

Description Description Description

Height

A node is an ancestor of itself, and a descendant of itself.

Implementation

"first-child, next-sibling"

```
class TreeNode
{
    Object element;
    TreeNode firstChild;
    TreeNode nextSibling;
    // Methods..
}
```

Implementation

19

An Empty Binary Tree

Just like a tree, a binary tree is recursive in nature.

An empty binary tree is just a reference to null.

nus.soc.cs1102b.week8

24

We can add other members, such as a reference to parent (see successor()) and size of the subtree (see findKth()).

Size of a Tree

size(T)
if T is empty
 return 0
else
 return 1+size(T.left)+size(T.right)

nus.soc.cs1102b.week8

27

29

Height of a Tree height(T) if T is empty return -1 else return 1 + max (height(T.left), height(T.right))

nus.soc.cs1102b.week8

In a full binary tree, every node must have either 0 or 2 children.

A complete binary tree is a full binary tree where all leaves are of the same depth.

Binary Tree Traversal

nus.soc.cs1102b.week8

Number of nodes $= 2^{h+1} - 1$ Height is O(log N).

Post-order Traversal

postorder(T) **if** T is not empty **then** postorder(T.left) postorder(T.right) **print T.element**

Pre-order traversal

nus.soc.cs1102b.week8

nus.soc.cs1102b.week8

preorder(T) **if** T is not empty **then print T.element** preorder(T.left) preorder(T.right)

Binary Search Tree

Dynamic Set Operation insert (key, data) delete (key) data = search (key) key = findMin () key = findMax () key = findKth (k) data[] = findBetween (low, high) successor (key) predecessor (key)

What do you get when you replace the queue with a stack?

	Unsorted Array/List	Sorted Array	Sorted LinkedList
insert	0(1)	O(N)	
delete	O(N)	O(N)	
find	O(N)	O(logN)	
findMin	O(N)	0(1)	
findMax	O(N)	0(1)	

Recap							
	Unsorted array/list	Sorted Array	Sorted List				
findKth	O(N)	O(1)					
find Between	O(N)	O(k + logN)					
sucessor	O(N)	O(log N)					
nus.soc.cs1102b.week8 46							

Binary Search Tree

nus.soc.cs1102b.week8

X

nus.soc.cs1102b.week8

>X

47

All operations O(log N)findBetween O(k + logN)

BST Property

< X

The BST property holds recursively, which means the left sub-tree and right sub-tree must be BST as well.

Variable k is the size of the output of findBetween().

Finding x in T

```
while T is not empty
if T.element == x then
return T
else if T.elements < x then
T = T.left
else
T = T.right
return NOT FOUND</pre>
```

53

What do you get when you traverse a BST in inorder?

Method insert(x,T) returns the new tree after inserting x into T.

delete(x,T): Case 2

if T has 1 child T.right
if x == T.element
return T.right
else
T.right = delete(x,T.right)
return T

nus.soc.cs1102b.week8

62

Method delete(x,T) returns the new tree after deleting x from T.

delete(x,T): Case 3

if T has two children
if x == T.element
T.element = findMin(T.right)
T.right = delete(T.element, T.right)
else if x < T.element
T.left = delete(x, T.left)
else
T.right = delete(x, T.right)
return T
</pre>

Successor(T)

// find next largest element
if T.right is not empty
return findMin(T.right)
else if T is a left child
return parent of T
else T is a right child
let x be the first ancestor of T that is a left
child
return parent of x

nus.soc.cs1102b.week8

60

Successor returns the next larger element in the tree.

Successor(5) is 6. Successor(4) is 5. 11 does not have a successor.

- What happen if we cannot find such an x? This means that there is no successor for T. (i.e. T is the maximum).
- We need a reference to the parent for this operation, so that we can traverse up the tree.
- Second and third case can actually be combined into one.
- Question: why is the algorithm on the left correct? Think about it using the property of BST.

findKthSmallest(T,K)

let L be the size of T.left
if K == L + 1
return T.element
else if K <= L
return findKthSmallest(T.left, K)
else
return findKthSmallest(T.right, K - L - 1)</pre>

nus.soc.cs1102b.we

findKthLargest(T,K)

```
let L be the size of T.right
if K == L + 1
return T.element
else if K <= L
return findKthLargest(T.right, K)
else
return findKthLargest(T.left, K - L - 1)</pre>
```

nus.soc.cs1102b.week8

73

Observation:

- if a node, T, has 6 elements in its right subtree, we know that T is the 7th largest element in the tree.
- The 1st,2nd,...6th largest elements must be in the right sub-tree.
- The 9th largest element in T is the 2nd largest element in the left sub-tree of T. (9-6-1=2)

Running Time				
find	O(h)			
findMin	O(h)			
insert	O(h)			
delete	O(h)			
successor O(h)				
findKth O(h)				
	nus.soc.cs1102b.week8	74		

When you insert nodes in increasing order, you get a skewed tree. Therefore h is actually in O(N).

```
/**
\star Return the node containing the successor of x. This method is part of
* BinarySearchTree class. I assume that BinaryNode has a member called
 * parent. If a node is the root, parent points to null, otherwise it
* points to its parent. (Modifying insert/delete to maintain the parent
 * pointer is a good exercise to help you understand BinarySearchTree.)
\ast @param x the item whose successor we want to search for.
 * @return the successor or null if no successor exists.
*/
public BinaryNode successor( Comparable x )
{
    BinaryNode t = find(x, root);
    if (t.right != null)
    {
        // right child is not empty, just call findMin on the right
        // child.
        return findMin(t.right);
    else // t has no right child
    {
        if (t.parent == null)
        {
            // t is the root and has no right child. so t must be
            // the largest. (i.e. no successor).
           return null;
        else if (t.parent.left == t)
        {
            // t is a left child, return the parent.
           return t.parent;
        }
        else if (t.parent.right == t)
        {
            // t is a right child. find the first ancestor that is
            // a left child.
            BinaryNode p = t.parent;
            while (p.parent != null)
            {
                if (p.parent.left == p)
                {
                    // p is the first ancestor that is a left child.
                    // return its parent.
                    return p.parent;
                }
                else
                {
                    // proceed to the next ancestor.
                    p = p.parent;
                }
            }
            // reach the root and found nothing. t must be the largest.
            return null;
        }
    }
   return null: // to make compiler happy.
}
```