Week 12: Graphs

Topological Sort

Definitions

in-degree of a vertex

- number of incoming edges
out-degree of a vertex
- number of outgoing edges

Define an acyclic graph to be a graph without cycle. An undirected acyclic graph is thus simply a tree. A directed acyclic graph is also called a "dag" for short. We also define in-degree of a vertex to be the number of incoming edges, and out-degree of a vertex to be the number of outgoing edges.

Topological Sort

\square Goal: Order the vertices, such that if there is a path from u to v, u appears before v in the output.

Topological Sort

$$
\begin{aligned}
& \square \text { ACBEFD } \\
& \square \text { ACBEDF } \\
& \square \text { ACDBEF }
\end{aligned}
$$

Example

We are interested in solving this problem: Given a dag, we want to order the vertices such that if there is a path from u to v, u appears before v in the output. This is useful when vertices represents items with dependencies (such as course prerequisite) and we want to order the items without violating the dependencies.

Topological sort is not unique. In the graph above, ACBEFD and ACBEDF are both valid topological sorted orders. ACDBEF is NOT topologically sorted because D appears before B and there is a path from B to D .

We perform topological sort by repeatedly enqueueing vertices with in-degree 0 into a queue, output the vertex de-queued from the queue and remove the edges from that vertex. Since the order where we en-queued vertices with 0 indegree into the queue is not unique, the output is not unique.

Output: DBCEAF

Output: DBCEAFGH

Pseudo code for Toposort
$\mathrm{q}=$ new Queue()
put all vertices with in-degree 0 into q
while q is not empty
$\mathrm{v}=\mathrm{q} . \operatorname{deq}()$
print v
remove v from G
put all vertices with in-degree 0 into q

Week 13:
 Algorithm Design Techniques

Review of Techniques

Divide-and-Conquer Algorithm
Dynamic Programming
Greedy Algorithm

Divide-and-Conquer Algorithm

3 Steps

\square Divide - divide problem into subproblems
Conquer - solve the subproblems
\square Combine - the solutions to the subproblems into the solution for the original problem.

Example: Binary Search

Divide - divide array into half
Conquer - search in the smaller array
\square Combine - do nothing

Example: Merge Sort

Divide - divide array into half
Conquer - sort the left and right halves
\square Combine - merge sorted left and right halves

Example: Quick Sort

Divide - partition around a pivot
Conquer - sort the left and right halves Combine - do nothing

Divide-and-conquer has many other applications besides sorting. One application of this technique is to find two points that are the closest, among a given set of points. A straight forward method of comparing every pairs would give an $\mathrm{O}(\mathrm{N})$ running time. By using divide-and-conquer, we can achieve $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ running time. The details of this algorithm is out of the scope of this course, therefore, only a sketch of the algorithm will be presented.

DIVIDE: Given a set of points on a 2D plane, divide the points into two sets L and R such that they have equal number of points. (If the number of given points is odd, then one set will have one point more than the other.)

CONQUER: Recursively find the closest points in L and R.

COMBINE: The closest pair must be either one of the closest pairs in the two sets, or consists of one point in each L and R. We then check for the points in a strip of distance d, where d is the smaller distance of the closest pairs in L and R.

The next algorithm design paradigm is dynamic programming. The idea of dynamic programming is that you solve the program by filling up a table. The problem is normally recursive in nature.

Fibonacci Numbers

$$
F_{i}= \begin{cases}0 & i=0 \\ 1 & i=1 \\ F_{i-1}+F_{i-2} & \text { otherwise }\end{cases}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & & \cdots & & & & \ldots \\
\hline \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{i - 2} & \mathbf{i}-1 & i
\end{array}
$$

Fibonacci Numbers

fib(n)

$x[0]=0$
$x[1]=1$
for ($\mathrm{i}=2 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$) $x[i]=x[i-1]+x[i-2]$
return $x[n]$

Binomial Coefficient

$\binom{n}{k}=\left\{\begin{array}{l}\binom{n-1}{k-1}+\binom{n-1}{k} \\ 1 \quad \text { if } k=0 \text { or } n\end{array}\right.$

$$
\mathbf{n}
$$

Change-Making Problem

\square [Weiss] 7.6
For a currency with coin C1, C2, .. Cn (cents), what is the min number of coins needed to make K cents of change?

You have seen this in the calculation of fibonacci numbers.

Example

$\square C=\{1,5,10,20,50\}$
$\square K=76$ cents
\square Give 4 coins $50+20+5+1=76$

Formulation

\square To make a change of K cents, either - make a change of ($\mathrm{K}-50$) cents, or

- make a change of ($\mathrm{K}-20$) cents, or
- make a change of ($\mathrm{K}-10$) cents, or
- make a change of ($\mathrm{K}-5$) cents, or
- make a change of ($\mathrm{K}-1$) cents

Number of coins for $K=$
$1+$ minimum of all the above choices
nus.soccs s102b. week13

Dynamic Programming

$\operatorname{coinUsed}(K)=1+\min _{i}\left\{\operatorname{coinUsed}\left(K-C_{i}\right)\right\}$

All Pair Shortest Path

\square Execute Dijkstra's Algorithm |V| times
\square Running Time: $\mathrm{O}(\mathrm{V}(\mathrm{V}+\mathrm{E}) \log \mathrm{V})$
\square Floyd-Warshall Algorithm: O(V3)

Some students have noticed that greedy method works on this example. They are correct.
However, greedy does not work on all cases. Suppose $C=\{1,5,10,21,50\}$ and $K=63$, then greedy will give 5 coins, but the optimal solution is 3 coins.

Another example of dynamic programming is allpair shortest path where we are interested in calculating the shortest path between every pair of vertices. One obvious solution is to execute Dijkstra's algorithm from different source vertices. But the running time would be $\mathrm{O}((\mathrm{V}+\mathrm{E}) \mathrm{V} \log \mathrm{V})$. A dynamic programming solution runs in only $\mathrm{O}\left(\mathrm{V}^{3}\right)$ time.

Idea

\square Label the vertices with integers $1 . . n$
\square Restrict the shortest paths from i to j to consist of vertices $1 . . \mathrm{k}$ only

Idea

$D_{i, j}^{k}$: Shortest distance from i to j involving $\{1 . . \mathrm{k}\}$ only
$D_{i, j}^{k}=\left\{\begin{array}{lr}\min \left(D_{i, j}^{k-1}, D_{i, k}^{k-1}+D_{k, j}^{k-1}\right) & \text { for } \mathrm{k}>0 \\ w_{i, j} & \text { for } \mathrm{k}=0\end{array}\right.$

The tables

The code

$$
\begin{aligned}
& \text { for } i=1 \text { to }|V| \\
& \text { for } j=1 \text { to }|V| \\
& a[i][j][0]=\operatorname{cost}(i, j) \\
& \text { for } k=1 \text { to }|V| \\
& \text { for } i=1 \text { to }|V| \\
& \quad \text { for } j=1 \text { to }|V| \\
& \quad a[i][j][k]=\min (a[i][j][k-1], \\
& \quad a[i][k][k-1]+a[k][j][k-1])
\end{aligned}
$$

The idea behind Floyd-Warshall algorithm is this: Let the vertices be labeled from 1 to n . We find shortest paths between any two vertices with the restriction that the vertices on the shortest path (excluding the end points) can only consists of vertices from 1 to k . We then relax (nothing to do with Dijkstra's relax() operation!) the restriction so that the shortest paths can include vertices from 1 to $(k+1)$.

To fill out an entry in the table k, we make use of entries for table k-1, For example, to calculate $\mathrm{D}_{4,3,}^{5}$ (column 4 row 3 in table 5), we look at $\mathrm{D}_{4,3}^{4}$, and the sum of $\mathrm{D}_{4,5}^{4}$ and $\mathrm{D}_{5,3}^{4}$. We take the smaller of the two values and fill in $\mathrm{D}^{5}{ }_{4,3}$.

The pseudo code above only gives us the distances of the shortest path? How can you modify the code so that we can recover the shortest paths?

Greedy Algorithm

Greedy Algorithm

\square Always pick the best immediate solution available, without thinking ahead

Dijkstra's Algorithm

color all vertices yellow
foreach vertex w
distance(w) = INFINITY
distance(s) $=0$

Dijkstra's Algorithm

while there are yellow vertices
$\mathrm{v}=$ yellow vertex with min distance(v) color v red
foreach neighbour w of v relax(v,w)

The last algorithm design paradigm is greedy algorithm. Greedy Algorithm always pick the best immediate solution available, without looking ahead.

One example is Dijkstra's algorithm. We always pick the vertex with the shortest distance so far and conclude that we have found our shortest path.

Idea: Greedy Works!

Minimum Spanning Tree

\square Given a graph G, find a spanning tree where total cost is minimum.

Greedy works in this case.

Another classic example of greedy graph algorithm is Prim's algorithm for finding Minimum Spanning Tree. A spanning tree is a set of edges that connects every vertex but yet does not form a cycle. The minimum spanning tree problem (or MST) is the problem of finding a spanning tree where the total cost of the edges is minimal.

Prim's algorithm is greedy because at every iteration, it chooses an edge with minimum cost that does not form a cycle.

Prim's Algorithm

Prim's Algorithm

Prim's Algorithm

Prim's Greedy Algorithm

color all vertices yellow
color the root red
while there are yellow vertices pick an edge (u, v) such that
u is red, v is yellow \& $\operatorname{cost}(u, v)$ is min color v red

Note: we can pick any node to be the root.

Greedy works in this case, because any spanning tree must include one of the edges that connects the yellow and the red vertices. The edge with minimum cost must be part of the minimum spanning tree.

Prim's Algorithm

foreach vertex v

$$
\text { v.key }=\infty
$$

root.key $=0$
$p q=$ new PriorityQueue(V)
while pq is not empty
$\mathrm{v}=\mathrm{pq}$. deleteMin()
foreach uin $\operatorname{adj}(\mathrm{v})$
if v is in $p q$ and $\operatorname{cost}(v, u)<u$. key pq. decreaseKey $(u, \operatorname{cost}(v, u))$

Complexity: O((V+E)log V)

foreach vertex v
v.key $=\infty$
root.key $=0$
pq = new PriorityQueue(V)
while pq is not empty
$v=$ pq.deleteMin()
foreach uin $\operatorname{adj}(\mathrm{v})$
if v is in $p q$ and $\operatorname{cost}(v, u)<u . k e y$ pq. decreaseKey($u, \operatorname{cost}(v, u)$)

Traveling Salesman

Greedy: 16

We can implement Prim’s algorithm using a priority queue as well, achieving the running time of $\mathrm{O}((\mathrm{V}+\mathrm{E}) \log \mathrm{V})$.

Here is a problem that cannot be solved with greedy algorithm. The traveling salesman problem (TSP) can be stated as follows: given a graph, finds a simple cycle of $|\mathrm{V}|$ vertices with minimum cost. (i.e., find a tour that visits every vertex exactly once and return to the source with minimum cost.)

The greedy method will pick an outgoing edge to an unvisited vertex with minimum cost every time. This can land us in trouble, because we might be force to pick a very expensive edge later.

Better Solution: 15

nus. Soccs 1102 b . week13

Traveling Salesman

Nobody knows how to solve it in $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ for some constant k .
\square Exhaustively search for all possible paths takes O(n!)

The traveling salesman problem belongs to the class of problems known as NP. All the other problems (sorting, shortest path) that can be solved in $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ belongs to the class P . (NP stands for nondeterministic-polynomial and P stands for polynomial). No one knows how to solve problems in NP in $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ time, that is, no one knows if $\mathrm{NP}=\mathrm{P}$.

