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Week 9: 
Balanced Trees

 

In the worst case, all BST operations 
runs in O(N) time.  This case happens 
when the tree has a linear structure.  We 
want to maintain additional properties on 
a BST so that it is balanced.  Perfect 
balance is hard to achieve, so we usually 
relax the balance properties.  As long as 
we can make sure that the height of the 
BST is always O(log N), we are happy! 
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Readings
p Required
n [Weiss] ch19.4 and ch19.5 – 19.5.1
n http://www.ddj.com/print/documentID=14585

p Fun
n http://www.seanet.com/users/arsen/avltree.html
n http://www.cs.washington.edu/homes/sds/rb.html

(don’t take this too seriously)

p Exercise
n [Weiss] 19.5
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Rotate Operation

 

The rotate operation is an important 
operation for maintaining the balance of 
a BST.  
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Rotate Right at 3
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After Rotate Right at 3
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Rotation changes the heights of nodes.  
In this example, the depth of node 4 
increases by 1.  The depth of node 0 
decreases by 1.  The depth of node 2 
remains unchanged. 
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After Rotate Right at 3
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Right rotation modifies the following 
pointers. 
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Rotate Right at x
rotateRight(x)

l = x.left
if l is empty 

return
x.left = l.right
l.right = x
p = x.parent
if x is a left child

p.left= l
else

p.right = l

p

l

x

 

The pseudocode on the right shows how 
we rotate right at x.   The red arrows are 
the pointers after modification.   
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Rotate Left at 5
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After Rotate Left at 5

5

4

8

71

3
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Rotation Summary

Y

X Y

X

rotate right x

rotate left y
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AVL Tree
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AVL Tree Properties
pDifference in height between left 

and right subtree is at most one.

1|| ≤− rl HH
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AVL Tree Properties

 

 

nus.soc.cs1102b.week9 18

AVL Tree Example

X
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Height of an AVL Tree
pMinimal AVL trees: AVL Tree with fewest 

possible number of nodes
pMinimal AVL trees with height 0

pMinimal AVL trees with height 1
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Height of an AVL Tree
p n(h): number of nodes in a minimal AVL 

tree with height h.

p n(0) = 1
p n(1) = 2
p n(h) = 1 + n(h-1) + n(h-2)

> 2n(h-2)
h-1 h-2

 

The last line comes from the fact that 
n(h-1) > n(h-2). 
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Height of an AVL Tree
n(h) > 2n(h-2)

> 2 * 2n(h-4)
> 4n(h-4)
> 4 * 2n(h-6)
> 8n(h-6)
:
> 2i n(h-2i)
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Height of an AVL Tree
n(h) > 2i n(h-2i)

when h – 2i = 0,  i = h/2

n(h) > 2 h/2

h < 2 log n(h)
h < 2 log N
h = O(log N)

 

Verify that when h is odd, the height is 
also O(log N) 
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AVL Tree Insertion
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Idea

 

We can insert into the red subtree, blue 
subtree, or gray subtree.  Insertion in red 
subtree never violates the AVL tree 
property.  But insertion into blue and 
gray subtree _may_ cause a violation.  
 
To insert into an AVL tree, we insert the 
node as usual.  After insertion, travel 
from new node back to the root.  At each 
node, checks if | Hl – Hr | = 1.  If 
violation occurs, rotate the tree based on 
the following cases. 
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Case 1: Outside

Y

X Y

X

rotate right around X
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Example: Insert Outside

7

5

9

83

4
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0

6

 

0 is the new inserted node.  In the first 
pass, we move down the tree just like 
insertion into a BST. 
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Example: Insert Outside

7
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9

83
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0

6

 

Then, we climb our way back up.  On 
our way towards the root, we check if the 
current subtree violates the AVL Tree 
properties.  In this example, the AVL 
Tree property is violated at the root 7. 
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Example: Insert Outside

7

5 9

8

3

4

1 2

0 6

 

We therefore perform a single right 
rotation at 7 to fix the tree. 
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Case 2: Inside

Y

X Y

X

does not work

 

Single rotation does not work if the new 
node that causes violation belongs in the 
blue sub-tree.  We need double rotations. 
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Case 2: Inside

Y

X

rotate left around Y

Z
Y

X

Z

 

We first rotate left around Y.  We have 
reduced our problem to the previous one: 
Case 1. 
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Case 2: Become Case 1

Y

X

Z Y X

Z

rotate right around X

 

Now, we do a rotation around X to fix 
the problem. 
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Example: Insert Inside

7

5

9

81

4

0 2

3

 

In this example, we insert 3. 
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Example: Insert Inside

7

5

9

81

4

0 2

3

 

The AVL Tree property is violated at 4.  
We do a double rotation. 
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Example: Insert Inside

7

5

9

8

1

4

0

2

3

 

First, we rotate left at 1.  We get the tree 
shown in the left. 
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Example: Insert Inside

7

5

9

81 4

0

2

3

 

Then, we rotate right around 4. 
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Summary
p Insert outside: Single Rotation
p Insert inside: Double Rotation
p Two passes needed: first pass down to 

insert, second pass up to fix.
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Red-Black Tree
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A Red-Black Tree

5

4

7

2

3

1

6 8

 

A Red-Black Trees has 4 properties.  
(i) All nodes must be colored red or 
black. 
(ii) The root must be black 
(iii) If a parent is red, its children must 
be black 
(iv) All paths from the root to the null 
pointer must contain the same number of 
black nodes. 
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Dummy Leaves
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We add dummy black leaves to simplify 
implementation of red-black trees. 
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Properties of RB Tree
p B: Number of black nodes along a path
p N: Number of nodes

N >= 2B – 1
B <= log2(N+1)

 

To get the first inequality, we consider 
the smallest possible red-black tree with 
B black nodes along the path from root 
to null pointer.  Such a red-black tree 
must contain only black nodes, and is a 
complete binary tree. 
 



 

2 October 2002 

nus.soc.cs1102b.week9 43

Complete Binary Tree

= 2B-1

 

Recall how we compute the number of 
nodes in a complete binary tree (See 
Week 8: Trees).  The number of nodes is 
2B-1.  Note that we do not consider the 
dummy leaves here. 
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Height of an RB Tree
p h: Height of an RB Tree

h <= 2B
h <= 2 log2 (N+1)

h = O(log N)

 

For a general red-black tree, since we 
cannot have two consecutive red nodes, 
the maximum height must be 2B.  From 
B = log (N+1), we get h = 2log (N+1). 
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Red-Black Tree 
Insertion
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Insertion into a RBT

5

4

7

2

3

1
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We always color the new node red, 
because if the new node is black, we 
violate rule number 4. 
 
We insert as usual, then travel up the 
tree, trying to fix the tree if violation of 
red-black tree rules occurs. 
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Case 0: No Problemo

AP

G

X

 

If the parent of X is black, we are done.  
Note that in this case, we do not care if X 
is left or right child of its parent.  Nor do 
we care about the colors of the 
grandparent or uncle. 
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Case 1: Color Flip

AP

G

X

AP

G

X

flip

 

If the parent is red, we look at the color 
of its uncle.   If the uncle is red, we just 
do a color flip. Note that in this case, we 
do not care if X is left or right child of its 
parent either.  If the parent of G is black, 
then we are done.  Otherwise, parent of 
G is also red, and we have violated rule 
3.  We must continue to fix the tree. 
 
Note that even though I draw X as a leaf, 
this case may happen in general, when X 
is an internal node. 
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Case 2: Rotate

AP

G

X

GX

P

A

 

If X’s uncle is black, and X is a left 
child, we do a single right rotation 
around its grandparent, and then do a 
color flip.  After this, node that the 
parent is black, so we do not need to fix 
the tree any further (unlike case 1). 
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Case 2: Color Flip

GX

P

A

GX

P

A

flip
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Case 3: Rotate 1

AP

G

X

AX

G

P

 

If X’s uncle is black, and X is a right 
child, we need two rotations and a color 
flip. 
Just like case 2, after two rotations and 
one color flip, we do not need to fix the 
tree any further. 
 
Note that after the first rotation, we have 
reduce the problem to the previous one 
(case 2).   
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Case 3: Rotate 2

A

X

GPAX

G

P
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Case 3: Color Flip

A

X

GP

A

X

GP

flip
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Summary

X X

flip

X
OK

 

In summary, we insert, mess up the tree, 
and then use a bunch of rotations and 
color flips to correct the tree.   
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Summary

X

X
rotate,rotate,flip

X
Xrotate,flip
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Example: Case 1
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In this example, we insert 3.  We color 3 
as red. 
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Example: Case 3
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We flip the color.  But we still have two 
consecutive red nodes in 2 and 5. 
 
We move up the tree to fix it again.  
Note the position of 2,5,7 and 8.  This is 
case 3.  Do a double rotation and then a 
color flip. 
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Example: Rotate
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Example: Rotate
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Example: Flip
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Top-Down Insertion

 

The rest of these materials are not 
covered in the lecture, and are optional. 
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Idea

AP

G

X

make 
sure
uncle
is black

 

Using the insertion routine described 
previously, we need two passes to insert 
into a red-black tree: first pass down to 
insert, second pass up to rotate.   But we 
only need the second pass because in 
case 1, we change the color of the 
grandparent to red.  If we make sure that 
case 1 never happens (i.e., the uncle is 
always black), then we do not need to 
insert in two passes. 
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Idea

AP

G

AP

G

 

During the first pass of insert, when we 
traverse down the tree, everytime there is 
a potential that parent and uncle are both 
red, (that is, we see a black node with 
two red children), we do a color flip.  
Now, the grandparent is red, and this 
may violate rule 3 if the great-
grandparent is red as well.  But we can 
be sure that granduncle is black (WHY?) 
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Insert 3

7

5

8

1

2

4

9

6
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Insert 3
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Insert 3
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Top-Down Deletion
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delete key
X = root
while X is not empty

if X.data == key
delete X

else if X.data < key
X = X.left

else 
X = X.right

 

Just like top-down insertion, we can do 
top-down deletion.  The idea here is that 
we want to make sure the node to be 
deleted is red.  (WHY?).   As we traverse 
down the tree to find the node to be 
deleted, we color the current node as red.  
This of course will mess up the tree.  
Therefore, we have to fix it. 
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Idea: Make X Red
X = root
while X is not empty

if X.data == key
delete X

else if X.data < key
X = X.left

else 
X = X.right

make X red
fix the tree
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Case 1.1

SX

P

SX

P

 

If both children of X are black, and both 
children of X’s sibling are black as well, 
we just do a color flip to color X red and 
keep the RB-Tree properties. 
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Case 1.2

SX

P S

X

P

 

If both children of X are black, and X’s 
right niece (children of X’s sibling) is 
red, we need to perform a single rotation, 
follow by a color flip to color X as red 
and maintain the RB Tree properties. 
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Case 1.2

S

X

P

S

X

P
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Case 1.3

SX

P

S

X

P

 

If both children of X are black, and X’s 
left niece (children of X’s sibling) is red, 
we need to perform a double rotation, 
follow by a color flip to color X as red 
and maintain the RB Tree properties. 
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Case 1.3

S

X

P

S

X

P
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Case 1.3

S

X

P S

X

P
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Case 2

SX

P

X’

S

X

P

X’

 

Now consider the case if X has a red 
child.  We do nothing, and hope that the 
next step of traversal brings up to the red 
node.  If so, we are OK.  Otherwise, we 
have step onto a black node X’.  We do a 
rotation and a color flip.  But X’ is still 
black.  Now we check which case 
(1.1,1.2,1.3 or 2) applies again to make 
X’ red. 
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Case 2

S

X

P

X’

S

X

P

X’

 

 

 


