1. [Quick Review]
(a) Draw the graph represented by the following adjacency matrix.

	a	b	c	d	e	f	g
a		7	4				
b			5	3			
c				1			
d		1			2	2	5
e		1					
f			4	1			2
g					1		

ANSWER See Figure 1.
(b) Draw the adjacency list representation for this graph.

ANSWER See Figure 1.
(c) What is the sequence of vertices visited when we perform depth-first search from a ?
ANSWER a c d begf (Note: not unique)
(d) What is the sequence of vertices visited when we perform breadth-first search from a ?
ANSWER a b c d e g f (Note: not unique)
(e) Find the shortest path to all the other nodes from a using Dijkstra's algorithm.
ANSWER See Figure 2

Figure 1: Answer for question 1(a) and (b)

Figure 2: Shortest path for question 1(e)

2. [Representations of Graph]

(a) An undirected graph is a graph where the edges are unordered, i.e., edge (u, v) is the same as edge (v, u). How can adjacency list and adjacency matrix compactly represent an undirected, weighted graph? Show how to query if an edge (i, j) exists in the graph.
ANSWER To check if (i, j) exists, we query for edge (i, j) if $i<j$ and query for (j, i) if $j<i$. We only need to store one copy of edge (i, j). For adjacency matrix, we can use half the matrix by using a ragged 2 D array.
(b) Let n_{i} be the number of outgoing edges of a vertex i and m_{i} be the number of incoming edges of a vertex i. Show how to modify the adjacency list representation so that we can list all incoming edges of i in $O\left(m_{i}\right)$ time and all outgoing edges of i in $O\left(n_{i}\right)$ time.
ANSWER See Figure 3 for an illustration of the data structure.

Figure 3: Answer for question 2(b)
(c) Let n_{i} be the number of vertices adjacent to a vertex i. Suppose we want to support the following four operations on a graph: insert (i, j), which adds an edge (i, j) into the graph; delete (i, j), which removes the edge (i, j) from the graph; exists (i, j), which checks if edge (i, j) exists in the graph; and neighbours (i), which returns the list of vertices adjacent to i. Give a data structure that supports insert (i, j), delete (i, j) and exists (i, j) in $O(1)$ time on average, and neighbours (i) in $O\left(n_{i}\right)$ time.
ANSWER Use an adjacency list, where the lists are doubly linked, and a hash table where (i, j) is the key. Hash entries for key (i, j) contains references to a node representing (i, j) in the adjacency list.
3. [Breadth-first Search] A 1-2 graph is a directed weighted graph whose edges have weights either 1 or 2 . Show how to modify breadth-first search so that it can calculate the shortest paths from a given vertex in $O(V+E)$ time.
ANSWER Transform the input G into an unweighted graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ by inserting additional vertices into G : For every edge (u, v) with weight 2 , insert a new vertex x and replace edge (u, v) with edges (u, x) and (x, v). BFS on G^{\prime} is still $O(V+E)$ because $\left|V^{\prime}\right|=O(V+E)$ and $\left|E^{\prime}\right|=O(E)$.
4. [Longest Path] Bob thinks that computing the single-source longest path in a positive weighted graph can be done in the same running time as single-source shortest path by modifying Dijkstra's algorithm. Is he correct? Either show what modifications are needed, or gives a different algorithm.
ANSWER Finding longest paths cannot be solved by modifying Dijkstra's algorithm. To find longest path, use exhaustive search, which will give exponential running time. (NOTE to TAs: This is a good place to tell stories about NP-complete problems.)

