
9 October 2002 1

nus.soc.cs1102b.week8 8

Week 8: Trees

nus.soc.cs1102b.week8 9

Readings
p Required
n [Weiss] ch18.1 – 18.3
n [Weiss] ch18.4.4
n [Weiss] ch19.1 – 19.2

p Exercises
n [Weiss] 18.1, 18.2, 18.3, 18.9
n [Weiss] 19.1, 19.15 – 19.19

p Fun
n http://www.seanet.com/users/arsen/avltree.html

nus.soc.cs1102b.week8 11

Tree

root
internal
nodes

leaves

nus.soc.cs1102b.week8 12

Relationship
pA is parent of B and C
pB and C are children of A
pB and C are siblings

A

B C

9 October 2002 2

nus.soc.cs1102b.week8 13

Relationship
pE is uncle/auntie of BC
pD is ancestor of ABCDE
pB is descendant of ABD D

E A

B C

A node is an ancestor of itself, and a descendant
of itself.

nus.soc.cs1102b.week8 14

Depth
pLength of path to the root.
n depth of A is 1

A

B C

depth

nus.soc.cs1102b.week8 15

Height
pLength of path to the deepest

leaf.
n height of A is 2

A

B C height

nus.soc.cs1102b.week8 16

Size
pNumber of descendants.
n size of A is 4

A

B C

9 October 2002 3

nus.soc.cs1102b.week8 17

Applications
p Family Tree
pDirectory Tree
pOrganization Chart

nus.soc.cs1102b.week8 18

Tree is recursive!

nus.soc.cs1102b.week8 19

Implementation
p “first-child, next-sibling”

class TreeNode
{
Object element;
TreeNode firstChild;
TreeNode nextSibling;
// Methods..

}

nus.soc.cs1102b.week8 20

Implementation

A

B C

9 October 2002 4

nus.soc.cs1102b.week8 21

Binary Trees

nus.soc.cs1102b.week8 22

Binary Tree

Just like a tree, a binary tree is recursive in
nature.

nus.soc.cs1102b.week8 24

An Empty Binary Tree

An empty binary tree is just a reference to null.

nus.soc.cs1102b.week8 25

Implementation
class BinaryNode
{
Object element;
BinaryNode left;
BinaryNode right;
// Methods..

}

class BinaryTree
{
BinaryNode root;
// Methods

}

We can add other members, such as a reference
to parent (see successor()) and size of the subtree
(see findKth()).

9 October 2002 5

nus.soc.cs1102b.week8 27

Size of a Tree
size(T)

if T is empty
return 0

else
return 1+size(T.left)+size(T.right)

nus.soc.cs1102b.week8 29

Height of a Tree
height(T)

if T is empty
return -1

else
return 1 + max (height(T.left), height(T.right))

nus.soc.cs1102b.week8 30

Full Binary Tree

In a full binary tree, every node must have either
0 or 2 children.

nus.soc.cs1102b.week8 31

Complete Binary Tree

A complete binary tree is a full binary tree where
all leaves are of the same depth.

9 October 2002 6

nus.soc.cs1102b.week8 32

Property

How many nodes
in a complete binary
tree of height h?

Number of nodes = 2h+1 – 1
Height is O(log N).

nus.soc.cs1102b.week8 33

Binary Tree
Traversal

nus.soc.cs1102b.week8 35

Post-order Traversal
postorder(T)

if T is not empty then
postorder(T.left)
postorder(T.right)
print T.element

nus.soc.cs1102b.week8 36

Pre-order traversal
preorder(T)

if T is not empty then
print T.element
preorder(T.left)
preorder(T.right)

9 October 2002 7

nus.soc.cs1102b.week8 37

In-order Traversal
inorder(T)

if T is not empty then
inorder(T.left)
print T.element
inorder(T.right)

nus.soc.cs1102b.week8 38

Traversal Example

1

4 5

3

6

9 08

2

7

Post-order: 4 895 2 06 7 3 1

nus.soc.cs1102b.week8 39

Traversal Example

1

4 5

3

6

9 08

2

7

Pre-order: 1 2 4 589 3 60 7

nus.soc.cs1102b.week8 40

Traversal Example

1

4 5

3

6

9 08

2

7

In-order: 4 2 859 1 60 3 7

9 October 2002 8

nus.soc.cs1102b.week8 41

Level-order Traversal

1

4 5

3

6

9 08

2

7

Level-order: 1234567890

nus.soc.cs1102b.week8 42

levelOrder(T)
if T is empty return
Q = new Queue
Q.enq(T)
while Q is not empty

curr = Q.deq()
print curr.element
if T.left is not empty

Q.enq(curr.left)
if curr.right is not empty

Q.enq(curr.right)

1

4 5

3

6

9 08

2

7

What do you get when you replace the queue
with a stack?

nus.soc.cs1102b.week8 43

Binary Search Tree

nus.soc.cs1102b.week8 44

Dynamic Set Operation
p insert (key, data)
p delete (key)
p data = search (key)
p key = findMin ()
p key = findMax ()
p key = findKth (k)
p data[] = findBetween (low, high)
p successor (key)
p predecessor (key)

9 October 2002 9

nus.soc.cs1102b.week8 45

Running Time

O(1)O(N)findMax

O(1)O(N)findMin

O(logN)O(N)find

O(N)O(N)delete

O(N)O(1)insert

Sorted
LinkedList

Sorted
Array

Unsorted
Array/List

nus.soc.cs1102b.week8 46

Recap

O(log N)O(N)sucessor

O(k + logN)O(N)
find
Between

O(1)O(N)findKth

Sorted
List

Sorted
Array

Unsorted
array/list

Variable k is the size of the output of
findBetween().

nus.soc.cs1102b.week8 47

Binary Search Tree
pAll operations O(log N)
p findBetween O(k + logN)

nus.soc.cs1102b.week8 48

BST Property

X

>X<X

The BST property holds recursively, which
means the left sub-tree and right sub-tree must
be BST as well.

9 October 2002 10

nus.soc.cs1102b.week8 49

Example

1

4 5

3

6

9 08

2

7

Not a BST

nus.soc.cs1102b.week8 51

Example

5

0 3

8

6

4 72

1

9

A BST

What do you get when you traverse a BST in in-
order?

nus.soc.cs1102b.week8 52

Finding Minimum Element
while T.left is not empty

T = T.left
return T.element

5

4

8

6

7

1

3

9

2

nus.soc.cs1102b.week8 53

Finding x in T
while T is not empty

if T.element == x then
return T

else if T.elements < x then
T = T.left

else
T = T.right

return NOT FOUND

9 October 2002 11

nus.soc.cs1102b.week8 55

How to Insert 6?

5

4

8

71

3

9

2

nus.soc.cs1102b.week8 56

After Inserting 6

5

4

8

71

3

9

2 6

nus.soc.cs1102b.week8 57

insert(x,T)
if T is empty

return new BinaryNode(x)
else if x < T.element

T.left = insert(x,T.left)
else if x > T.element

T.right = insert(x, T.right)
else

ERROR!
return T

5

4

8

71

3

9

2

Method insert(x,T) returns the new tree after
inserting x into T.

nus.soc.cs1102b.week8 59

How to delete?

5

4

8

71

3

9

2 6

9 October 2002 12

nus.soc.cs1102b.week8 60

delete(x,T): Case 1
if T has no children

if x == T.element
return empty tree

else
NOT FOUND

x

Method delete(x,T) returns the new tree after
deleting x from T.

nus.soc.cs1102b.week8 61

delete(x,T): Case 2
if T has 1 child T.left

if x == T.element
return T.left

else
T.left = delete(x, T.left)

return T

x

nus.soc.cs1102b.week8 62

delete(x,T): Case 2
if T has 1 child T.right

if x == T.element
return T.right

else
T.right = delete(x,T.right)

return T

x

nus.soc.cs1102b.week8 63

delete(x,T): Case 3

5

4

8

71

3

9

2 6

9 October 2002 13

nus.soc.cs1102b.week8 65

delete(x,T): Case 3

6

4

8

71

3

9

2

nus.soc.cs1102b.week8 66

delete(x,T): Case 3
if T has two children

if x == T.element
T.element = findMin(T.right)
T.right = delete(T.element, T.right)

else if x < T.element
T.left = delete(x, T.left)

else
T.right = delete(x, T.right)

return T

nus.soc.cs1102b.week8 68

Successor

5

4

10

71

3

11

2 6 8

9

Successor returns the next larger element in the
tree.
Successor(5) is 6.
Successor(4) is 5.
11 does not have a successor.

nus.soc.cs1102b.week8 69

Successor(T)
// find next largest element
if T.right is not empty

return findMin(T.right)
else if T is a left child

return parent of T
else T is a right child

let x be the first ancestor of T that is a left
child
return parent of x

• What happen if we cannot find such an x?
This means that there is no successor for T.
(i.e. T is the maximum).

• We need a reference to the parent for this
operation, so that we can traverse up the tree.

• Second and third case can actually be
combined into one.

• Question: why is the algorithm on the left
correct? Think about it using the property of
BST.

9 October 2002 14

nus.soc.cs1102b.week8 70

findKth(T,K)

8

5

16

111

3

17

2 9 12

14

nus.soc.cs1102b.week8 71

Size of a Tree

11

1

6

42

4

1

1 1 2

1

size

Observation:
• if a node,T, has 6 elements in its right sub-

tree, we know that T is the 7th largest
element in the tree.

• The 1st,2nd,…6th largest elements must be in
the right sub-tree.

• The 9th largest element in T is the 2nd largest
element in the left sub-tree of T. (9 – 6 – 1 =
2)

nus.soc.cs1102b.week8 72

findKthSmallest(T,K)
let L be the size of T.left
if K == L + 1

return T.element
else if K <= L

return findKthSmallest(T.left, K)
else

return findKthSmallest(T.right, K – L – 1)

nus.soc.cs1102b.week8 73

findKthLargest(T,K)
let L be the size of T.right
if K == L + 1

return T.element
else if K <= L

return findKthLargest(T.right, K)
else

return findKthLargest(T.left, K – L – 1)

9 October 2002 15

nus.soc.cs1102b.week8 74

Running Time

p find O(h)
p findMin O(h)
p insert O(h)
p delete O(h)
p successor O(h)
p findKth O(h)

nus.soc.cs1102b.week8 75

BUT

h = O(N)
6

4

8

7

9

When you insert nodes in increasing order, you
get a skewed tree. Therefore h is actually in
O(N).

9 October 2002 16

 /**
 * Return the node containing the successor of x. This method is part of
 * BinarySearchTree class. I assume that BinaryNode has a member called
 * parent. If a node is the root, parent points to null, otherwise it
 * points to its parent. (Modifying insert/delete to maintain the parent
 * pointer is a good exercise to help you understand BinarySearchTree.)
 *
 * @param x the item whose successor we want to search for.
 * @return the successor or null if no successor exists.
 */
 public BinaryNode successor(Comparable x)
 {
 BinaryNode t = find(x, root);
 if (t.right != null)
 {
 // right child is not empty, just call findMin on the right
 // child.
 return findMin(t.right);
 }
 else // t has no right child
 {
 if (t.parent == null)
 {
 // t is the root and has no right child. so t must be
 // the largest. (i.e. no successor).
 return null;
 }
 else if (t.parent.left == t)
 {
 // t is a left child, return the parent.
 return t.parent;
 }
 else if (t.parent.right == t)
 {
 // t is a right child. find the first ancestor that is
 // a left child.
 BinaryNode p = t.parent;
 while (p.parent != null)
 {
 if (p.parent.left == p)
 {
 // p is the first ancestor that is a left child.
 // return its parent.
 return p.parent;
 }
 else
 {
 // proceed to the next ancestor.
 p = p.parent;
 }
 }
 // reach the root and found nothing. t must be the largest.
 return null;
 }
 }
 return null; // to make compiler happy.
 }

