SPaDES/JAVA USER MANUAL

SPaDES/Java Simulation Library

User Manual

Version 0.1

February 2001 (1st Draft)

Department of Computer Science

NATIONAL UNIVERSITY OF SINGAPORE

3 Science Drive 2, Singapore 117543

©National University of Singapore. All rights reserved.

Contents

1 Introduction 1

 1.1 About SPaDES/Java 1

1.2 Modeling Views

 1

1.3 Processes

 2

1.4 Resources

 3

1.4.1
Queuing Discipline

 3

1.5 Class Specifications

 5

1.6 Syntax Summary 8

1.7 Simulator Template

 9

1.8 Simulation Terminating Condition

 10

2 Statistical Features

 11
2.1 Random Number Generation

 11

2.2 Statistical Reporting

 13

2.2.1 User Report

 13

2.2.2 System Report

 15

2.2.3 Interval Reporting

 15

2.2.4 Referencing statistical measures from the user program
 16

3. Using SPaDES/Java

 18

3.1 Compiling the Simulator

 18

3.2 Executing the Simulator

 18

3.3
Resetting a Simulation

 20

3.4
Run-in Period

 20

References

 22

A Simulation Examples

 25
A.1
Petrol Station

 25

A.2
Super Ping

 27

A.3
Torus Network

 28

A.4
Columbian Health Care

 31

1. Introduction

1.1 About SPaDES/Java

SPaDES/Java (Structured Parallel Discrete Event Simulation in Java) system is designed to incorporate the parallel programming technology into discrete event simulations. The SPaDES system adopts the approach of augmenting a general-purpose language with essential constructs to support simulation modeling based on the process-oriented modeling technology. At the lower levels, SPaDES/Java uses the conservative null message protocol [1, 4] for the synchronization of events across different processors in a distributed simulation. The modeling environment currently provides 6 primitives for dictating the process routines, and the implementation of these primitives is transparent to a SPaDES/Java modeler. Therefore, the simulation programmer can concentrate on modeling and be lifted from the burden of programming the complicated event synchronization protocol and message passing mechanism.

1.2 Modeling Views

In every simulation, the simulationist must first model the entities in the real world problems as a conceptual model. Then the conceptual model is translated into a simulation program for execution. Therefore, appropriate modeling framework is needed to develop and implement a simulation model. The modeling framework, also called world view, is an underlying structure and organization of ideas that form the outline and basis on which a simulationist is to build a simulation model. In sequential simulation, there are three main modeling views: event scheduling, activity scanning and process interaction. SPaDES adopts a modified process-interaction modeling view called process-oriented modeling view. In this view, entities in the real world are viewed as a set of processes each encapsulating its own state and behaviour, and processes interact with one another through message passing. Furthermore, it is necessary for a process-oriented model to be mapped to an operational model that is suitable for parallelization. The operational model of SPaDES is based on the Virtual Time Paradigm described above. Figure 1.2 illustrates this concept.

Figure 1.2 :
Process-oriented modeling view

In the process-oriented view, real-world entities are categorized into permanent and temporary entities. A permanent entity, modeled as a resource, exists throughout the simulation duration. A temporary entity, modeled as a process, is a process that can be created dynamically at any point during the simulation and thus does not exist throughout the simulation duration. In the operational model, resources are modeled as LPs and processes are modeled as timestamped event messages passed between LPs.

1.3 Processes

During its entire simulation lifetime, a process can be in any one of five states, namely active, blocked, pending, non-existent or holding, as shown in Figure 1.3. When a process is initially created in the simulation program, it is classified as non-existent relative to the system until it is activated, which virtually causes it to enter the pending state. Now, the process is officially within the system, and it is scheduled for execution at a simulation time corresponding to the timestamp of the process. The timestamp of a process here refers to the global virtual time at which the process is to undertake the next activity specified by its event tag. The process enters the active state when it begins its execution. When the simulation clock advances to the timestamp of the process, the process automatically goes to the active state (shown by the dotted line). During the execution, it may request service at a specific resource in the system, and when the resource is unavailable, the process halts execution temporarily, thus, it is considered to be in the blocked state. A process can even suspend itself during its turn of execution, causing it to fall into the holding state. Once in this state, the process will remain suspended till another process reactivates it with a higher timestamp, causing it to return to the pending state. It will become active when the simulation clock advances to its reactivation time. A process is also in the non-existent state when it has completed its thread of execution and ceases to exist officially in the simulation system.

 terminate

susPend

 work

 wait

 normal

normal

 activate

 reactivate

Figure 1.3 :
State transition of a SPaDES/Java process

1.4
Resources
Resources are the permanent simulation entities present to provide services to the active processes upon request. Each resource comprises of a default FIFO queue, created when the resource is constructed, and whose function is to maintain the arrival of processes to the resource according to their timestamp values, followed by event priority. When the resource is busy serving another process, an arrival process is subsequently queued in this resource queue. The process is serviced immediately when the resource is idle. Each resource is really a collection set of service units, which is the basic functional unit of a resource. In our implementation, when an active process requests for service at any particular resource, the total number of service units required must be explicitly mentioned.

1.4.1
Queuing Discipline
The default queuing discipline adopted in SPaDES/Java simulations is First-Come-First-Serve (FCFS). Consider the simulation of a single server system. Suppose the server is busy and more processes arrive to be serviced, these processes will be assigned to wait for their turn in the server's queue, otherwise known as the Current Event List (CEL) [7, 10, 13, 25]. A FCFS discipline [26] means that the processes are ordered in the queue based solely on their timestamp values.

SPaDES/Java also supports different a more general form of priority queuing discipline, defined by the user. This means that a process with a higher timestamp value arriving at a busy server can actually be queued before a process with a smaller timestamp value but of a lower user-dictated priority. Users who intend to adopt this more generic queuing discipline have to override the comparesWith method in the SProcess class with the relevant priority definition routine. The format of this method is :

comparesWith process

where process is a reference to the process whose priority is to be compared to this calling process. Figure 1.4 illustrates a single-server queuing system with a FCFS and a LIFO discipline respectively.

(a)

(b)

Figure 1.4 :
Single-server queuing system with a

(a) FCFS discipline, (b) LIFO discipline

1.5 Class Hierarchy

The SPaDES/Java simulation class hierarchy is shown in Figure 1.5. To support parallel simulation, all the SPaDES/Java classes are sub-classes of the Thread class in Java. The SPaDES/Java package consists of the following simulation classes.

· SimObject is the base class of all simulation classes in the SPaDES/Java library. It contains all the necessary variables that can be accessed by all simulation classes.
· SProcess class is used to model an independent, dynamic entity. In a general-purpose language, a process may be represented by a complex data type and is associated with a process that indicates the logic of the life-cycle of the process.
· Resource class is used to model a passive entity and can be represented using a complex data structure. A resource has associated with it a name, the number of resource units available and an implicit event list.
· Executive class administrates all the low-level activities involved in the simulation. Its functions include, firstly, initialize and start the simulator; secondly, generates simulation output when the simulation completes.

Figure 1.5 :
Essentials of the SPaDES/Java class hierarchy

Resources in the process-oriented view are regarded as a type of simulation processes, though a passive one. The Resource class contains an implicit queue and methods that model the arrival and departure of an SProcess object, but these are transparent to the simulationist, whose operating environment only revolves around the SProcess class. The only significance is the constructor of the Resource object. There are three different versions, but the one which is normally called is the following :

 public Resource(String name, double min_servicetime, int units)

where name refers to the name of the resource and units refer to the total number of service units that are to make up the resource. The parameter min_servicetime, which is used in a conservative logical process as lookahead to send null messages, since in the process-oriented view, the service time, or the lookahead of an LP is not generated in the LP itself but in the jobs that arrive the LP. This is logical since for most of the real world servers there is minimal service time. The resources have to be declared in the Executive object, which is the global environment of the simulation.

The SProcess class models a process object in the system. The simulationist manipulates processes in the simulation via a set of abstracted methods, known as primitives, declared within the SProcess class. There are six such primitives, corresponding to the state transition model illustrated earlier in this report.

The activate primitive causes a newly created process to be scheduled for future execution in the FEL with a timestamp of (simulation clock + time). It takes on the format

activate process time

where process is the process to be activated and time refers to the simulation time duration from the current clock time after which process is activated. This method is available within both the SProcess and Executive classes, and therefore, can be called by instances of both the classes. However, it is called by the executive routine only during the initialization phase to kick off the pioneer processes of the simulation. The primitive is actually a macro call to the _activate function call within the SProcess class, called by the process to be activated itself.

When an active process calls the reactivate primitive on a process in the holding state, the latter is virtually awoken and rescheduled for execution (in the FEL) from the position immediately succeeding the call for its suspension previously. The format is

reactivate process time
where process is the process to be reactivated, and time is the time duration from the current clock time after which process is reactivated.

A process requests for service at a resource by calling the work primitive, which is of the form

work resource time service_units

where resource is a reference to the server requested, time is the duration of service, and service_units is the number of service units of the resource required to service the process. When the work primitive is being called, the process arrives at the resource and is subsequently executed if there are sufficient resource units available. Otherwise, the process enters the blocked state and waits in the CEL for the required resource to be available. After completing the requested service, the process is scheduled for departure from the resource in the FEL, stamped with the timestamp at which departure should take place.

The wait primitive models the passage of time of a process in suspension. A process calling it will be suspended from its thread of execution for a specified simulation time interval. Technically, it is stamped with a timestamp of (simulation clock + time) and scheduled for resumption of execution in the FEL. The primitive is of the format

wait time
where time is the duration of suspension of the process.
The susPend primitive, when called by a process, freezes its thread of execution for an unspecified time duration. The process will continue to be in this holding state till it is awakened by a reactivate call by another process with it as an argument. The susPend primitive appears with no arguments, like this

susPend

When a process calls the terminate primitive, for instance, at the end of its thread of execution, the process ceases to exist anymore in the system. In our aspect, it is similar to a thread calling stop() to end its lifetime. It is of the form

terminate
The work, wait, susPend and terminate primitives are termed self-primitives, as they are called by a process upon itself.
1.6
Syntax Summary

This section summarizes the simulation extensions of SPaDES/Java in EBNF form using the following metasymbols:

::= connects the left hand side (LHS) and right hand side (RHS) of a rule.

| separates alternative RHS items, as an ``or" operator.

[] encloses an optional RHS item.

{ } encloses a repeated RHS item that can appear 0 or more times.

The Java keywords used in the rules are distinguished by their boldface type. Further, in cases where symbols are used as metasymbols and which also appear in the syntax of the Java language, the symbols meant to be interpreted as part of the language syntax will be enclosed within single quotes, e.g. '[', ']'.

1.
Simulation processes

simulation_process ::= resource | process

2.
Resource initialization

resource ::= resource_identifier(name, unit)

resource_identifier ::= string

name ::= string

unit ::= integer

3.
Process initialization

process ::= process_identifier(size, [priority])

process_identifier ::= string

priority ::= integer

4.
Simulation primitives

primitive ::= self_primitive | others_primitive

self_primitive ::= work(resource, time, unit) | wait(time)

 | susPend() | terminate()

others_primitive ::= activate(process, time)

 | reactivate(process, time)

time ::= double | stat_functions

5.
Time and statistical functions

stat_functions ::= normal(mean, stddev) | gamma(alpha, beta)

 | exponential(mean) | chi_square(n)

 | weibull(alpha, beta) | uniform()

 | binomial(p, n) | neg_binomial(p, n)

 | geometric(p) | poisson(mean)

 | triang(mode) | erlang(n) | laplace()

mean ::= double

mode ::= double

stddev ::= double

alpha ::= double

beta ::= double

p ::= double

n ::= integer

6.
Process routines

process_body ::= switch(phase) '{'

 { case phase ':' [while (! SimulationStopped)]

 {others_primitive}

 self_primitive

 [phase = value] }

 '}'

SimulationStopped ::= boolean

value ::= integer

7.
Statistical referencing

resource_statistics ::= arrivals() | departures()

| utilization() | waiting_time()

| queueLength() | response()

| maxQueueLength()

1.7
Simulator Template

A SPaDES/Java simulator may be programmed using the programming template provided by the library. In the template, the user is required to provide the following items:

· definitions of the simulation processes used in the simulation

· process routines that define the simulation logic and

· code for initializing and starting the simulator

· message abstraction and reconstruction routine for the case of distributed simulation

A full SPaDES/Java programming template is illustrated below for a quick reference. The double-angled brackets with descriptions serve as placeholders for inserting the required program statements.

1 // Executive instance
2 // import SPaDES/Java library and other packages to Java's library resources (e.g. RMI)
3 import spades_Java.*;

4 // simulation initialization
5 public class simulation-kernel-name extends Executive {

6
<< create resources >>

7
<< create processes >>

8
<< initialize future event list >>

9
<< configure layout of simulator >>

10
// main program

11
public static void main(String args[])

12
{

13

<< create an instance, e.g. E, of this class >>

14

E.initialize(args.length,args);

15

E.startSimulation([duration]);

16
}

17 }

18 // Process type instance
19 // process class definition and routine definitions
20 class process_type extends SProcess {

21
public process_type(String name, executive_extended_class_type E)

22
{
<< construction of process_type instance >>}

23
public void execute()

24
{
<< process routine statements >> }

25 }

1 }

2 << process and resource definitions >>

1.8 Simulation Terminating Condition

A base condition is required to stop a simulation run so as to generate the necessary results for that particular length of time simulated. Base conditions can be the total number of events executed so far or the simulation duration. In SPaDES/Java, all simulations use the total duration as the terminating condition. The algorithm of the execution kernel can be described as follows :

while (simulation_time <= total_duration)

do

next_event <- remove event from head of FEL;

simulation_clock <- timestamp of next_event;

execute(next_event);

end while

The total duration of the simulation can either be hard-coded into the user program via the startSimulation function (see Section 1.3) or via a command line option (see Section 3.2).

2
Statistical Features

In any simulation, statistical information must be provided as input in order to study the behaviour of the system in action. Statistical output must also be generated to summarize and describe the approximate performance of the system and to allow the application simulationist to draw conclusions about the real-world problem.

2.1 Random Number Generation

The probability distribution functions of SPaDES/Java are encapsulated in the SimObject base class so that they can be called globally by all the simulation classes without the requirement for additional references. These functions may be invoked from the user-supplied routines such as the process or initialization routines to model random behaviour in simulations.

SPaDES/Java uses the random number generator algorithm implemented in Java's Random class. The technique for churning out random numbers in Java is based on a linear congruential generator (LCG) algorithm, in which each new number generated is dependent on the previous one by the following formula :

XI = aXI-1 + c(mod m)

where a = 663608941, c = 0 and m = 232. The seed X0 is an odd positive integer greater than 0.

Java uses a default numerical seed value that is dependent upon the current time of the system's wall clock since the year 1970. SPaDES/Java associates each individual LP with a stream for generating random numbers based on the following formula :

X0 = (value) + (number of simulation runs) + (system seed value)
where value is an integer from 0 through 9, provided by the user at the command line, number of simulation runs is the total number of times the simulation is to be executed, and system seed value is the default seed value generated implicitly by the virtual machine. The default value for value is 0. This value can also be altered using the resetSimulation() function, which increments the values of value and number of simulation runs.

The Random class in the Java library fundamentally provides two different constructors for creating an instance of itself.

· Random() creates an instance of the system's pseudo-random number generator based on the current wall clock time of the system in milliseconds

· Random(int seedValue) creates an instance of the system's pseudo-random number generator based on the integral parameter supplied to this constructor

Hence, the second constructor is used for generating random numbers for the probability distributions in SPaDES/Java.

The statistical distribution functions supported by this kernel are :

· Chi-square
· Exponential
· Uniform
· Gamma
· Erlang
· Laplace
· Binomial
· Negative binomial
· Poisson
· Weibull
· Triangular
2.2 Statistical Reporting

2.2.1
User Report
The user report is a compilation of statistics pertaining to the individual resources that constitute the simulation model. It is meant to provide the user with a fundamental idea of the extent to which certain resources have been utilized, how much does utilization affect response time in the model, and the average time that a process have to wait before it receives its intended service from a resource. Finally, the duration of the simulation is recorded at the foot of the report. Figure 2.1 presents the template of a user report generated in a SPaDES/Java simulation.

SPaDES/Java Simulation Final User Report for PetrolStation

Date & Time : Mon Jan 10 18:17:17 GMT+08:00 2000
**

************ SPaDES/Java configuration ************

Processor 1 ---- sun450.comp.nus.edu.sg

 LP 1 ---- Wash Point

 LP 2 ---- Dry Point

 LP 3 ---- Top Up Point

 LP 4 ---- Payment Counter

Number of processors used = 1
Wash Point statistics :

--

Number of arrivals = 328
Number of departures = 249
Utilization = 1.0
Average queue length = 26.58
Average waiting time = 81.02
Average response time = 85.03
Max queue length = 81
--

Dry Point statistics :

--

Number of arrivals = 249
Number of departures = 248
Utilization = 0.75
Average queue length = 0.0
Average waiting time = 0.0
Average response time = 3.01
Max queue length = 0
--

Top Up Point statistics :

--

Number of arrivals = 247
Number of departures = 198
Utilization = 0.99
Average queue length = 11.76
Average waiting time = 47.61
Average response time = 52.62
Max queue length = 49
--

Payment Counter statistics :

--

Number of arrivals = 198
Number of departures = 198
Utilization = 0.4
Average queue length = 0.0
Average waiting time = 0.0
Average response time = 2.0
Max queue length = 0
--

Simulation duration : 1000.0 time units

Figure 2.1 : User Report

2.2.2
System Report
The system, or mechanism report, accumulates the vital data generated pertaining to the simulation mechanism. Its basic role is to present to the simulationist an overview of the efficiency of the simulation kernel, which will dictate how well the algorithm has been implemented. The performance metrics that are presented in this report include the elapsed time since the beginning of the current run, the total number of events executed during the simulation, and therefore, the overall event frequency. For the distributed simulation protocol, the number of null messages generated by the LPs in the model, total number of messages generated (inclusive of null messages), as well as the overall message frequency, which describes how many messages have been sent across the processors per second on the average, are also being displayed. Figure 2.2 illustrates the format of the system report for a given simulation.

SPaDES/Java Simulation Final System Report for PetrolStation

Date & Time : Mon Jan 10 18:17:18 GMT+08:00 2000

**

************ SPaDES/Java configuration ************

Processor 1 ---- sun450.comp.nus.edu.sg

 Server 1 ---- Wash Point

 Server 2 ---- Dry Point

 Server 3 ---- Top Up Point

 Server 4 ---- Payment Counter

Number of processors used = 1

Elapsed time = 23.01 seconds

No. of events executed = 1221

Event frequency = 53.06 per second

Figure 2.2 : System (Mechanism) Report

2.2.3
Interval Reporting
SPaDES/Java also has the built-in capability of capturing instantaneous "snapshots" of a currently executing simulation, and presenting the scenario in the form of an interval report, at the end of the simulation. Interval reporting is vital especially when we intend to study the behaviour of a system being simulated in great detail. Fundamentally, there are two categories of interval reports, corresponding to the user and system reports respectively. Therefore, if the user has opted for, say, the system report to be generated during the simulation, and if interval reporting was turned on, then snapshots of the mechanism's statistics at the relevant time intervals will be generated from time to time during the simulation execution.

For instance, if the simulation duration is 1000 time units, and the user specified the interval reporting time to be 50 time units. Then the mechanism statistics, such as the elapsed time, the current null message ratio, and the number of events executed so far, will all be discharged and recorded in two Java hash tables dedicated to keep track of instantaneous statistics generated by the simulation. This will be carried out for all time values that are multiples of 50. These information will be written to the output file along with the final report when the simulation terminates. Obviously, some form of statistical approximation must be done for interval reporting as there may not have been events scheduled for execution at exactly those time instants for which the snapshots were taken.

2.3.4 Referencing statistical measures from the user program

The measures collected for each individual server can actually be retrieved dynamically from the simulator itself. This means that at any one point during the simulation execution, it is possible to dump out the number of arrivals to or departures from an server, the utilization of a server, the number of null messages generated so far by a server and other core statistical information. The following is a list of statistical retrieval functions, encapsulated in the Resource class, that can be called in the user program to extract accumulated statistics from any server during the execution.

· arrivals()

:
get number of jobs that have arrived at the server till the

current time

· departures()

:
get number of jobs that have left the server till the

current
time

· utilization()

:
get the job utilization of the server up till the current

time

· waiting_time()

:
get the average waiting time of the server till the current

time

· queueLength()

:
get the number of jobs awaiting service at the server at

the current time (time-weighted measure)

· response()
 : get the average response time of a particular server

· maxQueueLength() :
get the maximum number of queued jobs in the queue

till the current time

Using SPaDES/Java

3.1 Compiling the Simulator

Similar to all other normal Java programs, a simulation program based on the SPaDES/Java library will have to be compiled before it can be run. However, the simulation program will consist of several class definitions together. The following sequence of steps illustrate the way to compile a SPaDES/Java program.

Step 1
:
Separate all class definitions into separate files.

Step 2
:
Store all the files created in Step 1 under the same directory, typically

naming it in such a way that it describes the application being

simulated.

Step 3
:
Enter the Java program compilation command as follows :

javac <directory name>/*
(for Unix and Linux OS)

javac <directory name>./*
(for Windows OS)

3.2 Executing the Simulator

SPaDES/Java allows users the convenience of specifying the simulation duration without the burden of editing the program and recompiling the code. The kernel also allows users to input the desired parameter options relating to the program, as well as specify the total number of simulation runs required, at the command line. Table 3.1 illustrates the details of the parameter options available for manipulation by the user.

	Option
	Role and Usage

	 -a <algorithm>
	Specify the type of simulation mechanism required for the current simulation.

0 - Single processor (default)

1 - Multiple processors

	 -d <duration>
	Specify the simulation duration in time units.

Default - use the duration specified in

 startSimulation() in the program.

	 -f <period>
	Specify the run-in period of the simulation

Range : 0 (<period> (<duration>

Default : 0

	 -h
	Display the list of parameter options and brief descriptions of their usage to aid the user.

	 -o <output>
	Specify the type of statistical reporting required.

0 - user report (default)

1 - system (mechanism) report

2 - both (user and final) reports

	 -p <filename>
	Specify the file to write the statistical report(s) to.

default - simreport.txt

	 -r <number of runs>
	Specify the number of runs of the simulation required

Default : 1

	 -s <seed value>
	Specify the seed value to be used for this simulation.

Range : 0 (<seed value> (9

Default : 0

	 -t <time>
	Turns interval reporting on with time interval <time> between subsequent reports.

Default - off (if interval reporting is not activated)

· 50 time units

 (if interval reporting is activated and the

 interval time is not specified)

Table 3.1 :
SPaDES/Java parameter options

Running the program is simpler than compiling it. The format of the command line is as follows :

java <directory name>.<executive-extended class> [<parameter options>]*

For example, the following statement typed at the command line

java Torus.TorusKernel -a 0 -d 10000 -o 1 -r 3 -t 1000 -p torus0.txt

sets the simulation application named Torus to be executed 3 times on a single processor for a total duration of 10000 time units. The executive-extended class is known as TorusKernel. The type of statistical output required is the system (mechanism) report, and interval reporting is requested with a time interval of 1000 time units. The statistical reports are to be written to a text file in the current directory known as torus0.txt.

3.3
Resetting a Simulation

Very often, simulationists need to do not just one, but several simulation runs in order to draw convincing deductions about the nature of a problem. Section 3.2 highlighted the command line parameter option for specifying the number of runs desired for a particular problem.

When the number of runs indicated is greater than 1, after the first simulation run has ended, the simulation environment will be re-initialized using the resetSimulation function, before the second run proceeds. Therefore, the structure of the startSimulation function is :

for (i=1; i<=number_of_runs; i++)

{

. . . .run the simulation problem

resetSimulation();

}

resetSimulation() fundamentally empties the FEL and LP queues of events, and resets all global simulation variables, such as the simulation clock, to the default (original) values. The statistical seed value is also being modified internally in this routine.

3.4
Run-in Period

Instead of beginning to measure the simulation statistics right from the start point of the simulation, SPaDES/Java allows the statistical collection to begin from a user-specified simulation time. This feature is added to enable a more reliable analysis of the system at steady state. The simulation time interval between the start of the simulation and the point at which statistical measurement begins is known as the run-in period of the simulation. Please refer to Table 3.1 in Section 3.2 for the command line parameter option (-f) for specifying the run-in period for a simulation. Note that the run-in period specified should not be greater than the total simulation duration, for otherwise, no statistics will be collected from the run.

Consider the following example. We wish to carry out a simulation of the Torus network distributed across 3 different processors for 5 runs, each for a duration of 10, 000 time units, with a run-in period of 100 time units, with an initial seed value of 2. Therefore, the command line for the program should read as :

java Torus.TorusKernel -a 1 -d 10000 -f 100 -r 5 -s 2

References

[1]
A. Ferscha, "Parallel and distributed simulation of discrete event systems", In the Handbook of Parallel and Distributed Computing, McGraw-Hill, 1995.

[2]
Altmann, Michael, "Writing a Discrete Event Simulation: ten easy lessons", a web summary of discrete-event simulation techniques, http://www.labmed.umn.edu/~michael/des/index.html, 2000.

[3]
Bagrodia, Rajive L., "Perils and Pitfalls of Parallel Discrete-Event Simulation", Proceedings of the 1996 Winter Simulation Conference, pp. 136-143, December 1996.

[4]
Buss, Arnold H. and Stork, Kirk. A., "Discrete Event Simulation on the World Wide Web Using Java", a publication of the Operations Research Department, Naval Postgraduate School, United States Navy, 1996.

[5]
"Case Study: Parallelizing a Sequential Simulation Model", Publication of the Department of Information Systems and Computer Science, National University of Singapore, 1998.

[6]
Dijkstra, E. W. and Scholten, C. S., "Termination detection for diffusing computations", Inf. Proc. Lett., vol. 11, pp. 1-4, August 1980.

[7]
Goldberg, A., "Information models, views, and controllers", Dr. Dobb's Journal, pp. 54-61, July 1990.

[8]
Groselj, B. and Tropper, C. A., "A deadlock resolution scheme for distributed simulation", Proceedings of the SCS Multiconference on Distributed Simulation, vol. 21, pp. 108-112, March 1989.

[9]
H. Rajaei and R. Ayani, "Design issues in parallel simulation languages", Publication of IEEE Design and Test of Computers, pp. 52-63, December 1993.

[10]
Howell, F. W., "HASE++: a discrete event simulation library for C++", a web essay on the HASE++ project, http://www.dcs.ed.ac.uk/home/fwh/hase++/hase++.html, February 1996.

[11]
Howell, F. W., Heywood, P. E. and Ibbett, R. N., "Hase: A flexible toolset for computer architects", a publication of the Computer Journal, vol. 38, pp. 755-764, 1995.

[12]
Howell, F. W. and Ibbett, R. N., "State-of-the-art in Performance Modeling and Simulation Modeling and Simulation of Advanced Computer Systems: Techniques, Tools and Tutorials", Hierarchical Architecture Simulation Environment, chap. 1, pp. 1-18, 1996.

[13]
J. Misra, "Distributed discrete-event simulation", Computing Surveys, vol. 18, pp. 39-65, March 1986.

[14]
Jain, R., "The Art of Computer Systems Performance Analysis", Wiley Professional Computing, 1992.

[15]
Jefferson, D. R., "Virtual time", ACM Transactions on Programming Languages and Systems, vol. 7, pp. 404-425, July 1985.

[16]
Jefferson, D. R., "Virtual time", ACM Trans. Programming Languages and Systems, vol. 7, pp. 404-425, July 1985.

[17]
Jefferson, D. R. and Sowizral, H., "Fast concurrent simulation using the Time Warp mechanism", part 1: Local control. Tech. Rep. N-1906-AF, RAND Corporation, December 1982.

[18]
Kong Siew Theng, "SPaDES: A Framework for Distributed Simulation", Thesis for the MSc degree, Department of Information Systems and Computer Science, National University of Singapore, August 1998.

[19]
Lechler, Tim and Page, Bernd, "DESMO-J: An Object Oriented Discrete Simulation Framework in Java", Proceedings of the European Simulation Symposium '99, 1999.

[20]
Lubachevsky, B. D., "Efficient distributed event-driven simulations of multiple-loop networks", Communications of the ACM, vol. 33, pp. 111-123, January 1989.

[21]
Mah Wai Leong and Tang Siow Guan, "Web-Based Simulation", Term Paper for IC52Z1 Advanced Modeling and Simulation Techniques, School of Computing, National University of Singapore, October 1998.

[22]
McNab, R. and Howell, F. W., "Using Java for Discrete Event Simulation", a documentation for SimJava, produced at the Department of Computer Science, The University of Edinburgh, September 1996.

[23]
Miller, J. A. and Weyrich, O. R., "Query driven simulation using SIMODULA", Proceedings of the 22nd Annual Simulation Symposium, pp. 167-181, 1989.

[24]
Misra, J., "Distributed discrete event simulation", Proceedings of the ACM Computing Surv., vol. 18, pp. 39-65, March 1986.

[25]
Nair, Rajesh S., Miller, J. A. and Zhang Zhiwei, "Java-based Query Driven Simulation Environment", a publication of the Department of Computer Science, University of Georgia, 1997.

[26]
Narayanan, S., Schneider, Nicole L., Chetan Patel, Caricco, Todd M., DiPasquale, John and Reddy, Nagesh, "An Object-based Architecture for Developing Interactive Simulations Using Java", Proceedings of the 1997 Simulation Conference, vol. 69, pp. 153-171, September 1997.

[27]
Ng Yew Kwong and Teo Yong Meng, "A Java-Based Simulation Framework", Proceedings of the 5th National Undergraduates Research Opportunities Programme Congress, September 1999.

[28]
Nicol, D. M., "Parallel discrete-event simulation", a publication of the ACM Computing Surveys, vol. 18, pp. 39-65, 1986.

[29]
Nicol, D. M., "Parallel discrete-event simulation of FCFS stochastic queueing networks", SIGPLAN Not., vol. 23, pp. 124-137, September 1988.

[30]
Page, Ernest H., Moose, Robert L., Jr. and Grifflin, Sean P., "Web-based Simulation in SimJava Using Remote Method Invocation", Proceedings of the 1997 Winter Simulation Conference, pp. 468-474, December 1997.

[31]
Page, Ernest H., Moose, Robert L., Jr. and Grifflin, Sean. P., "Implementation Notes for a Distributed SimJava", a chapter in the MITRE Technical Report, The MITRE Corporation, 1997.

[32]
Pedro Bizarro, Luis M. Silva and Joao Gabriel Silva, "JWarp: A Java Library For Parallel Discrete-Event Simulations", Poster Paper at ACM Workshop on Java for High-Performance Network Computing, 1998.

[33]
Richard M. Fujimoto, "Parallel Discrete Event Simulation", Communications of the ACM, vol. 33, pp. 31-52, October 1990.

[34]
Richard M. Fujimoto, "Parallel and Distributed Simulation Systems", Wiley Series on Parallel and Distributed Computing, Wiley-Interscience, pg. 51-95, 2000.

[35]
Righter, Rhonda and Walrand, Jean C., "Distributed Simulation of Discrete Event Systems", Proceedings of the IEEE, vol. 77, pp. 99-113, January 1989.

[36]
Sarkar, V. and Hennessy, J., "Compile-time partitioning and scheduling scheme of parallel programs", Proceedings of the Proc. SIGPLAN 1988 Symposium on Compiler Construction, pp. 17-26, 1988.

[37]
Silberschatz, Abraham and Galvin, Peter, "Operating System Concepts, 5th Edition", a publication of Addison Wesley.

[38]
Stallings, William, "Data and Computer Communications, Fifth Edition", a publication of Prentice Hall International Editions, 1999.

[39]
Tay Seng Chuan, "Parallel Simulation Algorithm and Performance Analysis", Department of Information Systems and Computer Science, National University of Singapore, May 1998.

[40]
Teo Yong Meng and Tay Seng Chuan, "Parallel Simulation: Programmability, Performance and Scalability", Proceedings of the 5th Australasian Conference on Parallel and Real-Time (PART) Systems, pp. 273-284, September 1998.

[41]
Y. Lin and B. R. Preiss, "Optimal memory management for time warp parallel simulation", ACM Transactions on Modeling and Computer Simulation, vol. 1, pp. 283-307, October 1991.

A
Simulation Examples

This section describes some of the simulation problems that were written using the SPaDES/Java library. The programs for the problems are attached as well.

A.1
Petrol-Station

This problem actually mimics a large-scale petrol kiosk, comprising of four service points (Wash point, Dry point, Top-up point, Payment point) connected in the form of a linear pipeline, as shown in Figure A.1.

Figure A.1 :
Petrol-Station model

The arrival of cars at the petrol kiosk follows an exponential distribution with a mean of 3.0 minutes. Upon arrival, a car passes through each of the four service points, receiving service at each point for a certain random length of time, which can be assumed to also follow an exponential distribution with the same mean as above. When the car emerges from the Payment Point, it is deemed to have completed its stint in the kiosk, and hence, it will leave the system.

In the SPaDES operational model, a car process will be mapped to an event message, and each of the service points will be servers. The car pool will be treated as a process generator, since it is the source of all the car processes. This problem is a simplistic example of an open queuing network [3] in which the population of processes in the system varies over time.

The SPaDES/Java program for the Petrol-Station simulation is shown below.

1
/* Petrol Station*/

2
import spades_Java.*;

4

5
// PetrolStation.java

6
// models a petrol station with 4 consecutive service points in a pipeline.

7
public class PetrolStation extends Executive {

8 Vehicle vehicle;

9 Resource washPoint, dryPoint, topUpPoint, paymentPoint;

10 Resource[] service_points;

11

12 public void init()

13 {

14

service_points = new Resource[4];

15
service_points[0] = new Resource("Wash Point", 1);

16

service_points[1] = new Resource("Dry Point", 1);

17 service_points[2] = new Resource("Top Up Point", 1);

18 service_points[3] = new Resource("Payment Counter", 1);

19

20 vehicle = new Vehicle("Vehicle 1", this);

21 mapProcess(vehicle, service_points[0]);

22 activate(vehicle, 0.0);

23

}

24

25 public static void main(String[] args)

26
{

27
 PetrolStation p = new PetrolStation();

28
 p.initialize(args.length, args);

29
 p.startSimulation(1000);

30
}

31 }

32 // Vehicle.java

33 // models a moving vehicle arriving at the petrol station

34 class Vehicle extends SProcess {

35 PetrolStation station;

36
int loc; // current resource vehicle is at.

37 public Vehicle(PetrolKernel pt)

38 {

39 super();

40 name = toString().toCharArray();

41 station = pt;

42 loc = -1;

43 }

44
 public void execute()

45
 {

46 switch(phase)

47 {

48 case 1 :

49 {

50 if (loc == -1)

51 {

52

 Vehicle next = new Vehicle(station);

53 activate(next, exponential(3.0));

54 }

55 ++loc;

56 work(station.service_points[loc], exponential(3.0), 1);

57 if (loc == 3)

58 phase++;

59 break;

60 }

61 case 2 :

62 {

63 terminate();

64

 break;

65 }

66 }

67 }

68 }

A.2
Super Ping

The Super-Ping problem involves a closed queuing network [3] of N ping objects connected in the form of a ring topology. Each ping object is initialized with 2 balls, which circulate the network in opposite directions from each other, right till the end of the simulation. Each ball halts at a ping object, for a random amount of time that adheres to an exponential distribution with a mean of 1 time unit, before continuing its journey. In the SPaDES/Java environment, a ball is modeled as an event message, and ping objects are represented as resources. Therefore, there are 2N processes active throughout the entire simulation run. Figure A.2 illustrates the super-ping configuration with 8 ping objects.

Figure A.2 :
Super-ping topology

The SPaDES/Java program for the Super Ping problem is given below.

1 // PingKernel.java

2 // models the Super-Ping simulation

3 import spades_Java.*;

4 public class SuperPing extends Executive {

5
public static int Left = 0;

6
public static int Right = 1;

7
public static int NumObj = 4;

8
Resource LP[];

9
// initialization

10
public void init()

11
{

12

int i, ppno, lpno = NumObj;

13

Ball ball, ball2;

14

LP = new Resource[NumObj];

15

for (i=0; i<NumObj; i++)

16

{

17

LP[i] = new Resource("PingObject["+i+"]", 1);

18

// initialize each ping object with 2 messages (left and right)

19

ball = new Ball("LBall "+i,this);

20

ball.direction = Left;

21

ball.dest = i;

22

mapProcess(ball, LP[i]);

23

activate(ball, exponential(0.1));

24

ball2 = new Ball("RBall "+i,this);

25

ball2.direction = Right;

26

ball2.dest = i;

27

mapProcess(ball2, LP[i]);

28

activate(ball2, exponential(0.1));

29

}

30
}

31
// main program

32
public static void main(String args[])

33
{

34

SuperPing pk = new SuperPing();

35

pk.initialize(args.length,args);

36

pk.startSimulation();

37
}

38 }

39 // Ball.java

40 // models a ball process.

41 class Ball extends SProcess {

42
int dest;

43
int direction;

44
SuperPing pk;

45
public Ball(String name, SuperPing p)

46
{

47

super(name, 1);

48

pk = p;

49
}

50
public void execute()

51
{

52
int src = dest;

53
switch(phase)

54
{

55 case 1 :

56 {

57 if (direction == pk.Left)

58 {

59

if (dest == pk.NumObj - 1)

60
 dest = 0;

61 else

62 { dest += 1;}

63 }

64 else

65 {

66 if (dest == 0)

67 dest = pk.NumObj - 1;

68 else

69 { dest -= 1;}

70 }

71 // display the motion of the current Ball

72 System.out.println(getPName()+" going to "+dest);

73 work(pk.LP[dest], 0.1+exponential(1.0), 1);

74

 break;

75 }

76

}

77
}

78 }

A.3
Torus Network

A torus network is a strongly connected network of M x N torus nodes, where M and N are the dimensions of the torus. Each node in the network is connected to four neighbouring nodes, which are determined by locality functions, namely North, South, East and West, used to compute their ids. Every node is initialized with 5 jobs when the simulation begins, and each job is headed for a particular final destination node. Upon activation, a job first checks whether it has arrived at its final destination, and if this is no so, the job will be routed to a neighbouring node through one of its four connections, based on a random number generated by the uniform distribution. The job receives service from each node along its journey for a random amount of time that follows an exponential distribution with a mean of 60. If the job has reached its final destination, it will wait for an additional random duration adhering to the same distribution before it gets terminated in the system. Hence, jobs can be modeled as event messages being propagated by the torus nodes, which are really the LPs in the operational model. Figure A.3 shows a torus network comprising of 9 torus nodes.

Figure A.3 :
A torus network

The SPaDES/Java code for the Torus network is provided below.

1 import spades_Java.*;

2 // TorusKernel.java

3 // simulation kernel of the torus network

4 public class Torus extends Executive {

5
// size of torus network

6
static int M = 16;

7
static int N = 16;

8
static int NumNode = M * N;

9
// The torus network

10
Torus_node torus[];

11
// The following functions generate neighbours of current node i

12
int North(int i)

13
{ return ((i < M) ? i-M+NumNode : i-M);}

14
int West(int i)

15
{ return ((i%M == 0) ? i+M-1 : i-1);}

16
int South(int i)

17
{ return ((i + M > NumNode-1) ? i+M-NumNode : i+M);}

18
int East(int i)

19
{ return ((i%M == M-1) ? i-M+1 : i+1);}

20
public void init()

21
{

22

int i, j;

23

torus = new Torus_node[NumNode];

24

for (i=0; i<NumNode; i++)

25

{

26

// create torus nodes and set up the links

27

String name = "torus["+i+"]";

28

torus[i] = new Torus_node(name);

29

torus[i].node_id = i;

30

torus[i].succ[0] = North(i);

31

torus[i].succ[1] = West(i);

32

torus[i].succ[2] = South(i);

33

torus[i].succ[3] = East(i);

34

}

35

for (i=0; i<NumNode; i++)

36

{

37

// generate 5 jobs for each of the torus nodes

38

for (j=0; j<5; j++)

39

{

40

Job job = new Job(i, this);

41

mapProcess(job, torus[i]);

42

activate(job, exponential(0.1));

43
}

44
}

45
// main program

46
public static void main(String args[])

47
{

48

Torus tk = new Torus();

49

tk.initialize(args.length, args);

50

tk.startSimulation();

51
}

52 }

53 // Job.java

54 // A job that is sent for execution at each of the torus node

55 class Job extends SProcess

56 {

57
Torus torus;

58
int loc; // current location of job

59
int dest; // final destination of job

60
public Job(int l, Torus t)

61
{

62

super();

63

name = toString().toCharArray();

64

torus = t;

65

loc = l;

66

// the next destination is generated using a random distribution

67

dest = (int) (uniform() * torus.NumNode);

68
}

69
// main body of job

70
public void execute()

71
{

72

switch(phase)

73
{

74
 case 1 :

75 {

76
 if (loc == dest)

77 {

78

phase = 2;

79 wait(5+exponential(60));

80 }

81 else

82 {

83 // generate next location to go to

84 loc = torus.torus[loc].succ[(int)(uniform()*4)];

85

work(torus.torus[loc], 5+exponential(60), 1);

86 }

87 break;

88

 }

89 case 2 :

90 {

91 // activate a new job and terminate.

92 Job job = new Job(loc, this.torus);

93 activate(job, 0);

94 terminate();

95 break;

96 }

97
}

98
}

99 }

A.4
Columbian Health Care

The Columbian health care simulation is essentially a hierarchically structured queuing network. Each node in the network comprises of a village and a local health center. Patients visit their local health center for treatment, but they may be referred to a more specialized health center at the next layer up the hierarchy. The topmost health center is assumed to be able to treat all illnesses. The layout of a single node in the network is shown in Figure A.4. Patients may arrive from the local village or from the health center in the next level down for treatment. Patients may also leave the health center for further treatment in the next higher up level. The onward referral rate for patients by a health center is 10. In the simulation, we assume that patients do not return to their home village after treatment, which means that the network is an open queuing network system [3]. The simulation comprises of 31 nodes connected into a binary tree. There is one additional node V connected to the root of the tree. The node at the root of the tree forwards patients to V, and V forwards patients to itself. This additional node evens out the number of nodes to 32.

Figure A.4 :
A node in the Columbian Health Care problem

In SPaDES/Java, we may view the health center as a type of resource and the village as a generator of patients seeking for treatment at the health center. Both the health center and village map into resources in the operational view. The patients, of course, concur to the active processes in the system. During the simulation, messages representing patient processes are being propagated through the network up the hierarchy. At each health center along a patient's journey, a random number is generated, based on the uniform statistical distribution, to determine if the patient should receive further treatment in the next level up node or not. A patient that has reached the root node, thus, has to persistently receive treatment from it till the random number generated allows him/her to leave the system.

This section provides the details of the CHC code written using the SPaDES/Java library.

1 import spades_Java.*;

2 public class HealthCare extends Executive {

3 static int NumObj = 32; // size of tree

4 Resource healthcenter[];

5 Village village[];

6 // initialization.

7 public void init()

8 {

9 healthcenter = new Resource[NumObj];

10 village = new Village[NumObj];

11 // creates all the resources.

12 for (int i=0; i<NumObj; i++)

13 { healthcenter[i] = new Resource("Healthcenter "+i, 1);}

14 for (int j=0; j<NumObj; j++)

15 {

16 village[j] = new Village(this);

17

 // assign a nodeid to each process.

18 village[j].nodeid = j;

19 activate(village[j], 0);

20 }

21 }

22 // main program.

23 public static void main(String[] args)

24 {

25 HealthCare hc = new HealthCare();

26 hc.initialize(args.length, args);

27 hc.startSimulation(100000);

28 }

29 }

30 // a village process.

31 class Village extends SProcess {

32
 int nodeid;

33 HealthCare hc;

34 public Village(HealthCare h)

35 { hc = h;}

36 public void execute()

37 {

38 switch(phase)

39 {

40 case 1 :

41 {

42 // generate a new patient.

43 Patient patient = new Patient(hc);

44 patient.nodeid = this.nodeid;

45 activate(patient, 0);

46 // waits for an interarrival time.

47 wait(exponential(10));

48 break;

49 }

50 }

51 }

52 }

53 // main body of a patient.

54 class Patient extends SProcess {

55 HealthCare hc;

56 int nodeid;

57 public Patient(HealthCare h)

58 { hc = h;}

59 public void execute()

60
 {

61 switch(phase)

62 {

63 case 1 :

64 {

65 // visit local health center.

66 work(hc.healthcenter[nodeid], exponential(1.0), 1);

67 phase = 2;

68 break;

69 }

70 case 2 :

71 {

72 if (hc.uniform() > 0.9)

73 {

74 // forwards patients to the health

75 // center at the next higher level.

76 work(hc.healthcenter[(int)(nodeid/2)], 1);

77

 }

78 else

79 { terminate();}

80 break;

81 }

82 }

83 }

84 }

-- end of SPaDES/Java User Manual --

14

10

8

5

Server

7

9

11

15

Server

Car Pool

Wash

Point

Dry

Point

Top-up

Point

Payment

Point

Ping object

Ping object

Ping object

Ping object

Ping object

Ping object

Ping object

Ping object

Node

Node

Node

Node

Node

Node

Node

Node

Node

Modeling View

(b) Operational View

Health Center

Village

Node

LP

LP

Real-world

problem

Process-oriented view

Conceptual model

(Processes and resources)

Virtual Time paradigm

Operational model

(Synchronization and logical processes)

Active

Holding

Non-existent

Blocked

Pending

Thread

Standard Java

 API Package

SimObject

SPaDES/Java

 Package

EventList

Executive

Resource

SProcess

PAGE
37

