
2 November 2002

Week 12:
Graphs

Continue from Last Week

Topological Sort

nus.soc.cs1102b.week13

11

Definition
Directed Acyclic Graph (dag): A directed
graph with no cycle.

A

C

D

B

EF

A

C

D

B

EF

Define an acyclic graph to be a graph without
cycle. An undirected acyclic graph is thus simply
a tree. A directed acyclic graph is also called a
“dag” for short. We also define in-degree of a
vertex to be the number of incoming edges, and
out-degree of a vertex to be the number of
outgoing edges.

nus.soc.cs1102b.week13

12

Definitions
in-degree of a vertex

number of incoming edges

out-degree of a vertex
number of outgoing edges

2 November 2002

nus.soc.cs1102b.week13

13

Topological Sort
Goal: Order the vertices, such that if there
is a path from u to v, u appears before v
in the output.

nus.soc.cs1102b.week13

14

Topological Sort

ACBEFD
ACBEDF
ACDBEF

A

C

D

B

EF

nus.soc.cs1102b.week13

15

Example

A

D

H

C

GF

E

B

D

We are interested in solving this problem: Given
a dag, we want to order the vertices such that if
there is a path from u to v, u appears before v in
the output. This is useful when vertices
represents items with dependencies (such as
course prerequisite) and we want to order the
items without violating the dependencies.

Topological sort is not unique. In the graph
above, ACBEFD and ACBEDF are both valid
topological sorted orders. ACDBEF is NOT
topologically sorted because D appears before B
and there is a path from B to D.

We perform topological sort by repeatedly en-
queueing vertices with in-degree 0 into a queue,
output the vertex de-queued from the queue and
remove the edges from that vertex. Since the
order where we en-queued vertices with 0 in-
degree into the queue is not unique, the output is
not unique.

nus.soc.cs1102b.week13

16

Output: D

A

H

C

GF

E

B

B

C

2 November 2002

nus.soc.cs1102b.week13

17

Output: DB

A

H

C

GF

E

C

E

nus.soc.cs1102b.week13

18

Output: DBC

A

HGF

E

E

A

F

nus.soc.cs1102b.week13

19

Output: DBCE

A

HGF A

F

nus.soc.cs1102b.week13

20

Output: DBCEA

HGF
F

nus.soc.cs1102b.week13

21

Output: DBCEAF

HG
G

nus.soc.cs1102b.week13

22

Output: DBCEAFG

H
H

nus.soc.cs1102b.week13

23

Output: DBCEAFGH

nus.soc.cs1102b.week13

24

Pseudo code for Toposort
q = new Queue()
put all vertices with in-degree 0 into q
while q is not empty

v = q.deq()
print v
remove v from G
put all vertices with in-degree 0 into q

2 November 2002

Week 13:
Algorithm Design

Techniques

nus.soc.cs1102b.week13

26

Review of Techniques
Divide-and-Conquer Algorithm
Dynamic Programming
Greedy Algorithm

Divide-and-Conquer
Algorithm

nus.soc.cs1102b.week13

28

3 Steps
Divide – divide problem into subproblems
Conquer – solve the subproblems
Combine – the solutions to the
subproblems into the solution for the
original problem.

2 November 2002

nus.soc.cs1102b.week13

29

Example: Binary Search
Divide – divide array into half
Conquer – search in the smaller array
Combine – do nothing

nus.soc.cs1102b.week13

30

Example: Merge Sort
Divide – divide array into half
Conquer – sort the left and right halves
Combine – merge sorted left and right
halves

nus.soc.cs1102b.week13

31

Example: Quick Sort
Divide – partition around a pivot
Conquer – sort the left and right halves
Combine – do nothing

nus.soc.cs1102b.week13

32

Example: Closest Points

Divide-and-conquer has many other applications
besides sorting. One application of this technique
is to find two points that are the closest, among a
given set of points. A straight forward method of
comparing every pairs would give an O(N)
running time. By using divide-and-conquer, we
can achieve O(NlogN) running time. The details
of this algorithm is out of the scope of this course,
therefore, only a sketch of the algorithm will be
presented.

2 November 2002

nus.soc.cs1102b.week13

33

Example: Closest Points

DIVIDE: Given a set of points on a 2D plane,
divide the points into two sets L and R such that
they have equal number of points. (If the number
of given points is odd, then one set will have one
point more than the other.)

nus.soc.cs1102b.week13

34

Example: Closest Points

CONQUER: Recursively find the closest points
in L and R.

nus.soc.cs1102b.week13

35

Example: Closest Points

COMBINE: The closest pair must be either one
of the closest pairs in the two sets, or consists of
one point in each L and R. We then check for the
points in a strip of distance d, where d is the
smaller distance of the closest pairs in L and R.

Dynamic
Programming

The next algorithm design paradigm is dynamic
programming. The idea of dynamic programming
is that you solve the program by filling up a table.
The problem is normally recursive in nature.

2 November 2002

nus.soc.cs1102b.week13

37

Fibonacci Numbers

0 1 …

0 1 2

…

i-2 i-1 i

otherwise
i
i

FF
F

ii

i 1
0

1
0

21

=
=

⎪
⎩

⎪
⎨

⎧

+
=

−−
+

You have seen this in the calculation of fibonacci
numbers.

nus.soc.cs1102b.week13

38

Fibonacci Numbers

fib(n)
x[0] = 0
x[1] = 1
for (i = 2; i <= n; i++)

x[i] = x[i-1] + x[i-2]
return x[n]

nus.soc.cs1102b.week13

39

Binomial Coefficient

⎪⎩

⎪
⎨
⎧

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

nor 0 if 1

1
1
1

k
k

n
k
n

k
n 1

1 1

1 1

1 1

1

1

k

n

nus.soc.cs1102b.week13

40

Change-Making Problem
[Weiss] 7.6

For a currency with coin C1, C2, .. Cn
(cents), what is the min number of coins
needed to make K cents of change?

2 November 2002

nus.soc.cs1102b.week13

41

Example
C = {1, 5, 10, 20, 50}
K = 76 cents
Give 4 coins 50 + 20 + 5 + 1 = 76

Some students have noticed that greedy method
works on this example. They are correct.
However, greedy does not work on all cases.
Suppose C = {1,5,10,21,50} and K = 63, then
greedy will give 5 coins, but the optimal solution
is 3 coins.

nus.soc.cs1102b.week13

42

Formulation
To make a change of K cents, either

make a change of (K-50) cents, or
make a change of (K-20) cents, or
make a change of (K-10) cents, or
make a change of (K-5) cents, or
make a change of (K-1) cents

Number of coins for K =
1 + minimum of all the above choices

nus.soc.cs1102b.week13

43

Dynamic Programming
)}({min1)(ii

CKcoinUsedKcoinUsed −+=

… …

min +1

KK-5K-10K-20

nus.soc.cs1102b.week13

44

All Pair Shortest Path
Execute Dijkstra’s Algorithm |V| times
Running Time: O(V(V+E)log V)

Floyd-Warshall Algorithm: O(V3)

Another example of dynamic programming is all-
pair shortest path where we are interested in
calculating the shortest path between every pair of
vertices. One obvious solution is to execute
Dijkstra’s algorithm from different source
vertices. But the running time would be
O((V+E)V log V). A dynamic programming
solution runs in only O(V3) time.

2 November 2002

nus.soc.cs1102b.week13

45

Idea
Label the vertices with integers 1..n

Restrict the shortest paths from i to j to
consist of vertices 1..k only

i

k
j

The idea behind Floyd-Warshall algorithm is this:
Let the vertices be labeled from 1 to n. We find
shortest paths between any two vertices with the
restriction that the vertices on the shortest path
(excluding the end points) can only consists of
vertices from 1 to k. We then relax (nothing to do
with Dijkstra’s relax() operation!) the restriction
so that the shortest paths can include vertices
from 1 to (k+1).

nus.soc.cs1102b.week13

46

Idea

k
j

i

0 k for
0 k for),min(

only {1..k} involving to from distanceShortest :

,

1
,

1
,

1
,

,

,

=
>

⎪⎩

⎪
⎨
⎧ +

=
−−−

ji

k
jk

k
ki

k
jik

ji

k
ji

w
DDD

D

jiD

nus.soc.cs1102b.week13

47

The tables

i

j

k=4

k=5

To fill out an entry in the table k, we make use of
entries for table k-1, For example, to calculate
D5

4,3, (column 4 row 3 in table 5), we look at
D4

4,3, and the sum of D4
4,5 and D4

5,3. We take the
smaller of the two values and fill in D5

4,3.

nus.soc.cs1102b.week13

48

The code
for i = 1 to |V|

for j = 1 to |V|
a[i][j][0] = cost(i,j)

for k = 1 to |V|
for i = 1 to |V|

for j = 1 to |V|
a[i][j][k] = min(a[i][j][k-1],

a[i][k][k-1] + a[k][j][k-1])

The pseudo code above only gives us the
distances of the shortest path? How can you
modify the code so that we can recover the
shortest paths?

2 November 2002

Greedy Algorithm

nus.soc.cs1102b.week13

50

Greedy Algorithm
Always pick the best immediate solution
available, without thinking ahead

The last algorithm design paradigm is greedy
algorithm. Greedy Algorithm always pick the
best immediate solution available, without
looking ahead.

nus.soc.cs1102b.week13

51

Dijkstra’s Algorithm
color all vertices yellow
foreach vertex w

distance(w) = INFINITY
distance(s) = 0

One example is Dijkstra’s algorithm. We always
pick the vertex with the shortest distance so far
and conclude that we have found our shortest
path.

nus.soc.cs1102b.week13

52

Dijkstra’s Algorithm
while there are yellow vertices

v = yellow vertex with min distance(v)
color v red
foreach neighbour w of v

relax(v,w)

2 November 2002

nus.soc.cs1102b.week13

53

Idea: Greedy Works!

≥6

6
≥6

≥6

≥6

≥6
≥6

v

w

Greedy works in this case.

nus.soc.cs1102b.week13

54

Spanning Tree

Another classic example of greedy graph
algorithm is Prim’s algorithm for finding
Minimum Spanning Tree. A spanning tree is a
set of edges that connects every vertex but yet
does not form a cycle. The minimum spanning
tree problem (or MST) is the problem of finding a
spanning tree where the total cost of the edges is
minimal.

nus.soc.cs1102b.week13

55

Minimum Spanning Tree
Given a graph G, find a spanning tree
where total cost is minimum.

nus.soc.cs1102b.week13

56

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

4

Prim’s algorithm is greedy because at every
iteration, it chooses an edge with minimum cost
that does not form a cycle.

2 November 2002

nus.soc.cs1102b.week13

57

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

58

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

59

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

60

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

61

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

62

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

63

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

64

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

2 November 2002

nus.soc.cs1102b.week13

65

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

66

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

67

Prim’s Algorithm

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

68

Prim’s Algorithm

3

1

2 1

2

1 23

1

3

4

2 November 2002

nus.soc.cs1102b.week13

69

Prim’s Greedy Algorithm
color all vertices yellow
color the root red
while there are yellow vertices

pick an edge (u,v) such that
u is red, v is yellow & cost(u,v) is min

color v red

Note: we can pick any node to be the root.

nus.soc.cs1102b.week13

70

Why Greedy Works?

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

71

Why Greedy Works?

3

1 3

4

2

3

1 4

2 3

1 4 23

45
1

4 3

43

nus.soc.cs1102b.week13

72

Why Greedy Works?

1 3

3

4

3

3

45 3

Greedy works in this case, because any spanning
tree must include one of the edges that connects
the yellow and the red vertices. The edge with
minimum cost must be part of the minimum
spanning tree.

2 November 2002

nus.soc.cs1102b.week13

73

Prim’s Algorithm
foreach vertex v

v.key = ∞
root.key = 0
pq = new PriorityQueue(V)
while pq is not empty

v = pq.deleteMin()
foreach u in adj(v)

if v is in pq and cost(v,u) < u.key
pq.decreaseKey(u, cost(v,u))

We can implement Prim’s algorithm using a
priority queue as well, achieving the running time
of O((V+E)log V).

nus.soc.cs1102b.week13

74

Complexity: O((V+E)log V)
foreach vertex v

v.key = ∞
root.key = 0
pq = new PriorityQueue(V)
while pq is not empty

v = pq.deleteMin()
foreach u in adj(v)

if v is in pq and cost(v,u) < u.key
pq.decreaseKey(u, cost(v,u))

nus.soc.cs1102b.week13

75

Traveling Salesman

2 1

6 3

5

6

3

2

4 4

Here is a problem that cannot be solved with
greedy algorithm. The traveling salesman
problem (TSP) can be stated as follows: given a
graph, finds a simple cycle of |V| vertices with
minimum cost. (i.e., find a tour that visits every
vertex exactly once and return to the source with
minimum cost.)

nus.soc.cs1102b.week13

76

Greedy: 16

2 1

6 3

5

6

3

2

4 4

The greedy method will pick an outgoing edge to
an unvisited vertex with minimum cost every
time. This can land us in trouble, because we
might be force to pick a very expensive edge
later.

2 November 2002

nus.soc.cs1102b.week13

77

Better Solution: 15

2 1

6 3

5

6

3

2

4 4

nus.soc.cs1102b.week13

78

Traveling Salesman
Nobody knows how to solve it in O(nk) for
some constant k.

Exhaustively search for all possible paths
takes O(n!)

The traveling salesman problem belongs to the
class of problems known as NP. All the other
problems (sorting, shortest path) that can be
solved in O(nk) belongs to the class P. (NP stands
for nondeterministic-polynomial and P stands for
polynomial). No one knows how to solve
problems in NP in O(nk) time, that is, no one
knows if NP = P.

