Week 12:
 Graphs

Readings

- Optional
- [Weiss] ch20
- [CLR] ch5.4
- Exercise
- 20.5
[CLR]: Cormen, Leiserson and Rivest, "Introduction to Algorithms" QA76.6 Crm RBR
nus.soc.cs1102..week10

Graph

nus.soc.cs1102..week10

Weighted Graph

nus.soc.cs1102b.week10
A graph consists of a set of vertices and a set of edges between the vertices. In a tree, there is a unique path between any two nodes. In a graph, there may be more than one path between two nodes.

In a weighted graph, edges have a weight (or cost) associated with it. Not all weights are labeled in this slides for simplicity.

Undirected Graph

nus.scc.cs 11022.wek10

Complete Graph

Path

nus.soc.cs 1102b.wek10

In an undirected graph, edges are bidirectional.

In a complete graph, a node is connected to every other nodes. The number of edges in a complete graph is $\mathrm{n}(\mathrm{n}-1) / 2$, where n is the number of vertices. (Why is it so?). Therefore, the number of edges is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

A path is a sequence of vertices $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, .$. v_{n} where there is an edge between v_{i} and v_{i+1}. The length of a path p is the number of edges in p .

A path $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$ is a cycle if $\mathrm{v}_{\mathrm{n}}=\mathrm{v}_{0}$ and its length is at least 1 . Note that the definition of path and cycle applies to directed graph as well.

Disconnected Graph

nus.scc.cs 1102b.wek10

Formally

A graph $G=(V, E, w)$, where

- V is the set of vertices
- E is the set of edges
- w is the weight function

Example

$V=\{a, b, c\}$
$E=\{(a, b),(c, b),(a, c)\}$
$w=\{((a, b), 4),((c, b), 1),((a, c),-3)\}$

Adjacent Vertices

$\square \mathbf{a d j}(\mathbf{v})=$ set of vertices adjacent to v
$\operatorname{adj}(a)=\{b, c\}$
$\operatorname{adj}(\mathrm{b})=\{ \}$
$\operatorname{adj}(c)=\{b\}$
$\square \sum_{v}|\operatorname{adj}(v)|=|E|$

- adj(v): Neighbours of v

In a connected graph, there is a path between every nodes. A graph does not have to be connected. The above graph has two connected components.

Interested students may refer to [CLR] Sec 5.4 for more precise definition of graph terminologies.

Applications

Travel Planning

nus.soc.cs1102b.week10

Internet

The Web

What is the shortest way to travel between A and B ?

"SHORTEST PATH PROBLEM"

How to mimimize the cost of visiting n cities such that we visit each city exactly once, and finishing at the city where we start from?

"TRAVELLING SALESMAN PROBLEM"

What is the shortest route to send a packet from A to B?
"Shortest Path Problem"

Which web pages are important?
Which group of web pages are likely to be of the same topic?

Module Selection

nus.soc.cs1102b.week10

SDU Matchmaking

Terrorist

nus.soc.cs1102b.week10

Other Applications

- Biology
- VLSI Layout
\square Vehicle Routing
- Job Scheduling
- Facility Location
:
:

Implementation

Adjacency Matrix

double vertex[][];

nus.soc.cs1102b.week10

Adjacency List

EdgeList vertex[];

nus.soc.cs1102b.week10

Vertex Map

Clementi

Since vertices are usually identified by names (person, city), not integers, we can use a hash table to map names to indices in our adjacency list/matrix.
This requires $\mathrm{O}\left(\mathrm{N}^{2}\right)$ memory, and is not suitable for sparse graph. (Only $1 / 3$ of the matrix in this example contains useful information).

How about undirected graph? How would you represent it?

This requires only $\mathrm{O}(\mathrm{V}+\mathrm{E})$ memory.

Breadth-First Search

Breadth-First Search

nus.soc.cs11020.week10

Breadth-First Search

nus.soc.cs 1102 b. week10

Breadth-First Search

nus.soc.cs1102b.week10

After BFS, we get a tree rooted at the source node. Edges in the tree are edges that we followed during searching. We call this BFS tree. Vertices in the figure are labeled with their distance from the source.
Given a source node, we like to start searching from that source. The idea of BFS is that we visit all nodes that are of distance i away from the source before we visits nodes that are of distance $\mathrm{i}+1$ away from the source. The order of searches is not unique and depends on the order of neighbours visited. with distance from source.

BFS(v)

$Q=$ new Queue
Q.enq (v)
while Q is not empty curr $=$ Q.deq ()
if curr is not visited print curr mark curr as visited foreach w in adj(curr)
if \mathbf{w} is not visited Q.enq(w)

nus.soc.cs1102b.week10

Building the BFS Tree

$Q=$ new $Q u e u e$
Q.enq (v)
v.parent = null
while Q is not empty curr = Q.deq() if curr is not visited
 mark curr as visited foreach w in adj(curr)
if w is not visited w.parent = curr Q.enq(w)

Calculating Level

$\mathrm{Q}=$ new Queue
Q.enq (v)
v.level = 0
while Q is not empty
curr = Q.deq()
if curr is not visited mark curr as visited
foreach w in adj(curr)
if w is not visited w.level = curr.level + 1 Q.enq(w)
uus.soc.cs11022., week10

Search All Vertices

Search(G)
foreach vertex v
mark v as unvisited
foreach vertex v if v is not visited BFS (v)

The pseudocode for BFS is very similar to level-order traversal of trees. The major difference is that, now we may visit a vertex twice (since unlike a tree, there may be more than one path between two vertices). Therefore, we need to remember which vertices we have visited before.

We can represent the BFS tree by maintaining the parent of a vertex during searching. (This is called "prev" in the textbook)

Similarly, we can maintain the distance of a vertex from the source. (level is equivalent to dist in the textbook)

BFS guarantees that if there is a path to a vertex v from the source, we can always visit v. But since some vertices maybe unreachable from the source, we can call BFS multiple times from multiple sources.

Running Time

$Q=$ new $Q u e u e$
Q.enq (v)
while Q is not empty curr = Q.deq()
if curr is not visited print curr
mark curr as visited
foreach w in adj(curr)
if w is not visited Q.enq(w)

Main Loop
$\Theta\left(\sum_{w \in V} \operatorname{adj}(w)\right)=\Theta(E)$
Initialization
$\Theta(V)$
Total Running Time $\Theta(V+E)$

Depth-First Search

Depth-First Search

nus.soc.cs1102b.week10

Depth-First Search

nus.soc.cs1102b.week10

Each vertex is enqueued exactly once. The for loop runs through all vertices in the adjacency list. Therefore the running time is $\mathrm{O}\left(\sum_{\mathrm{v}} \operatorname{adj}(\mathrm{v})\right)=\mathrm{O}(\mathrm{E})$.
(Note that technically, it should be $\mathrm{O}(|\mathrm{E}|)$, but we will abuse the notation for E and V to mean the number of edges and vertices as well).

Idea for DFS is to go as deep as possible. Whenever there is an outgoing edge, we follow it.

Depth-First Search

DFS(v)

$\mathrm{S}=$ new Stack
S.push (v)
while S is not empty
curr = S.pop()
if curr is not visited print curr
mark curr as visited
foreach w in $\operatorname{adj}(v)$
if w is not visited S.push(w)
,

nus.soc.cs1 102b.week10

Recursive Version: DFS(v)

print v
marked v as visited
foreach w in $\operatorname{adj}(v)$
if w is not visited DFS(w)

Search All Vertices

Search(G)
foreach vertex v
mark v as unvisited
foreach vertex v
if v is not visited DFS(v)

In DFS, we use a stack to "remember" where to backtrack to.

We can write DFS() recursively. (Trace through this code using the example above!)

Just like BFS, we may want to call DFS() from multiple vertices to make sure that we visit every vertex in the graph.

The running time for DFS is $\mathrm{O}(\mathrm{V}+\mathrm{E})$. (Why?)

Two more times!

Single-Source Shortest Path

Definition

A path on a graph G is a sequence of vertices v_{0}, $v_{1}, v_{2}, . . v_{n}$ where $\left(v_{i}, v_{i+1}\right) \in E$

The cost of a path is the sum of the cost of all edges in the path.

Unweighted Shortest Path

In Single-source shortest path problem, we are given a vertex v , and we want to find the path with minimum cost to every other vertex. The term "distance" and "length" of the path will be used interchangeably with the "cost" of a path.

If a graph is unweighted, we can treat the cost of each edge as 1 .

ShortestPath(s)

-Run BFS(s)

- w.level: shortest distance from s
-w.parent: shortest path from s

Positive Weighted Shortest Path

BFS(s) does not work

- Must keep track of smallest distance so far.
- If we found a new, shorter path, update the distance.

Idea 1

Definition

distance(v) : shortest distance so far from s to v
parent(v) : previous node on the shortest path so far from s to v
$\boldsymbol{\operatorname { c o s t }}(\mathbf{u}, \mathbf{v})$: the cost of edge from u to v

Example

distance $(w)=8$
$\operatorname{cost}(\mathrm{v}, \mathrm{w})=2$
parent $(w)=v$
nus.soc.cs1102b.week10

Relax(\mathbf{v}, \mathbf{w})

$d=\operatorname{distance}(v)+\operatorname{cost}(v, w)$
if distance $(w)>d$ then
distance $(w)=d$
parent $(\mathrm{w})=\mathrm{v}$

Idea 2

We now look at the pseudocode for a RELAX operation, based on our first idea.

The second idea is that if we know the shortest distance so far from w to v is 6 , and the shortest distances so far from w to other nodes are bigger or equal to 6 , then there cannot be a shorter path to v through the other white nodes. (This is only true if costs are positive!)

Dijkstra's Algorithm

Dijkstra's Algorithm

Dijkstra's Algorithm

color all vertices yellow
foreach vertex w
distance(w) = INFINITY
distance(s) $=0$

Dijkstra's Algorithm

while there are yellow vertices
$\mathrm{v}=$ yellow vertex with min distance(v)
color v red
foreach neighbour w of v relax(v,w)

Now we are ready to describe our single source, shortest path algorithm for graphs with positive weights. The algorithm is called Dijkstra's algorithm.

Running Time $\mathbf{O}\left(\mathbf{V}^{2}+E\right)$

color all vertices yellow
foreach vertex w distance(w) $=$ INFINITY
distance(s) $=0$
while there are yellow vertices
$v=$ yellow vertex with min distance(v)
color v red
foreach neighbour w of v relax (v,w)

Using Priority Queue

foreach vertex w
distance $(w)=$ INFINITY
distance(s) $=0$
$p q=$ new PriorityQueue(V)
while pq is not empty
$v=p q . d e l e t e M i n()$
foreach neighbour w of v relax (v,w)
nus.soc.cs 1102 b. week10

Initialization O(V)

foreach vertex w
distance(w) = INFINITY
distance(s) $=0$
$p q=$ new PriorityQueue (V)

Main Loop

while pq is not empty
v = pq.deleteMin()
foreach neighbour w of v relax (v,w)

Initialization takes $\mathrm{O}(\mathrm{V})$ time. Picking the vertex with minimum distance(v) can take $\mathrm{O}(\mathrm{V})$ time, and relaxing the neighbours take $\mathrm{O}(\operatorname{adj}(\mathrm{v}))$ time. The sum of these over all vertices is $\mathrm{O}\left(\mathrm{V}^{2}+\mathrm{E}\right)$. We can improve this, if we can improve the running time for picking the minimum.

Since priority queue supports efficient minimum picking operation, we can use a priority queue here to improve the running time. Note that we no longer color vertices here. Yellow vertices in the previous pseudocode are now vertices that are in the priority queue.

Initialization still takes $\mathrm{O}(\mathrm{V})$

But we have to be more careful with the analysis of the main loop. We know that each deleteMin() takes $\mathrm{O}(\log \mathrm{V})$ time. But $\operatorname{relax}(\mathrm{v}, \mathrm{w})$ is no longer $\mathrm{O}(1)$.

Main Loop $\mathbf{O}((\mathrm{V}+E) \log \mathrm{V})$

while pq is not empty
$\mathrm{v}=\mathrm{pq}$. deleteMin()
foreach neighbour w of v
$d=$ distance $(v)+\operatorname{cost}(v, w)$
if distance $(w)>d$ then // distance(w) = d pq.decreaseKey(w, d) parent $(\mathrm{w})=\mathrm{v}$

$\operatorname{cost}(u, v)<0 ?$

Problem 1

Problem 2

If we expand the code for relax(), we will see that we cannot simply update distance(v), since distance(v) is a key in pq. Here, we use an operation called decreaseKey() that updates the key value of distance(v) in the priority queue. decreaseKey() can be done in $\mathrm{O}(\log \mathrm{V})$ time. (How?).

The running time for this new version of Dijkstra's algorithm takes $\mathrm{O}((\mathrm{V}+\mathrm{E}) \log \mathrm{V})$ time.

Dijkstra's does not work for graphs with negative weights. There are two problems.

Even if we know the shortest path from w to v is 6 , there may be a shorter path through the other white nodes as the weight can be negative.

If a cycle with negative weights $(1+3-5=$ $-1)$ exists in the graph, the shortest path is not well defined, as we can keep going in the negative weighed cycle to get a path with smaller cost.

Basic Idea

foreach edge (u, v)

relax(u, v)

We will get the shortest paths of length 1 between s and all other vertices.

Repeat the above pseudocode |V|-1 times.

Bellman-Ford Algorithm

nus.soc.cs1102b.week10

Bellman-Ford Algorithm

nus.soc.cs1102b.week10

Bellman-Ford Algorithm

do |V|-1 times
foreach edge (u, v)
relax (u,v)
// check for negative weight cycle
foreach edge (u, v)
if distance (u) < distance $(v)+\operatorname{cost}(v, u)$ ERROR: has negative cycle

