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Week 8: Trees
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Readings
p Required
n [Weiss] ch18.1 – 18.3
n [Weiss] ch18.4.4
n [Weiss] ch19.1 – 19.2

p Exercises
n [Weiss] 18.1, 18.2, 18.3, 18.9
n [Weiss] 19.1, 19.15 – 19.19

p Fun
n http://www.seanet.com/users/arsen/avltree.html
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Tree

root
internal
nodes

leaves
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Relationship
pA is parent of B and C
pB and C are children of A
pB and C are siblings

A

B C
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Relationship
pE is uncle/auntie of BC
pD is ancestor of ABCDE
pB is descendant of ABD D

E A

B C

 

A node is an ancestor of itself, and a descendant 
of itself. 
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Depth
pLength of path to the root.
n depth of A is 1 

A

B C

depth
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Height
pLength of path to the deepest 

leaf.
n height of A is 2

A

B C height
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Size
pNumber of descendants.
n size of A is 4

A

B C
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Applications
p Family Tree
pDirectory Tree
pOrganization Chart
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Tree is recursive!

 

 

nus.soc.cs1102b.week8 19

Implementation
p “first-child, next-sibling”

class TreeNode
{
Object element;
TreeNode firstChild;
TreeNode nextSibling;
// Methods..

}
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Implementation

A

B C
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Binary Trees
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Binary Tree 

 

Just like a tree, a binary tree is recursive in 
nature. 
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An Empty Binary Tree

 

An empty binary tree is just a reference to null. 
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Implementation 
class BinaryNode
{
Object element;
BinaryNode left;
BinaryNode right;
// Methods..

}

class BinaryTree
{
BinaryNode root;
// Methods

}

 

We can add other members, such as a reference 
to parent (see successor()) and size of the subtree 
(see findKth()). 
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Size of a Tree 
size(T)

if T is empty 
return 0

else
return 1+size(T.left)+size(T.right)
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Height of a Tree 
height(T)

if T is empty
return -1

else
return 1 + max (height(T.left), height(T.right))
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Full Binary Tree

 

In a full binary tree, every node must have either 
0 or 2 children. 
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Complete Binary Tree

 

A complete binary tree is a full binary tree where 
all leaves are of the same depth. 
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Property

How many nodes
in a complete binary
tree of height h?

 

Number of nodes = 2h+1 – 1 
Height is O(log N). 
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Binary Tree 
Traversal
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Post-order Traversal 
postorder(T)

if T is not empty then
postorder(T.left)
postorder(T.right)
print T.element
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Pre-order traversal 
preorder(T)

if T is not empty then
print T.element
preorder(T.left)
preorder(T.right)

 

 



9 October 2002                                                                                                            7 

nus.soc.cs1102b.week8 37

In-order Traversal 
inorder(T)

if T is not empty then
inorder(T.left)
print T.element
inorder(T.right)
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Traversal Example 

1

4 5

3

6

9 08

2

7

Post-order: 4 895 2 06 7 3 1
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Traversal Example 

1

4 5

3

6

9 08

2

7

Pre-order: 1 2 4 589 3 60 7
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Traversal Example 

1

4 5

3

6

9 08

2

7

In-order: 4 2 859 1 60 3 7
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Level-order Traversal 

1

4 5

3

6

9 08

2

7

Level-order: 1234567890
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levelOrder(T)
if T is empty return
Q = new Queue
Q.enq(T)
while Q is not empty 

curr = Q.deq()
print curr.element
if T.left is not empty

Q.enq(curr.left)
if curr.right is not empty

Q.enq(curr.right)

1

4 5

3

6

9 08

2

7

 

What do you get when you replace the queue 
with a stack? 
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Binary Search Tree
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Dynamic Set Operation
p insert (key, data)
p delete (key)
p data = search (key)
p key = findMin ()
p key = findMax () 
p key = findKth (k)
p data[] = findBetween (low, high)
p successor (key)
p predecessor (key)
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Running Time

O(1)O(N)findMax

O(1)O(N)findMin

O(logN)O(N)find

O(N)O(N)delete

O(N)O(1)insert

Sorted
LinkedList

Sorted 
Array

Unsorted
Array/List
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Recap

O(log N)O(N)sucessor

O(k + logN)O(N)
find
Between

O(1)O(N)findKth

Sorted 
List

Sorted 
Array

Unsorted 
array/list

 

Variable k is the size of the output of 
findBetween( ). 
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Binary Search Tree
pAll operations O(log N)
p findBetween O(k + logN)
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BST Property

X

>X<X

 

The BST property holds recursively, which 
means the left sub-tree and right sub-tree must 
be BST as well. 
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Example 

1

4 5

3

6

9 08

2

7

Not a BST
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Example 

5

0 3

8

6

4 72

1

9

A BST

 

What do you get when you traverse a BST in in-
order? 
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Finding Minimum Element
while T.left is not empty

T = T.left
return T.element

5

4

8

6

7

1

3

9

2
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Finding x in T
while T is not empty 

if T.element == x then
return T

else if T.elements < x then
T = T.left

else 
T = T.right

return NOT FOUND
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How to Insert 6?

5

4

8

71

3

9

2
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After Inserting 6

5

4

8

71

3

9

2 6
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insert(x,T)
if T is empty

return new BinaryNode(x)
else if x < T.element

T.left = insert(x,T.left)
else if x > T.element

T.right = insert(x, T.right)
else

ERROR!
return T

5

4

8

71

3

9

2

 

Method insert(x,T) returns the new tree after 
inserting x into T. 

nus.soc.cs1102b.week8 59

How to delete?

5

4

8

71

3

9

2 6
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delete(x,T): Case 1
if T has no children

if x == T.element
return empty tree

else
NOT FOUND

x

 

Method delete(x,T) returns the new tree after 
deleting x from T. 
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delete(x,T): Case 2
if T has 1 child T.left

if x == T.element
return T.left

else
T.left = delete(x, T.left)

return T

x
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delete(x,T): Case 2
if T has 1 child T.right

if x == T.element
return T.right

else
T.right = delete(x,T.right)

return T

x
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delete(x,T): Case 3

5

4

8

71

3

9

2 6
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delete(x,T): Case 3

6

4

8

71

3

9

2
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delete(x,T): Case 3
if T has two children

if x == T.element
T.element = findMin(T.right)
T.right = delete(T.element, T.right)

else if x < T.element
T.left = delete(x, T.left)

else
T.right = delete(x, T.right)

return T
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Successor

5

4

10

71

3

11

2 6 8

9

 

Successor returns the next larger element in the 
tree. 
Successor(5) is 6.   
Successor(4) is 5. 
11 does not have a successor. 
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Successor(T)
// find next largest element
if T.right is not empty

return findMin(T.right)
else if T is a left child

return parent of T
else T is a right child

let x be the first ancestor of T that is a left 
child
return parent of x

 

• What happen if we cannot find such an x?  
This means that there is no successor for T.  
(i.e. T is the maximum). 

• We need a reference to the parent for this 
operation, so that we can traverse up the tree. 

• Second and third case can actually be 
combined into one. 

• Question: why is the algorithm on the left 
correct?  Think about it using the property of 
BST.  
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findKth(T,K)

8

5

16

111

3

17

2 9 12

14
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Size of a Tree

11

1

6

42

4

1

1 1 2

1

size

 

Observation:  
• if a node,T, has 6 elements in its right sub-

tree, we know that T is the 7th largest 
element in the tree. 

• The 1st,2nd,…6th largest elements must be in 
the right sub-tree. 

• The 9th largest element in T is the 2nd largest 
element in the left sub-tree of T.  (9 – 6 – 1 = 
2) 
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findKthSmallest(T,K)
let L be the size of T.left
if K == L + 1

return T.element
else if K <= L

return findKthSmallest(T.left, K)
else

return findKthSmallest(T.right, K – L – 1)
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findKthLargest(T,K)
let L be the size of T.right
if K == L + 1

return T.element
else if K <= L

return findKthLargest(T.right, K)
else

return findKthLargest(T.left, K – L – 1)
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Running Time

p find O(h)
p findMin O(h)
p insert O(h)
p delete O(h)
p successor O(h)
p findKth O(h)
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BUT

h = O(N)
6

4

8

7

9

 

When you insert nodes in increasing order, you 
get a skewed tree.  Therefore h is actually in 
O(N).  
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    /** 
     * Return the node containing the successor of x.  This method is part of  
     * BinarySearchTree class.  I assume that BinaryNode has a member called  
     * parent.  If a node is the root, parent points to null, otherwise it 
     * points to its parent.  (Modifying insert/delete to maintain the parent 
     * pointer is a good exercise to help you understand BinarySearchTree.) 
     * 
     * @param x the item whose successor we want to search for. 
     * @return the successor or null if no successor exists. 
     */ 
    public BinaryNode successor( Comparable x ) 
    { 
        BinaryNode t = find(x, root); 
        if (t.right != null) 
        { 
            // right child is not empty, just call findMin on the right 
            // child. 
            return findMin(t.right); 
        } 
        else  // t has no right child 
        { 
            if (t.parent == null) 
            { 
                // t is the root and has no right child.  so t must be  
                // the largest.  (i.e. no successor). 
                return null; 
            } 
            else if (t.parent.left == t) 
            { 
                // t is a left child, return the parent. 
                return t.parent; 
            } 
            else if (t.parent.right == t) 
            { 
                // t is a right child.  find the first ancestor that is  
                // a left child. 
                BinaryNode p = t.parent; 
                while (p.parent != null) 
                { 
                    if (p.parent.left == p) 
                    { 
                        // p is the first ancestor that is a left child. 
                        // return its parent. 
                        return p.parent; 
                    } 
                    else 
                    { 
                        // proceed to the next ancestor. 
                        p = p.parent; 
                    } 
                } 
                // reach the root and found nothing.  t must be the largest. 
                return null; 
            } 
        } 
        return null; // to make compiler happy. 
    } 
  


