application to real-time multimedia transcoding. In Proceedings of ACM SIG-
COMM, pages 178–189, Vancouver, Canada, August 1998.

[6] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Hand-
ley, A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. McCanne, R. Rejaie,
P. Sharma, K. Varadhan, Y. Xu, H. Yu, and D. Zappala. Improving simula-
tion for network research. Technical Report 99-702b, University of Southern
California, March 1999.

[7] G. Ballintijn and M. van Steen. Characterizing Internet performance to sup-
port wide-area application development. Operating System Review, 34(4):41–
47, August 2000.

[8] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul. An active transcoding
proxy to support mobile web access. In Proceedings of the 17th IEEE Sympo-
sium on Reliable Distributed Systems, pages 118–123, West Lafayette, Indiana,
October 1998.

128

129

[9] T. W. Bickmore and B. N. Schilit. Digestor: Device-independent access to
the World Wide Web. Computer Networks and ISDN Systems, 29(8–13):1075–
1082, 1997.

[10] T. Boutell. A graphics library for fast GIF creation. Software Online, http:
//www.boutell.com/gd/.

[11] C. C. I. T. T. Recommendation X.509. The Directory-Authentication Frame-
work, 1988.

[12] B. Cain, S. Deering, B. Fenner, I. Kouvelas, and A. Thyagarajan. In-
ternet Group Management Protocol, version 3 http://www.ietf.org/

internet-drafts/draft-ietf-idmr-igmp-v3-05.txt, November 2000.

[13] K. Calvert, M. Doar, and E. Zegura. Modeling Internet topology. IEEE
Communications Magazine, 36(6):160–163, June 1997.

[14] J. Carter, W. Hsieh, M. Swanson, L. Zhang, A. Davis, M. Parker,
L. Schaelicke, L. Stoller, and T. Tateyama. Memory system support for irreg-
ular applications, pages 17–26. Springer-Verlag, Lecture Notes in Computer
Science 1511, 1998.

[15] D. D. Clark. The design philosophy of the DARPA internet protocols. In
Proceedings of ACM SIGCOMM, pages 106–114, Stanford, CA, aug 1988.

[16] K. G. Coffman and A. M. Odlyzko. Internet growth: Is there a Moore’s Law
for data traffic? Kluwer, Norwell, MA, 2001.

[17] Intel Corporation. MMX Technology Programmers Reference Manual, 1997.

[18] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz.
An architecture for a secure service discovery service. In Mobile Computing
and Networking, pages 24–35, 1999.

[19] B. Davidsen. NETPBM graphics package. Software Online, ftp://ftp.cs.
ubc.ca/ftp/archive/netpbm/netpbm-1mar1994.tar.gz, March 1993.

[20] S. E. Deering. RFC 1112: Host extensions for IP multicasting, August 1989.

[21] R. Droms. RFC 2131: Dynamic host configuration protocol, March 1997.

[22] H. Eriksson. MBone: the multicast backbone. Communications of the ACM,
37(8):54–60, 1994.

[23] W. Fenner. RFC 2236: Internet Group Management Protocol, version 2,
November 1997.

130

[24] S. Floyd, V. Jacobson, C. G. Liu, S. McCanne, and L. Zhang. A reliable
multicast framework for light-weight sessions and application level framing.
IEEE/ACM Transactions on Networking, 5(6):784–803, December 1997.

[25] A. Fox, S. D. Gribble, Y. Chawathe, and E. Brewer. Cluster-based scalable
network services. In Proceedings of the 16th ACM Symposium on Operating
System Principles, pages 78–91, St. Malo, France, October 1997.

[26] R. Frederick. Experiences with real-time software video compression. In Pro-
ceedings of The 6th International Workshop on Packet Video, Portland, Ore-
gon, September 1994.

[27] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS: Composable, adap-
tive network services infrastructure. In Proceedings of the 3rd USENIX Sympo-
sium on Internet Technologies and Systems, San Franscisco, California, March
2001.

[28] D. Le Gall. MPEG: a video compression standard for multimedia applications.
Communications of the ACM, 34, 4:46–58, 1991.

[29] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer, D. Culler, N. Borisov,
S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R.H. Katz, Z.M. Mao, S. Ross,
and B. Zhao. The Ninja architecture for robust internet-scale systems and ser-
vices. Computer Networks (Special Issue on Pervasive Computing), 35(4):473–
497, March 2001.

[30] Independent JPEG Group. JPEG library, release 6b. Software Online, ftp:
//ftp.uu.net/graphics/jpeg/jpegsrc.v6b.tar.gz, March 1998.

[31] M. Handley. The sdr session directory tool. Software Online, ftp://cs.ucl.
ac.uk/mice/sdr/, November 1995.

[32] M. Handley and V. Jacobson. RFC 2327: SDP: Session description protocol,
April 1998.

[33] M. Handley, C. Perkins, and E. Whelan. RFC 2974: Session announcement
protocol, October 2000.

[34] V. Hardman. rat - Robust Audio Tool. Software Online, http://www-mice.
cs.ucl.ac.uk/multimedia/software/rat/.

[35] H. Holbrook and B. Cain. Source-specific multicast for IP, http://www.ietf.
org/internet-drafts/draft-holbrook-ssm-arch-02.txt, March 2001.

[36] L. Holden. ooMPEG: Object-oriented MPEG decoder. Software Online, http:
//www.cs.brown.edu/software/ooMPEG/.

131

[37] InternetNews.com. GEO, Samsung unveil MPEG4 video cell phone. Internet-
News, http://www.internetnews.com/prod-news/article/0,,9_513381,
00.html, November 2000.

[38] V. Jacobson. Multimedia conferencing on the Internet. ACM SIGCOMM
1994 Tutorial.

[39] V. Jacobson and S. McCanne. vat - LBNL audio conferencing tool. Software
Online, http://www-nrg.ee.lbl.gov/vat.

[40] V. Jacobson and S. McCanne. wb - LBNL white board. Software Online,
ftp://www-nrg.ee.lbl.gov/wb/.

[41] D. McDonough Jr. Firepad brings streaming video to Palm PDA. Wire-
less Newsfactor, http://www.wirelessnewsfactor.com/perl/story/6853.
html, January 2001.

[42] J. M. Kleinberg, Y. Rabani, and E. Tardos. Fairness in routing and load
balancing. In IEEE Symposium on Foundations of Computer Science, pages
568–578, 1999.

[43] B. N. Levine, S. Paul, and J. J. Garcia-Luna-Aceves. Organizing multicast
receivers deterministically by packet-loss correlation. In Proceedings of ACM
Multimedia 1998, pages 201–210, Bristol, England, 1998.

[44] C. Lindblad, D. Wetherall, and D. L. Tennenhouse. The VuSystem: A pro-
gramming system for visual processing of digital video. In ACM Multimedia,
pages 307–314, San Francisco, CA, 1994.

[45] S. Mann. A GNU/Linux wristwatch videophone. Linux Journal, http://

www2.linuxjournal.com/lj-issues/issue75/3993.html, June 2000.

[46] J. Matthews, P. A. Gloor, and F. Makedon. VideoScheme: A programmable
video editing system for automation and media recognition. Technical Report
TR93-187, Dartmouth College, Computer Science, January 1993.

[47] K. Mayer-Patel and L. Rowe. Exploiting temporal parallelism for software-
only video effects. In Proceedings of the 6th ACM International Conference
on Multimedia, pages 161–169, Bristol, England, September 1998.

[48] K. Mayer-Patel and L. Rowe. Exploiting spatial parallelism for software-
only video effects. In Proceedings of Multimedia Computing and Networking
1999, Proceedings of the SPIE, vol. 3654, pages 252–263, San Jose, California,
January 1999.

[49] S. McCanne, E. Brewer, R. Katz, L. Rowe, E. Amir, Y. Chawathe, A. Coop-
ersmith, K. Mayer-Patel, S. Raman, A. Schuett, D. Simpson, A. Swan,
T. L. Tung, D. Wu, and B. C. Smith. Toward a common infrastructure

132

for multimedia-networking middleware. In Proceedings of 7th. Intl. Work-
shop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV’97), pages 39–49, St. Louis, Missouri, May 1997.

[50] S. McCanne and V. Jacobson. vic: A flexible framework for packet video. In
Proceedings of 3rd ACM Intl. Multimedia Conf. and Exhibition, pages 511–
522, San Francisco, CA, November 1995.

[51] Sun Microsystems. Jini technology specification. http://www.sun.com/jini/
specs/.

[52] D. L. Mills. RFC 1305: Network time protocol (version 3) specification,
implementation, March 1992.

[53] J. Nonnenmacher and E. W. Biersack. Scalable feedback for large groups.
IEEE/ACM Transactions on Networking 1999, 7(3):375–386, June 1999.

[54] G. J. Nutt, S. Brandt, A. Griff, S. Siewert, M. Humphrey, and T. Berk.
Dynamically negotiated resource management for data intensive application
suites. Knowledge and Data Engineering, 12(1):78–95, 2000.

[55] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA,
1994.

[56] J. K. Ousterhout, J. Levy, and B. Welch. The Safe-Tcl security model. Tech-
nical Report TR-97-60, Sun Microsystems Laboratories, March 1997.

[57] J. C. Pasquale, G. C. Polyzos, E. W. Anderson, and V. P. Kompella. Filter
propagation in dissemination trees: Trading off bandwidth and processing in
continuous media networks. Lecture Notes in Computer Science, 846:259–269,
1994.

[58] K. Patel, B. C. Smith, and L. Rowe. Performance of a software MPEG video
decoder. In Proceedings of the First ACM International Conference on Mul-
timedia, pages 75–82, Anaheim, CA, August 1993.

[59] N. Patel and I. Sethi. Compressed video processing for cut detection. In IEEE
Proceedings: Vision, Image and Signal Processing (Vol. 143), pages 315–323,
October 1996.

[60] W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression
Standard. Van Nostrand Reinhold, New York, NY, 1993.

[61] D. Plonka. Internet traffic flow size analysis. http://net.doit.wisc.edu/

data/flow/size/, 2000.

[62] E. J. Posnak, R. G. Lavender, and H. M. Vin. An adaptive framework for
developing multimedia software components. Communications of the ACM,
40(10):43–47, October 1997.

133

[63] H. K. Pung and N. Bajrach. A programmable ATM multicast service with
congestions control. IEICE Transaction in Communication, E83-B(2):253–
263, February 2000.

[64] R. S. Ramanujan and K. J. Thurber. An active network based design of a QoS
adaptive video multicast service. In Proceedings of the 1998 World Conference
on Systems, Cybernetics and Informatics, pages 643–650, Orlando, Florida,
July 1998.

[65] A. Schuett, S. Raman, Y. Chawathe, and R. Katz. A soft state protocol for
accessing multimedia archives. In Proceedings of The 8th. Intl. Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSS-
DAV’98), pages 29–40, Cambridge, UK, July 1998.

[66] H. Schulzrinne. Voice communication across the Internet: a network voice
terminal. Technical Report 92–50, University of Massachusetts at Amherst,
Amherst, Massachusetts, July 1992.

[67] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RFC 1889: RTP:
A transport protocol for real-time applications, January 1996.

[68] S. Seshan, M. Stemm, and R. Katz. SPAND: Shared passive network perfor-
mance discovery. In Proceedings of the 1st USENIX Symposium on Internet
Technologies and Systems, Monterey, CA, December 1997.

[69] B. Shen and I. Sethi. Convolution-based edge detection for image/video in
block DCT domain. Journal of Visual Communication and Image Represen-
tation, 7(4):411–423, 1996.

[70] M. Singer. Get streaming video in your Palm. InternetNews, http://www.
internetnews.com/streaming-news/article/0,,8161_750201,00.html,
April 2001.

[71] B. C. Smith. Implementation Techniques for Continuous Media Systems and
Applications. PhD thesis, Department of Computer Science, University of
California, Berkeley, December 1994.

[72] B. C. Smith and L. A. Rowe. Compressed domain processing of JPEG-encoded
images. Real-Time Imaging, 2(1):3–17, February 1996.

[73] J. Swartz and B. C. Smith. Rivl: a resolution independent video language. In
Proceedings of the Tcl/TK Workshop, pages 235–242, 1995.

[74] D. Tennenhouse and D. Wetherall. Towards an active network architecture.
Computer Communication Review, 26(2):5–18, April 1996.

134

[75] S. Thibault, J. Marant, and G. Muller. Adapting distributed applications
using extensible networks. In International Conference on Distributed Com-
puting Systems, pages 234–243, 1999.

[76] T. L. Tung. MediaBoard: A shared whiteboard application for the MBone.
Master’s thesis, Computer Science Division (EECS), University of California,
Berkeley, CA, January 1998.

[77] T. Turletti. The INRIA videoconferencing system. ConneXions - The Inter-
operability Report Journal, 8(10):20–24, October 1994.

[78] T. Turletti and J. Bolot. Issues with multicast video distribution in hetero-
geneous packet networks. In Proceedings of The 6th International Workshop
on Packet Video, pages F3.1–3.4, Portland, Oregon, September 1994.

[79] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. RFC 2165: Service
location protocol, June 1997.

[80] D. Wetherall. OTcl tutorial. http://www.isi.edu/nsnam/otcl/doc/

tutorial.html.

[81] M. Williams. LG launches Internet refrigerator. IDG News Service, http:
//www.idg.net/idgns/2000/06/23/LGLaunchesInternetRefrigerator.

shtml, June 2000.

[82] A. Wolman, G. Veolker, N. Sharma, N. Cardwell, M. Brown, T. Landray,
D. Pinnel, A. Karlin, and H. Levy. Organization-based analysis of web-object
sharing and caching. In Proceedings of the 2nd USENIX Conference on In-
ternet Technologies and Systems (USITS), October 1999.

[83] T. Wong, K. Mayer-Patel, D. Simpson, and L. Rowe. Software-only video pro-
duction switcher for the Internet MBone. In Proceedings of SPIE Multimedia
Computing and Networking, pages 28–39, San Jose, CA, 1998.

[84] D. Xu, K. Nahrstedt, and D. Wichadakul. MeGaDiP: a wide-area media gate-
way discovery protocol. In Proceedings of IEEE Intl. Performance, Computing
and Communications Conf., Phoenix, Arizona, February 2000.

[85] N. Yeadon, A. Mauthe, D. Hutchison, and F. Garcia. QoS filters: Addressing
the heterogeneity gap. Lecture Notes in Computer Science, 1045:227–244,
1996.

[86] Y. Yemini and S. daSilva. Towards programmable networks. In The 7th
IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management (DSOM), L’Aquila, Italy, October 1996.

