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Continue from Last Week

 

 

Topological Sort
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Definition
Directed Acyclic Graph (dag): A directed 
graph with no cycle.
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Define an acyclic graph to be a graph without 
cycle.  An undirected acyclic graph is thus simply 
a tree.  A directed acyclic graph is also called a 
“dag” for short.  We also define in-degree of a 
vertex to be the number of incoming edges, and 
out-degree of a vertex to be the number of 
outgoing edges.  
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Definitions
in-degree of a vertex

number of incoming edges

out-degree of a vertex
number of outgoing edges
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Topological Sort
Goal: Order the vertices, such that if there 
is a path from u to v, u appears before v 
in the output.

 

 

nus.soc.cs1102b.week13

14

Topological Sort

ACBEFD
ACBEDF
ACDBEF
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Example
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We are interested in solving this problem: Given 
a dag, we want to order the vertices such that if 
there is a path from u to v, u appears before v in 
the output.  This is useful when vertices 
represents items with dependencies (such as 
course prerequisite) and we want to order the 
items without violating the dependencies. 
 
Topological sort is not unique.  In the graph 
above, ACBEFD and ACBEDF are both valid 
topological sorted orders.  ACDBEF is NOT 
topologically sorted because D appears before B 
and there is a path from B to D. 
 
We perform topological sort by repeatedly en-
queueing vertices with in-degree 0 into a queue, 
output the vertex de-queued from the queue and 
remove the edges from that vertex.  Since the 
order where we en-queued vertices with 0 in-
degree into the queue is not unique, the output is 
not unique. 
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Output: D
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Output: DB
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Output: DBC
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Output: DBCE
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Output: DBCEA

HGF
F
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Output: DBCEAF

HG
G
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Output: DBCEAFG

H
H
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Output: DBCEAFGH
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Pseudo code for Toposort
q = new Queue()
put all vertices with in-degree 0 into q
while q is not empty

v = q.deq()
print v
remove v from G
put all vertices with in-degree 0 into q
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Week 13: 
Algorithm Design 

Techniques

 

 

nus.soc.cs1102b.week13

26

Review of Techniques
Divide-and-Conquer Algorithm
Dynamic Programming
Greedy Algorithm

 

 

Divide-and-Conquer 
Algorithm
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3 Steps
Divide – divide problem into subproblems
Conquer – solve the subproblems
Combine – the solutions to the 
subproblems into the solution for the 
original problem.
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Example: Binary Search
Divide – divide array into half
Conquer – search in the smaller array
Combine – do nothing
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Example: Merge Sort
Divide – divide array into half
Conquer – sort the left and right halves
Combine – merge sorted left and right 
halves

 

 

nus.soc.cs1102b.week13

31

Example: Quick Sort
Divide – partition around a pivot
Conquer – sort the left and right halves
Combine – do nothing
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Example: Closest Points

 

Divide-and-conquer has many other applications 
besides sorting.  One application of this technique 
is to find two points that are the closest, among a 
given set of points.  A straight forward method of 
comparing every pairs would give an O(N) 
running time.  By using divide-and-conquer, we 
can achieve O(NlogN) running time.  The details 
of this algorithm is out of the scope of this course, 
therefore, only a sketch of the algorithm will be 
presented. 
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Example: Closest Points

 

DIVIDE: Given a set of points on a 2D plane, 
divide the points into two sets L and R such that 
they have equal number of points.  (If the number 
of given points is odd, then one set will have one 
point more than the other.) 
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Example: Closest Points

 

CONQUER: Recursively find the closest points 
in L and R. 
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Example: Closest Points

 

COMBINE: The closest pair must be either one 
of the closest pairs in the two sets, or consists of 
one point in each L and R.  We then check for the 
points in a strip of distance d, where d is the 
smaller distance of the closest pairs in L and R. 
 

Dynamic 
Programming

 

The next algorithm design paradigm is dynamic 
programming.  The idea of dynamic programming 
is that you solve the program by filling up a table.  
The problem is normally recursive in nature. 
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Fibonacci Numbers
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You have seen this in the calculation of fibonacci 
numbers. 
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Fibonacci Numbers

fib(n)
x[0] = 0
x[1] = 1
for (i = 2; i <= n; i++)

x[i] = x[i-1] + x[i-2]
return x[n]
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Binomial Coefficient
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Change-Making Problem
[Weiss] 7.6

For a currency with coin C1, C2, .. Cn
(cents), what is the min number of coins 
needed to make K cents of change?
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Example
C = {1, 5, 10, 20, 50}
K = 76 cents
Give 4 coins 50 + 20 + 5 + 1 = 76 

 

Some students have noticed that greedy method 
works on this example.  They are correct.  
However, greedy does not work on all cases.  
Suppose C = {1,5,10,21,50} and K = 63, then 
greedy will give 5 coins, but the optimal solution 
is 3 coins. 
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Formulation
To make a change of K cents, either

make a change of (K-50) cents, or
make a change of (K-20) cents, or
make a change of (K-10) cents, or
make a change of (K-5) cents, or
make a change of (K-1) cents

Number of coins for K = 
1 + minimum of all the above choices
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Dynamic Programming
)}({min1)( ii

CKcoinUsedKcoinUsed −+=

… …

min +1

KK-5K-10K-20
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All Pair Shortest Path
Execute Dijkstra’s Algorithm |V| times
Running Time: O(V(V+E)log V)

Floyd-Warshall Algorithm: O(V3)

 

Another example of dynamic programming is all-
pair shortest path where we are interested in 
calculating the shortest path between every pair of 
vertices.  One obvious solution is to execute 
Dijkstra’s algorithm from different source 
vertices.  But the running time would be 
O((V+E)V log V).  A dynamic programming 
solution runs in only O(V3) time. 
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Idea
Label the vertices with integers 1..n

Restrict the shortest paths from i to j to 
consist of vertices 1..k only

i

k
j

 

The idea behind Floyd-Warshall algorithm is this:  
Let the vertices be labeled from 1 to n.  We find 
shortest paths between any two vertices with the 
restriction that the vertices on the shortest path 
(excluding the end points) can only consists of 
vertices from 1 to k.  We then relax (nothing to do 
with Dijkstra’s relax() operation!) the restriction 
so that the shortest paths can include vertices 
from 1 to (k+1). 
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Idea
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The tables

i

j

k=4

k=5

 

To fill out an entry in the table k, we make use of 
entries for table k-1, For example, to calculate 
D5

4,3, (column 4 row 3 in table 5), we look at 
D4

4,3, and the sum of D4
4,5 and D4

5,3. We take the 
smaller of the two values and fill in D5

4,3. 
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The code
for i = 1 to |V|

for j = 1 to |V|
a[i][j][0] = cost(i,j)

for k = 1 to |V|
for i = 1 to |V|

for j = 1 to |V|
a[i][j][k] = min( a[i][j][k-1],

a[i][k][k-1] + a[k][j][k-1])

 

The pseudo code above only gives us the 
distances of the shortest path? How can you 
modify the code so that we can recover the 
shortest paths?   
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Greedy Algorithm
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Greedy Algorithm
Always pick the best immediate solution 
available, without thinking ahead

 

The last algorithm design paradigm is greedy 
algorithm.  Greedy Algorithm always pick the 
best immediate solution available, without 
looking ahead. 
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Dijkstra’s Algorithm
color all vertices yellow
foreach vertex w

distance(w) = INFINITY
distance(s) = 0

 

One example is Dijkstra’s algorithm.  We always 
pick the vertex with the shortest distance so far 
and conclude that we have found our shortest 
path. 
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Dijkstra’s Algorithm
while there are yellow vertices

v = yellow vertex with min distance(v)
color v red
foreach neighbour w of v

relax(v,w)
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Idea: Greedy Works!
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Greedy works in this case. 
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Spanning Tree

 

Another classic example of greedy graph 
algorithm is Prim’s algorithm for finding 
Minimum Spanning Tree.  A spanning tree is a 
set of edges that connects every vertex but yet 
does not form a cycle.  The minimum spanning 
tree problem (or MST) is the problem of finding a 
spanning tree where the total cost of the edges is 
minimal. 
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Minimum Spanning Tree
Given a graph G, find a spanning tree 
where total cost is minimum.
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Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

4

 

Prim’s algorithm is greedy because at every 
iteration, it chooses an edge with minimum cost 
that does not form a cycle.  
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

 

nus.soc.cs1102b.week13

64

Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Greedy Algorithm
color all vertices yellow
color the root red
while there are yellow vertices

pick an edge (u,v) such that
u is red, v is yellow & cost(u,v) is min

color v red

 

Note: we can pick any node to be the root. 
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Why Greedy Works?
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Why Greedy Works?
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Why Greedy Works?
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Greedy works in this case, because any spanning 
tree must include one of the edges that connects 
the yellow and the red vertices.  The edge with 
minimum cost must be part of the minimum 
spanning tree. 
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Prim’s Algorithm
foreach vertex v

v.key = ∞
root.key = 0
pq = new PriorityQueue(V)
while pq is not empty

v = pq.deleteMin()
foreach u in adj(v) 

if v is in pq and cost(v,u) < u.key
pq.decreaseKey(u, cost(v,u))

 

We can implement Prim’s algorithm using a 
priority queue as well, achieving the running time 
of O((V+E)log V). 
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Complexity: O((V+E)log V)
foreach vertex v

v.key = ∞
root.key = 0
pq = new PriorityQueue(V)
while pq is not empty

v = pq.deleteMin()
foreach u in adj(v) 

if v is in pq and cost(v,u) < u.key
pq.decreaseKey(u, cost(v,u))
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Traveling Salesman
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Here is a problem that cannot be solved with 
greedy algorithm.  The traveling salesman 
problem (TSP) can be stated as follows: given a 
graph, finds a simple cycle of |V| vertices with 
minimum cost.   (i.e., find a tour that visits every 
vertex exactly once and return to the source with 
minimum cost.) 
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Greedy: 16
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The greedy method will pick an outgoing edge to 
an unvisited vertex with minimum cost every 
time.  This can land us in trouble, because we 
might be force to pick a very expensive edge 
later. 
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Better Solution: 15
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Traveling Salesman
Nobody knows how to solve it in O(nk) for 
some constant k.

Exhaustively search for all possible paths 
takes O(n!)

 

The traveling salesman problem belongs to the 
class of problems known as NP.  All the other 
problems (sorting, shortest path) that can be 
solved in O(nk) belongs to the class P.  (NP stands 
for nondeterministic-polynomial and P stands for 
polynomial).  No one knows how to solve 
problems in NP in O(nk) time, that is, no one 
knows if NP = P. 
 

 


