

2 October 2002

1

Week 9:
Balanced Trees

In the worst case, all BST operations
runs in O(N) time. This case happens
when the tree has a linear structure. We
want to maintain additional properties on
a BST so that it is balanced. Perfect
balance is hard to achieve, so we usually
relax the balance properties. As long as
we can make sure that the height of the
BST is always O(log N), we are happy!

nus.soc.cs1102b.week9 2

Readings
p Required
n [Weiss] ch19.4 and ch19.5 – 19.5.1
n http://www.ddj.com/print/documentID=14585

p Fun
n http://www.seanet.com/users/arsen/avltree.html
n http://www.cs.washington.edu/homes/sds/rb.html

(don’t take this too seriously)

p Exercise
n [Weiss] 19.5

6

Rotate Operation

The rotate operation is an important
operation for maintaining the balance of
a BST.

2 October 2002

nus.soc.cs1102b.week9 7

Rotate Right at 3

5

4

8

71

3

9

2 60

nus.soc.cs1102b.week9 8

After Rotate Right at 3

5

4

8

7

1

3 9

2 6

0

Rotation changes the heights of nodes.
In this example, the depth of node 4
increases by 1. The depth of node 0
decreases by 1. The depth of node 2
remains unchanged.

nus.soc.cs1102b.week9 9

After Rotate Right at 3

5

4

8

7

1

3 9

2 6

0

Right rotation modifies the following
pointers.

2 October 2002

nus.soc.cs1102b.week9 10

Rotate Right at x
rotateRight(x)

l = x.left
if l is empty

return
x.left = l.right
l.right = x
p = x.parent
if x is a left child

p.left= l
else

p.right = l

p

l

x

The pseudocode on the right shows how
we rotate right at x. The red arrows are
the pointers after modification.

nus.soc.cs1102b.week9 11

Rotate Left at 5

5

4

8

7

1

3 9

2 6

0

nus.soc.cs1102b.week9 12

After Rotate Left at 5

5

4

8

71

3

9

2

60

2 October 2002

nus.soc.cs1102b.week9 13

Rotation Summary

Y

X Y

X

rotate right x

rotate left y

15

AVL Tree

nus.soc.cs1102b.week9 16

AVL Tree Properties
pDifference in height between left

and right subtree is at most one.

1|| ≤− rl HH

2 October 2002

nus.soc.cs1102b.week9 17

AVL Tree Properties

nus.soc.cs1102b.week9 18

AVL Tree Example

X

nus.soc.cs1102b.week9 19

Height of an AVL Tree
pMinimal AVL trees: AVL Tree with fewest

possible number of nodes
pMinimal AVL trees with height 0

pMinimal AVL trees with height 1

2 October 2002

nus.soc.cs1102b.week9 20

Height of an AVL Tree
p n(h): number of nodes in a minimal AVL

tree with height h.

p n(0) = 1
p n(1) = 2
p n(h) = 1 + n(h-1) + n(h-2)

> 2n(h-2)
h-1 h-2

The last line comes from the fact that
n(h-1) > n(h-2).

nus.soc.cs1102b.week9 21

Height of an AVL Tree
n(h) > 2n(h-2)

> 2 * 2n(h-4)
> 4n(h-4)
> 4 * 2n(h-6)
> 8n(h-6)
:
> 2i n(h-2i)

nus.soc.cs1102b.week9 22

Height of an AVL Tree
n(h) > 2i n(h-2i)

when h – 2i = 0, i = h/2

n(h) > 2 h/2

h < 2 log n(h)
h < 2 log N
h = O(log N)

Verify that when h is odd, the height is
also O(log N)

2 October 2002

23

AVL Tree Insertion

nus.soc.cs1102b.week9 24

Idea

We can insert into the red subtree, blue
subtree, or gray subtree. Insertion in red
subtree never violates the AVL tree
property. But insertion into blue and
gray subtree _may_ cause a violation.

To insert into an AVL tree, we insert the
node as usual. After insertion, travel
from new node back to the root. At each
node, checks if | Hl – Hr | = 1. If
violation occurs, rotate the tree based on
the following cases.

nus.soc.cs1102b.week9 25

Case 1: Outside

Y

X Y

X

rotate right around X

2 October 2002

nus.soc.cs1102b.week9 26

Example: Insert Outside

7

5

9

83

4

1 2

0

6

0 is the new inserted node. In the first
pass, we move down the tree just like
insertion into a BST.

nus.soc.cs1102b.week9 27

Example: Insert Outside

7

5

9

83

4

1 2

0

6

Then, we climb our way back up. On
our way towards the root, we check if the
current subtree violates the AVL Tree
properties. In this example, the AVL
Tree property is violated at the root 7.

nus.soc.cs1102b.week9 28

Example: Insert Outside

7

5 9

8

3

4

1 2

0 6

We therefore perform a single right
rotation at 7 to fix the tree.

2 October 2002

nus.soc.cs1102b.week9 29

Case 2: Inside

Y

X Y

X

does not work

Single rotation does not work if the new
node that causes violation belongs in the
blue sub-tree. We need double rotations.

nus.soc.cs1102b.week9 30

Case 2: Inside

Y

X

rotate left around Y

Z
Y

X

Z

We first rotate left around Y. We have
reduced our problem to the previous one:
Case 1.

nus.soc.cs1102b.week9 31

Case 2: Become Case 1

Y

X

Z Y X

Z

rotate right around X

Now, we do a rotation around X to fix
the problem.

2 October 2002

nus.soc.cs1102b.week9 32

Example: Insert Inside

7

5

9

81

4

0 2

3

In this example, we insert 3.

nus.soc.cs1102b.week9 33

Example: Insert Inside

7

5

9

81

4

0 2

3

The AVL Tree property is violated at 4.
We do a double rotation.

nus.soc.cs1102b.week9 34

Example: Insert Inside

7

5

9

8

1

4

0

2

3

First, we rotate left at 1. We get the tree
shown in the left.

2 October 2002

nus.soc.cs1102b.week9 35

Example: Insert Inside

7

5

9

81 4

0

2

3

Then, we rotate right around 4.

nus.soc.cs1102b.week9 36

Summary
p Insert outside: Single Rotation
p Insert inside: Double Rotation
p Two passes needed: first pass down to

insert, second pass up to fix.

38

Red-Black Tree

2 October 2002

nus.soc.cs1102b.week9 39

A Red-Black Tree

5

4

7

2

3

1

6 8

A Red-Black Trees has 4 properties.
(i) All nodes must be colored red or
black.
(ii) The root must be black
(iii) If a parent is red, its children must
be black
(iv) All paths from the root to the null
pointer must contain the same number of
black nodes.

nus.soc.cs1102b.week9 41

Dummy Leaves

5

4

7

2

3

1

6 8

We add dummy black leaves to simplify
implementation of red-black trees.

nus.soc.cs1102b.week9 42

Properties of RB Tree
p B: Number of black nodes along a path
p N: Number of nodes

N >= 2B – 1
B <= log2(N+1)

To get the first inequality, we consider
the smallest possible red-black tree with
B black nodes along the path from root
to null pointer. Such a red-black tree
must contain only black nodes, and is a
complete binary tree.

2 October 2002

nus.soc.cs1102b.week9 43

Complete Binary Tree

= 2B-1

Recall how we compute the number of
nodes in a complete binary tree (See
Week 8: Trees). The number of nodes is
2B-1. Note that we do not consider the
dummy leaves here.

nus.soc.cs1102b.week9 44

Height of an RB Tree
p h: Height of an RB Tree

h <= 2B
h <= 2 log2 (N+1)

h = O(log N)

For a general red-black tree, since we
cannot have two consecutive red nodes,
the maximum height must be 2B. From
B = log (N+1), we get h = 2log (N+1).

45

Red-Black Tree
Insertion

2 October 2002

nus.soc.cs1102b.week9 46

Insertion into a RBT

5

4

7

2

3

1

6 8

9

We always color the new node red,
because if the new node is black, we
violate rule number 4.

We insert as usual, then travel up the
tree, trying to fix the tree if violation of
red-black tree rules occurs.

nus.soc.cs1102b.week9 47

Case 0: No Problemo

AP

G

X

If the parent of X is black, we are done.
Note that in this case, we do not care if X
is left or right child of its parent. Nor do
we care about the colors of the
grandparent or uncle.

nus.soc.cs1102b.week9 48

Case 1: Color Flip

AP

G

X

AP

G

X

flip

If the parent is red, we look at the color
of its uncle. If the uncle is red, we just
do a color flip. Note that in this case, we
do not care if X is left or right child of its
parent either. If the parent of G is black,
then we are done. Otherwise, parent of
G is also red, and we have violated rule
3. We must continue to fix the tree.

Note that even though I draw X as a leaf,
this case may happen in general, when X
is an internal node.

2 October 2002

nus.soc.cs1102b.week9 49

Case 2: Rotate

AP

G

X

GX

P

A

If X’s uncle is black, and X is a left
child, we do a single right rotation
around its grandparent, and then do a
color flip. After this, node that the
parent is black, so we do not need to fix
the tree any further (unlike case 1).

nus.soc.cs1102b.week9 50

Case 2: Color Flip

GX

P

A

GX

P

A

flip

nus.soc.cs1102b.week9 51

Case 3: Rotate 1

AP

G

X

AX

G

P

If X’s uncle is black, and X is a right
child, we need two rotations and a color
flip.
Just like case 2, after two rotations and
one color flip, we do not need to fix the
tree any further.

Note that after the first rotation, we have
reduce the problem to the previous one
(case 2).

2 October 2002

nus.soc.cs1102b.week9 52

Case 3: Rotate 2

A

X

GPAX

G

P

nus.soc.cs1102b.week9 53

Case 3: Color Flip

A

X

GP

A

X

GP

flip

nus.soc.cs1102b.week9 54

Summary

X X

flip

X
OK

In summary, we insert, mess up the tree,
and then use a bunch of rotations and
color flips to correct the tree.

2 October 2002

nus.soc.cs1102b.week9 55

Summary

X

X
rotate,rotate,flip

X
Xrotate,flip

nus.soc.cs1102b.week9 56

Example: Case 1

7

5

8

1

2

4

9

6

3

In this example, we insert 3. We color 3
as red.

nus.soc.cs1102b.week9 57

Example: Case 3

7

5

8

1

2

4

9

6

3

We flip the color. But we still have two
consecutive red nodes in 2 and 5.

We move up the tree to fix it again.
Note the position of 2,5,7 and 8. This is
case 3. Do a double rotation and then a
color flip.

2 October 2002

nus.soc.cs1102b.week9 58

Example: Rotate

7

6

8

2

5

4

9

3

1

nus.soc.cs1102b.week9 59

Example: Rotate

7

8

2

5

9

64

3

1

nus.soc.cs1102b.week9 60

Example: Flip

7

8

2

5

9

64

3

1

2 October 2002

62

Top-Down Insertion

The rest of these materials are not
covered in the lecture, and are optional.

nus.soc.cs1102b.week9 63

Idea

AP

G

X

make
sure
uncle
is black

Using the insertion routine described
previously, we need two passes to insert
into a red-black tree: first pass down to
insert, second pass up to rotate. But we
only need the second pass because in
case 1, we change the color of the
grandparent to red. If we make sure that
case 1 never happens (i.e., the uncle is
always black), then we do not need to
insert in two passes.

nus.soc.cs1102b.week9 64

Idea

AP

G

AP

G

During the first pass of insert, when we
traverse down the tree, everytime there is
a potential that parent and uncle are both
red, (that is, we see a black node with
two red children), we do a color flip.
Now, the grandparent is red, and this
may violate rule 3 if the great-
grandparent is red as well. But we can
be sure that granduncle is black (WHY?)

2 October 2002

nus.soc.cs1102b.week9 65

Insert 3

7

5

8

1

2

4

9

6

nus.soc.cs1102b.week9 66

Insert 3

7

5

8

1

2

4

9

6

nus.soc.cs1102b.week9 67

Insert 3

7

8

2

5

9

641

3

2 October 2002

68

Top-Down Deletion

nus.soc.cs1102b.week9 69

delete key
X = root
while X is not empty

if X.data == key
delete X

else if X.data < key
X = X.left

else
X = X.right

Just like top-down insertion, we can do
top-down deletion. The idea here is that
we want to make sure the node to be
deleted is red. (WHY?). As we traverse
down the tree to find the node to be
deleted, we color the current node as red.
This of course will mess up the tree.
Therefore, we have to fix it.

nus.soc.cs1102b.week9 70

Idea: Make X Red
X = root
while X is not empty

if X.data == key
delete X

else if X.data < key
X = X.left

else
X = X.right

make X red
fix the tree

2 October 2002

nus.soc.cs1102b.week9 71

Case 1.1

SX

P

SX

P

If both children of X are black, and both
children of X’s sibling are black as well,
we just do a color flip to color X red and
keep the RB-Tree properties.

nus.soc.cs1102b.week9 72

Case 1.2

SX

P S

X

P

If both children of X are black, and X’s
right niece (children of X’s sibling) is
red, we need to perform a single rotation,
follow by a color flip to color X as red
and maintain the RB Tree properties.

nus.soc.cs1102b.week9 73

Case 1.2

S

X

P

S

X

P

2 October 2002

nus.soc.cs1102b.week9 74

Case 1.3

SX

P

S

X

P

If both children of X are black, and X’s
left niece (children of X’s sibling) is red,
we need to perform a double rotation,
follow by a color flip to color X as red
and maintain the RB Tree properties.

nus.soc.cs1102b.week9 75

Case 1.3

S

X

P

S

X

P

nus.soc.cs1102b.week9 76

Case 1.3

S

X

P S

X

P

2 October 2002

nus.soc.cs1102b.week9 77

Case 2

SX

P

X’

S

X

P

X’

Now consider the case if X has a red
child. We do nothing, and hope that the
next step of traversal brings up to the red
node. If so, we are OK. Otherwise, we
have step onto a black node X’. We do a
rotation and a color flip. But X’ is still
black. Now we check which case
(1.1,1.2,1.3 or 2) applies again to make
X’ red.

nus.soc.cs1102b.week9 78

Case 2

S

X

P

X’

S

X

P

X’

