Week 8: Trees

Readings

\square Required

- [Weiss] ch18.1-18.3
- [Weiss] ch18.4.4
- [Weiss] ch19.1-19.2

- Exercises

- [Weiss] 18.1, 18.2, 18.3, 18.9
- [Weiss] 19.1, 19.15 - 19.19

- Fun

- http://www.seanet.com/users/arsen/avltree.html

Relationship

$\square A$ is parent of B and C
$\square B$ and C are children of A
$\square B$ and C are siblings

A node is an ancestor of itself, and a descendant of itself.

Depth

- Length of path to the root. - depth of A is 1

Height

ם Length of path to the deepest

 leaf.- height of A is 2

Size

\square Number of descendants. - size of A is 4

Applications

- Family Tree
- Directory Tree
-Organization Chart

Tree is recursive!

nus.soc.cs1102b.week8

Implementation

- "first-child, next-sibling"
class TreeNode
\{
object element;
TreeNode firstChild;
TreeNode nextSibling;
// Methods..
\}

Implementation

Implementation

```
class BinaryNode
{
    object element;
    BinaryNode left;
    BinaryNode right;
    // Methods
}
class BinaryTree
{
    BinaryNode root;
    // Methods
}
```


Size of a Tree

size(T)

if T is empty
return 0
else
return $1+$ size(T.left)+size(T.right)

Height of a Tree

height(T)

if T is empty
return -1
else
return $1+\max ($ height(T.left $)$, height(T.right))

In a full binary tree, every node must have either 0 or 2 children.

A complete binary tree is a full binary tree where all leaves are of the same depth.

Number of nodes $=2^{\mathrm{h}+1}-1$
Height is $\mathrm{O}(\log \mathrm{N})$.

Binary Tree
 Traversal

Post-order Traversal

postorder(T)
if T is not empty then postorder(T.left) postorder(T.right) print T.element

Pre-order traversal

preorder(T)
if T is not empty then print T.element preorder(T.left) preorder(T.right)

In-order Traversal

inorder(T)
if T is not empty then inorder(T.left) print T.element
inorder(T.right)

Traversal Example

Post-order: 4895206731

Traversal Example

Pre-order: 1245893607

Traversal Example

In-order: 4285916037

Level-order Traversal

Level-order: 1234567890

levelOrder(T)

if T is empty return
$Q=$ new Queue
Q.enq(T)
while Q is not empty curr $=$ Q.deq()
print curr.element

if T.left is not empty Q.enq(curr.left)
if curr.right is not empty Q.enq(curr.right)

What do you get when you replace the queue with a stack?

Binary Search Tree

Dynamic Set Operation

- insert (key, data)
- delete (key)

口 data = search (key)
a key = findMin ()
\square key $=$ findMax ()
a key = findKth (k)

- data[] = findBetween (low, high)
\square successor (key)
- predecessor (key)

Running Time

	Unsorted Array/List	Sorted Array	Sorted LinkedList
insert	O(1)	O(N)	
delete	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$	
find	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{logN})$	
findMin	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(1)$	
findMax	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(1)$	

Recap

	Unsorted array/list	Sorted array	Sorted List
findKth	$O(N)$	$O(1)$	
find Between	$O(N)$	$O(k+\log N)$	
sucessor	$O(N)$	$O(\log N)$	

Binary Search Tree

- All operations $\mathrm{O}(\log \mathrm{N})$
\square findBetween $O(k+\log N)$

Example

Not a BST

What do you get when you traverse a BST in inorder?

Finding Minimum Element

while T.left is not empty T = T.left
return T.element

Finding \mathbf{x} in \mathbf{T}

while T is not empty
if T.element $==x$ then return T
else if T.elements $<x$ then
T = T.left
else
T = T.right
return NOT FOUND

How to Insert 6?

After Inserting 6

insert (x,T)

if T is empty return new BinaryNode(x) else if $x<$ T.element T. left $=$ insert(x, T. left $)$ else if $x>$ T.element T.right = insert(x, T. right) else

How to delete?

Method delete(x,T) returns the new tree after deleting x from T .

delete(x, T): Case 2

if T has 1 child T.right
if $x==$ T.element
return T.right
else
T.right $=$ delete $(x$, T.right $)$

return T

delete(x, T): Case 3

delete(x, T): Case 3

delete(x, T): Case 3

if T has two children
if $x==$ T.element
T.element $=$ findMin(T.right)
T.right = delete(T.element, T.right)
else if $x<$ T.element
T.left $=$ delete $(x$, T.left $)$
else
T.right $=$ delete $(x$, T.right $)$
return T

Successor(T)

// find next largest element
if T.right is not empty return findMin(T.right)
else if T is a left child
return parent of T
else T is a right child
let x be the first ancestor of T that is a left child
return parent of x

Successor returns the next larger element in the tree.
Successor(5) is 6.
Successor(4) is 5 .
11 does not have a successor.

- What happen if we cannot find such an x ? This means that there is no successor for T . (i.e. T is the maximum).
- We need a reference to the parent for this operation, so that we can traverse up the tree.
- Second and third case can actually be combined into one.
- Question: why is the algorithm on the left correct? Think about it using the property of BST.

findKth(T,K)

14

Size of a Tree

findKthSmallest(T,K)

let L be the size of T.left
if $K==L+1$
return T.element
else if $K<=L$
return findKthSmallest(T.left, K)
else
return findKthSmallest(T.right, $\mathrm{K}-\mathrm{L}-1$)

findKthLargest(T,K)

let L be the size of T.right
if $K==L+1$
return T.element
else if $K<=L$
return findKthLargest(T.right, K) else
return findKthLargest(T.left, K - L - 1)

When you insert nodes in increasing order, you get a skewed tree. Therefore h is actually in $\mathrm{O}(\mathrm{N})$.

```
/**
    * Return the node containing the successor of x. This method is part of
    * BinarySearchTree class. I assume that BinaryNode has a member called
    * parent. If a node is the root, parent points to null, otherwise it
    * points to its parent. (Modifying insert/delete to maintain the parent
    * pointer is a good exercise to help you understand BinarySearchTree.)
    * @param x the item whose successor we want to search for.
    * @return the successor or null if no successor exists.
    */
public BinaryNode successor( Comparable x )
{
    BinaryNode t = find(x, root);
    if (t.right != null)
    {
            // right child is not empty, just call findMin on the right
            // child.
            return findMin(t.right);
        }
    else // t has no right child
        {
            if (t.parent == null)
            {
                // t is the root and has no right child. so t must be
                // the largest. (i.e. no successor).
                return null;
            }
            else if (t.parent.left == t)
            {
                // t is a left child, return the parent.
                return t.parent;
            }
            else if (t.parent.right == t)
            {
                // t is a right child. find the first ancestor that is
                    // a left child.
                    BinaryNode p = t.parent;
                while (p.parent != null)
                {
                    if (p.parent.left == p)
                    {
                                    // p is the first ancestor that is a left child.
                                    // return its parent.
                                    return p.parent;
                                    }
                                    else
                                    {
                                    // proceed to the next ancestor.
                                    p = p.parent;
                                    }
                }
                // reach the root and found nothing. t must be the largest.
                    return null;
            }
        }
        return null; // to make compiler happy.
}
```

