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Abstract—A strong direct product theorem for a problem
in a given model of computation states that, in order to
compute k instances of the problem, if we provide resource
which is less than k times the resource required for com-
puting one instance of the problem with constant success
probability, then the probability of correctly computing all
the k instances together, is exponentially small in k. In
this paper, we consider the model of two-party bounded-
round public-coin randomized communication complexity.
We show a direct product theorem for the communication
complexity of any relation in this model. In particular,
our result implies a strong direct product theorem for
the two-party constant-message public-coin randomized
communication complexity of all relations. As an imme-
diate application of our result, we get a strong direct
product theorem for the pointer chasing problem. This
problem has been well studied for understanding round v/s
communication trade-offs in both classical and quantum
communication protocols [27], [18], [29], [20], [14]. Our
result generalizes the result of Jain [11] which can be
regarded as the special case when t = 1. Our result can be
considered as an important progress towards settling the
strong direct product conjecture for the two-party public-
coin communication complexity, a major open question in
this area.

We show our result using information theoretic argu-
ments. Our arguments and techniques build on the ones
used in Jain [11]. One key tool used in our work and also
in Jain [11] is a message compression technique due to
Braverman and Rao [5], who used it to show a direct sum
theorem in the same model of communication complexity
as considered by us. Another important tool that we use
is a correlated sampling protocol, which for example, has
been used in Holenstein [9] for proving a parallel repetition
theorem for two-prover games.

Index Terms—Communication complexity, information
theory, direct product, bounded rounds.

I. INTRODUCTION

A fundamental question in complexity theory is how
much resource is needed to solve k independent in-
stances of a problem compared to the resource required
to solve one instance. More specifically, suppose for
solving one instance of a problem with probability of
correctness p, we require c units of some resource in a
given model of computation. A natural way to solve k
independent instances of the same problem is to solve
them independently, which needs k · c units of resource
and the overall success probability is pk. A strong direct
product theorem for this problem would state that any
algorithm, which solves k independent instances of this
problem with o(k · c) units of the resource, can only
compute all the k instances correctly with probability at
most p−Ω(k).

In this work, we are concerned with the model of
communication complexity which was introduced by
Yao [35]. In this model there are different parties who
wish to compute a joint relation of their inputs. They do
local computation, use public/private coins, and commu-
nicate between them to achieve this task. The resource
that is counted is the number of bits communicated.
The text by Kushilevitz and Nisan [23] is an excellent
reference for this model. Direct product questions and
the weaker direct sum questions have been extensively
investigated in different sub-models of communication
complexity. A direct sum theorem states that in order
to compute k independent instances of a problem, if
we provide resource less than k times the resource
required to compute one instance of the problem with
a constant success probability p < 1, then the success
probability for computing all the k instances correctly



is at most a constant q < 1. Some examples of known
direct product theorems are: Parnafes, Raz and Wigder-
son’s [28] theorem for forests of communication proto-
cols; Shaltiel’s [32] theorem for the discrepancy bound
(which is a lower bound on the distributional commu-
nication complexity) under the uniform distribution; ex-
tended to arbitrary distributions by Lee, Shraibman and
Špalek [25]; extended to the multiparty case by Viola and
Wigderson [34]; extended to the generalized discrepancy
bound by Sherstov [33]; Jain, Klauck and Nayak’s [13]
theorem for the subdistribution bound; Klauck, Špalek,
de Wolf’s [21] theorem for the quantum communication
complexity of the set disjointness problem; Klauck’s [19]
theorem for the public-coin communication complexity
of the set-disjointness problem (which was re-proven
using very different arguments in Jain [11]); Ben-Aroya,
Regev, and de Wolf’s [4] theorem for the one-way quan-
tum communication complexity of the index function
problem; Jain’s [11] theorem for randomized one-way
communication complexity and Jain’s [11] theorem for
conditional relative min-entropy bound (which is a lower
bound on the public-coin communication complexity).
Direct sum theorems have been shown in the public-coin
one-way model [15], public-coin simultaneous message
passing model [15], entanglement-assisted quantum one-
way communication model [17], private-coin simulta-
neous message passing model [12] and constant-round
public-coin two-way model [5]. On the other hand,
strong direct product conjectures have been shown to be
false by Shaltiel [32] in some models of distributional
communication complexity (and of query complexity and
circuit complexity) under specific choices for the error
parameter.

Examples of direct product theorems in others models
of computation include Yao’s XOR lemma [36], Raz’s
[30] theorem for two-prover games; Shaltiel’s [32] theo-
rem for fair decision trees; Nisan, Rudich and Saks’ [26]
theorem for decision forests; Drucker’s [8] theorem
for randomized query complexity; Sherstov’s [33] the-
orem for approximated polynomial degree and Lee and
Roland’s [24] theorem for quantum query complexity.
Besides their inherent importance, direct product theo-
rems have had various important applications such as in
Probabilistically checkable proofs [30]; in circuit com-
plexity [36] and in showing time-space tradeoffs [22],
[1], [19].

In this paper, we show a direct product theorem for
the two-party bounded-round public-coin randomized
communication complexity. In this model, for computing
a relation f ⊆ X × Y × Z (X ,Y,Z are finite sets),
one party, say Alice, is given an input x ∈ X and

the other party, say Bob, is given an input y ∈ Y .
They are supposed to do local computations using pub-
lic coins shared between them, communicate a fixed
number of messages between them and at the end,
output an element z ∈ Z. They are said to succeed if
(x, y, z) ∈ f . For a natural number t ≥ 1 and ε ∈ (0, 1),
let R

(t),pub
ε (f) denote the two-party t-message public-

coin communication complexity of f with worst case
error ε, that is the communication of the best public-
coin protocol between Alice and Bob with t messages
exchanged between them, and the error (over the public
coins) on any input (x, y) being at most ε. We show the
following.

Theorem I.1. Let X , Y , Z be finite sets, f ⊆ X×Y×Z
a relation, ε > 0 and k, t ≥ 1 be integers. There exists
a constant κ ≥ 0 such that,

R
(t),pub

1−(1−ε/2)Ω(kε2/t2)
(fk) = Ω

(
ε · k
t
·
(

R(t),pub
ε (f)− κt2

ε

))
.

In particular, it implies a strong direct product theorem
for the two-party constant-message public-coin random-
ized communication complexity of all relations f .1 Our
result generalizes the result of Jain [11] which can be
regarded as the special case when t = 1. Our result can
be considered as an important progress towards settling
the strong direct product conjecture for the two-party
public-coin communication complexity, a major open
question in this area.

As a direct consequence of our result we get a direct
product theorem for the pointer chasing problem defined
as follows. Let n, t ≥ 1 be integers. Alice and Bob are
given functions FA : [n] → [n] and FB : [n] → [n],
respectively. Let F t represent alternate composition of
FA and FB done t times, starting with FA. The parties
are supposed to communicate and determine F t(1). In
the bit version of the problem, the players are supposed
to output the least significant bit of F t(1). We refer to
the t-pointer chasing problem as FPt and the bit version
as BPt. The pointer chasing problem naturally captures
the trade-off between number of messages exchanged
and the communication used. There is a straightforward
t-message deterministic protocol with t · log n bits of
communication for both FPt and BPt. However if only
t−1 messages are allowed to be exchanged between the
parties, exponentially more communication is required.
The communication complexity of this problem has been
very well studied both in the classical and quantum
models of communication complexity [27], [18], [29],
[20], [14]. Some tight lower bounds that we know so far

1When R
(t),pub
ε (f) is a constant, a direct product result can be

shown via direct arguments as for example in [11].
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are as follows (below Q(t)(·) represents the t-message
quantum communication complexity).

Theorem I.2. For integer t ≥ 1,
1) [29] R

(t−1),pub
1/3 (FPt) ≥ Ω(n log(t−1) n);

R
(t−1),pub
1/3 (BPt) ≥ Ω(n).

2) [14] Q
(t−1)
1/3 (FPt) ≥ Ω(n log(t−1) n).

As a consequence of Theorem I.1 we get strong
direct product results for this problem. Note that in the
descriptions of FPt and BPt, t is a fixed constant, not
dependent on the input size.

Corollary I.3. For integers t, k ≥ 1,

1) R
(t−1),pub

1−2−Ω(k/t2)
(FPkt ) ≥ Ω

(
k
t · n log(t−1) n

)
;

2) R
(t−1),pub

1−2−Ω(k/t2)
(BPkt ) ≥ Ω

(
k
t · n

)
.

Our techniques

We prove our direct product result using information
theoretic arguments. Information theory is a versatile
tool in communication complexity, especially in prov-
ing lower bounds and direct sum and direct product
theorems [6], [2], [15], [16], [17], [12], [3], [5], [11].
The broad argument that we use is as follows. For a
given relation f , let the communication required for
computing one instance with t messages and constant
success be c. Let us consider a protocol for computing fk

with t messages and communication cost o(kc). Let us
condition on success on some l coordinates. If the overall
success in these l coordinates is already as small as we
want then we are done and stop. Otherwise we exhibit
another coordinate j outside of these l coordinates such
that the success in the j-th coordinate, even conditioned
on the success in the l coordinates, is bounded away
from 1. This way the overall success keeps going down
and becomes exponentially small (in k) eventually. We
do this argument in the distributional setting where one
is concerned with average error over the inputs coming
from a specified distribution rather than the worst case
error over all inputs. The distributional setting is then
related to the worst case setting by the well known Yao’s
principle [35].

More concretely, let µ be a distribution on X × Y ,
possibly non-product across X and Y . Let c be the
minimum communication required for computing f with
t-message protocols having error at most ε averaged over
µ. Let us consider the inputs for fk drawn from the
distribution µk (k independent copies of µ). Consider a
t-message protocol P for fk with communication o(kc)
and for the rest of the argument condition on success
on a set C of coordinates. If the success probability of
this event is as small as we desire then we are done.

Otherwise we exhibit a new coordinate j /∈ C satisfying
the following conditions: the distribution of inputs XjYj
(of Alice and Bob respectively) in the j-th coordinate is
quite close to µ and the joint distribution XjYjM (where
M is the message transcript of P) can be approximated
very well by Alice and Bob using a t message protocol
for f , when they are given input according to µ, using
communication less than c. This shows that success in
the j-th coordinate must be bounded away from one.

To simulate the transcript, we adopt the message
compression protocol due to Braverman and Rao [5],
where they used the protocol to show a direct sum
theorem for the same communication model we are
considering. Informally, the protocol can be stated as
follows.

Braverman-Rao protocol (informal). Given a
Markov chain X ↔ Y ↔ M , there exists a public-
coin protocol between Alice and Bob, with input X,Y ,
respectively, with a single message from Alice to Bob of
O(I(X : M |Y )) bits, such that at the end of the protocol,
Alice and Bob both possess a random variable M ′, close
to M in `1 distance.

Consider the situation after conditioning on the suc-
cess in the set C as above, and let XjYj represent
the input in the jth coordinate. The Braverman-Rao
compression protocol cannot be directly applied at this
stage. Take the first message M1 sent by Alice, for
instance. It is easily seen that YjXjM1 is not necessarily
a Markov chain. However, we are able to show that
YjXjM1 is ‘close’ to being a Markov chain by further
conditioning on appropriate sub-events. We then use
a more ‘robust’ Braverman-Rao compression protocol
(along the lines of the original), where by being ‘robust’,
we mean that the communication cost and the error
does not vary much even for XYM which is close
to being a Markov chain (similar arguments were used
in Jain [11]). We then apply such a robust message
compression protocol to each successive message. We
accumulate some errors for each of these messages. Thus
in order to keep the overall error bounded, we are able to
make our argument for protocols with a bounded number
of message exchanges.

Another difficulty that is faced in this argument is that
since µ may be a non-product distribution, Alice and
Bob may obtain information about each other’s input in
the j-th coordinate via their inputs in other coordinates.
This is overcome by splitting the distribution µ into
a convex combination of several product distributions.
This idea of splitting a non-product distribution into
convex combination of product distributions has been
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used in several previous works to handle non-product
distributions in different settings [31], [30], [2], [9], [3],
[5], [11]. This splitting of non-product distribution leads
us to use another important tool namely the correlated
sampling protocol, that was also used for example by
Holenstein [9] while arguing a strong direct product
result for the two-prover one-round games.

As mentioned previously, we build on the arguments
used in Jain [11]. Jain shows a new characterization
of the two-party one-way public-coin communication
complexity and uses it to show a strong direct product
result for all relations in this model. We are unable to
arrive at such a characterization for protocols with more
than one message and use a more direct approach, as
outlined above, to arrive at our direct product result.

Organization: The rest of the paper is organized as
follows. In Section II, we present some background
on information theory and communication complexity.
In Section III, we prove our main result Theorem I.1,
starting with some lemmas that are helpful in building
the proof. Some proofs are deferred to Appendix A.

II. PRELIMINARIES

Information theory

For integer n ≥ 1, let [n] represent the set
{1, 2, . . . , n}. Let X , Y be finite sets and k be a natural
number. Let X k be the set X×· · ·×X , the cross product
of X , k times. Let µ be a (probability) distribution
on X . Let µ(x) represent the probability of x ∈ X
according to µ. Let X be a random variable distributed
according to µ, which we denote by X ∼ µ. We use
the same symbol to represent a random variable and
its distribution whenever it is clear from the context.
The expectation value of function f on X is denoted as
Ex←X [f(x)]

def
=
∑
x∈X Pr[X = x] · f(x). The entropy

of X is defined as H(X)
def
= −

∑
x µ(x) · logµ(x). For

two distributions µ, λ on X , the distribution µ ⊗ λ

is defined as (µ ⊗ λ)(x1, x2)
def
= µ(x1) · λ(x2). Let

µk
def
= µ ⊗ · · · ⊗ µ, k times. The `1 distance between

µ and λ is defined to be half of the `1 norm of
µ − λ; that is, ‖λ − µ‖1

def
= 1

2

∑
x |λ(x) − µ(x)| =

maxS⊆X |λS − µS |, where λS
def
=
∑
x∈S λ(x). We say

that λ is ε-close to µ if ‖λ − µ‖1 ≤ ε. The relative
entropy between distributions X and Y on X is defined
as S(X‖Y )

def
= Ex←X

[
log Pr[X=x]

Pr[Y=x]

]
. The relative min-

entropy between them is defined as S∞ (X‖Y )
def
=

maxx∈X

{
log Pr[X=x]

Pr[Y=x]

}
. It is easy to see that S(X‖Y ) ≤

S∞ (X‖Y ). Let X,Y, Z be jointly distributed random
variables. Let Yx denote the distribution of Y condi-

tioned on X = x. The conditional entropy of Y condi-
tioned on X is defined as H(Y |X)

def
= Ex←X [H(Yx)] =

H(XY )−H(X). The mutual information between X and
Y is defined as: I(X : Y )

def
= H(X)+H(Y )−H(XY ) =

Ey←Y [S(Xy‖X)] = Ex←X [S(Yx‖Y )] . It is easily seen
that I(X : Y ) = S(XY ‖X ⊗ Y ). We say that X and
Y are independent iff I (X : Y ) = 0. The conditional
mutual information between X and Y , conditioned on Z,
is defined as: I(X : Y |Z)

def
= Ez←Z[I(X : Y |Z = z)] =

H (X|Z) + H (Y |Z)−H (XY |Z) . The following chain
rule for mutual information is easily seen : I(X : Y Z) =
I(X : Z) + I(X : Y |Z) . Let X,X ′, Y, Z be jointly dis-
tributed random variables. We define the joint distribu-
tion of (X ′Z)(Y |X) by: Pr[(X ′Z)(Y |X) = x, z, y]

def
=

Pr[X ′ = x, Z = z] · Pr[Y = y|X = x]. We say that
X , Y , Z is a Markov chain iff XY Z = (XY )(Z|Y )
and we denote it by X ↔ Y ↔ Z. It is easy to
see that X , Y , Z is a Markov chain if and only if
I (X : Z |Y ) = 0. Ibinson, Linden and Winter [10]
showed that if I(X : Y |Z) is small then XY Z is close
to being a Markov chain.

Lemma II.1 ([10]). For any random variables X , Y
and Z, it holds that

I(X : Z |Y ) = min {S(XY Z‖X ′Y ′Z ′) : X ′ ↔ Y ′ ↔ Z ′} .

The minimum is achieved by distribution X ′Y ′Z ′ =
(XY )(Z|Y ).

We will need the following basic facts. A very good
text for reference on information theory is [7].

Fact II.2. Relative entropy is jointly convex in its
arguments. That is, for distributions µ, µ1, λ, λ1 ∈ X
and p ∈ [0, 1]: S

(
pµ+ (1− p)µ1

∥∥λ+ (1− p)λ1
)
≤

p · S(µ‖λ) + (1− p) · S
(
µ1
∥∥λ1

)
.

Fact II.3. Relative entropy satisfies the following chain
rule. Let XY and X1Y 1 be random variables on
X × Y . It holds that: S

(
X1Y 1

∥∥XY ) = S
(
X1
∥∥X) +

Ex←X1

[
S
(
Y 1
x

∥∥Yx)] . In particular, using Fact II.2:
S
(
X1Y 1

∥∥X ⊗ Y ) = S
(
X1
∥∥X)+Ex←X1

[
S
(
Y 1
x

∥∥Y )] ≥
S
(
X1
∥∥X)+ S

(
Y 1
∥∥Y ) .

Fact II.4. Let XY and X1Y 1 be random variables on
X × Y . It holds that

S
(
X1Y 1

∥∥X ⊗ Y ) ≥ S
(
X1Y 1

∥∥X1 ⊗ Y 1
)

= I
(
X1 : Y 1

)
.

Fact II.5. For distributions λ and µ: 0 ≤ ‖λ− µ‖1 ≤√
S(λ‖µ).

Fact II.6. Let λ and µ be distributions on X . For any
subset S ⊆ X , it holds that:

∑
x∈S λ(x) · log λ(x)

µ(x) ≥ −1.
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Fact II.7. The `1 distance and relative entropy are mono-
tone non-increasing when subsystems are considered.
Let XY and X1Y 1 be random variables on X × Y ,
then ∥∥XY −X1Y 1

∥∥
1
≥
∥∥X −X1

∥∥
1

and

S
(
XY

∥∥X1Y 1
)
≥ S

(
X
∥∥X1

)
.

Fact II.8. For function f : X × R → Y and
random variables X,X1 on X and R on R, such
that R is independent of (XX1), it holds that:
‖Xf(X,R)−X1f(X1, R)‖1 = ‖X −X1‖1 .

The following definition was introduced by Holen-
stein [9]. It plays a critical role in his proof of a parallel
repetition theorem for two-prover games.

Definition II.9 ([9]). For two distributions (X0Y0) and
(X1SY1T ), we say that (X0, Y0) is (1− ε)-embeddable
in (X1S, Y1T ) if there exists a probability distribution
R over a set R, which is independent of X0Y0 and
functions fA : X ×R → S, fB : Y ×R → T , such that

‖X0Y0fA(X0, R)fB(Y0, R)−X1Y1ST‖1 ≤ ε.

The following lemma was shown by Holenstein [9]
using a correlated sampling protocol.

Lemma II.10 ([9]). For random variables S, X and Y ,
if

‖XY S − (XY )(S|X)‖1 ≤ ε and

‖XY S − (XY )(S|Y )‖1 ≤ ε,

then (X,Y ) is (1− 4ε)-embeddable in (XS, Y S).

We will need the following generalization of the
previous lemma. Its proof appears in Appendix A.

Lemma II.11. For joint random variables (A′, B′, C ′)
and (A,B), satisfying

S(A′B′‖AB) ≤ ε. (1)
E(a,c)←A′,C′

[
S
(
B′a,c

∥∥Ba)] ≤ ε, (2)

E(b,c)←B′,C′
[
S
(
A′b,c

∥∥∥Ab)] ≤ ε, (3)

it holds that (A,B) is (1− 5
√
ε)-embeddable in

(A′C ′, B′C ′).

Communication complexity

Let f ⊆ X ×Y ×Z be a relation, t ≥ 1 be an integer
and ε ∈ (0, 1). In this work we only consider complete
relations, that is for every (x, y) ∈ X ×Y , there is some
z ∈ Z such that (x, y, z) ∈ f . In the two-party t-message
public-coin model of communication, Alice with input
x ∈ X and Bob with input y ∈ Y , do local computation

using public coins shared between them and exchange
t messages, with Alice sending the first message. At
the end of their protocol the party receiving the t-th
message outputs some z ∈ Z . The output is declared
correct if (x, y, z) ∈ f and wrong otherwise. Let
R

(t),pub
ε (f) represent the two-party t-message public-

coin communication complexity of f with worst case
error ε, i.e., the communication of the best two-party t-
message public-coin protocol for f with error for each
input (x, y) being at most ε. We similarly consider two-
party t-message deterministic protocols where there are
no public coins used by Alice and Bob. Let µ ∈ X×Y be
a distribution. We let D

(t),µ
ε (f) represent the two-party

t-message distributional communication complexity of f
under µ with expected error ε, i.e., the communication of
the best two-party t-message deterministic protocol for
f , with distributional error (average error over the inputs)
at most ε under µ. The following is a consequence
of the min-max theorem in game theory, see e.g., [23,
Theorem 3.20, page 36].

Lemma II.12 (Yao’s principle, [35]). R
(t),pub
ε (f) =

maxµ D
(t),µ
ε (f).

The following fact about communication protocols can
be verified easily.

Fact II.13. Let there be t messages M1, . . . ,Mt in
a deterministic communication protocol between Alice
and Bob with inputs X,Y respectively where X and Y
are independent. Then for any s ∈ [t], X and Y are
independent even conditioned on M1, . . . ,Ms.

Let fk ⊆ X k×Yk×Zk be defined to be cross product
of f with itself k times. In a protocol for computing fk,
Alice will receive input in X k, Bob will receive input in
Yk and the output of the protocol will be in Zk.

III. PROOF OF THEOREM I.1

We start by showing a few lemmas which are helpful
in the proof of the main result. The following lemma
was shown in Jain [11] and follows primarily from a
message compression argument due to Braverman and
Rao [5].

Theorem III.1. Let δ > 0, c ≥ 0. Let X ′, Y ′, N be
random variables for which Y ′ ↔ X ′ ↔ N is a Markov
chain and the following holds,

Pr
(x,y,m)←X′,Y ′,N

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
> c

]
≤ δ.

(4)
There exists a public-coin protocol between Alice and
Bob, with inputs X ′, Y ′ respectively, with a single mes-
sage from Alice to Bob of c+O(log(1/δ)) bits, such that
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at the end of the protocol, both Alice and Bob possess a
random variable M satisfying ‖X ′Y ′N −X ′Y ′M‖1 ≤
2δ.

Remark III.2. In [5], the condition I(X ′ : N |Y ′) ≤ c
is used instead of (4). It is changed to the current one
in Jain [11]. By Markov’s inequality, I(X ′ : N |Y ′) ≤ c
implies

Pr
(x,y,m)←X′,Y ′,N

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
>
c+ 1

δ

]
≤ δ.

This modification is essential in our arguments since
the condition (4) is robust when the underlying joint
distribution is perturbed slightly, while I (X ′ : N |Y ′)
may change a lot with such a perturbation.

As mentioned in Section 1, we will have to work with
approximate Markov chains in our arguments for the
direct product. The following lemma makes Theorem I.1
more robust to deal with approximate Markov chains. Its
proof appears in the Appendix A.

Lemma III.3. Let c ≥ 0, 1 > ε > 0, ε′ > 0. Let
X ′, Y ′,M ′ be random variables for which the following
holds,

I(X ′ : M ′ |Y ′) ≤ c and I(Y ′ : M ′ |X ′) ≤ ε.

There exists a public-coin protocol between Alice and
Bob, with inputs X ′, Y ′ respectively, with a single
message from Alice to Bob of c+5

ε′ + O(log 1
ε′ ) bits,

such that at the end of the protocol, both Alice
and Bob possess a random variable M satisfying
‖X ′Y ′M ′ −X ′Y ′M‖1 ≤ 3

√
ε+ 6ε′.

The following lemma generalizes the lemma above to
deal with multiple messages, as needed for our purposes.
Its proof appears in the Appendix A.

Lemma III.4. Let t ≥ 1 be an integer. Let ε′ > 0,
cs ≥ 0, 1 > εs > 0 for each 1 ≤ s ≤ t. Let
R′, X ′, Y ′,M ′1, . . . ,M

′
t , be random variables for which

the following holds (below M ′<s
def
= M ′1 · · ·M ′s−1),

I(X ′ : M ′s |Y ′R′M ′<s) ≤ cs, I(Y ′ : M ′s |X ′R′M ′<s) ≤ εs,
(5)

for odd s, and

I(Y ′ : M ′s |X ′R′M ′<s) ≤ cs, I(X ′ : M ′s |Y ′R′M ′<s) ≤ εs,

for even s.
There exists a public-coin t-message protocol Pt

between Alice, with input X ′R′, and Bob, with input
Y ′R′, with Alice sending the first message. The total
communication of Pt is

∑t
s=1 cs+5t

ε′ +O
(
t log 1

ε′

)
, and at

end of the protocol, both Alice and Bob possess random
variables M1, . . . ,Mt, satisfying: ‖R′X ′Y ′M1 · · ·Mt−
R′X ′Y ′M ′1 · · ·M ′t‖1 ≤ 3

∑t
s=1

√
εs + 6ε′t.

In the lemma above, Alice and Bob shared an input
R′ (potentially correlated with X ′Y ′). Eventually we
will need Alice and Bob to generate this shared part
themselves using correlated sampling. The following
lemma, obtained from the lemma above, is the one that
we will finally use in the proof of our main result. Its
proof appears in the Appendix A.

Lemma III.5. Let random variables
R′, X ′, Y ′,M ′1, . . . ,M

′
t and numbers ε′, cs, εs satisfy

all the conditions in Lemma III.4. Let τ > 0 and let
random variables (X,Y ) be (1 − τ)-embeddable in
(X ′R′, Y ′R′). There exists a public-coin t-message
protocol Qt between Alice, with input X , and Bob,
with input Y , with Alice sending the first message, and
total communication

∑t
s=1 cs+5t

ε′ + O
(
t log 1

ε′

)
bits,

such that at the end Alice possesses RAM1 · · ·Mt

and Bob possesses RBM1 · · ·Mt, such that:
‖XY RARBM1 · · ·Mt − X ′Y ′R′R′M ′1 · · ·M ′t‖1 ≤
τ + 3

∑t
s=1

√
εs + 6ε′t.

We are now ready to prove our main result, Theo-
rem I.1. We restate it here for convenience.

Theorem I.1. Let X , Y , Z be finite sets, f ⊆ X×Y×Z
a relation, ε > 0 and k, t ≥ 1 be integers. There exists
a constant κ ≥ 0 such that,

R
(t),pub

1−(1−ε/2)Ω(kε2/t2)
(fk) = Ω

(
ε · k
t
·
(

R(t),pub
ε (f)− κt2

ε

))
.

Proof of Theorem I.1: Let δ
def
= ε2

7500t2 and
δ1 = ε

3000t . From Yao’s principle, Lemma II.12,
it suffices to prove that for any distribution µ

on X × Y , D
(t),µk

1−(1−ε/2)bδkc
(fk) ≥ δ1kc , where

c
def
= D

(t),µ
ε (f)− κt2

ε , for constant κ to be chosen later.
Let XY ∼ µk. Let Q be a t-message deterministic
protocol between Alice, with input X , and Bob, with
input Y , that computes fk, with Alice sending the first
message and total communication δ1kc bits. We assume
t is odd for the rest of the argument and Bob makes the
final output (the case when t is even follows similarly).
The following Claim III.6 implies that the success of Q
is at most (1− ε/2)bδkc and this shows the desired.

Claim III.6. For each i ∈ [k], define a binary random
variable Ti ∈ {0, 1}, which represents the success of Q
(that is Bob’s output being correct) on the i-th instance.
That is, Ti = 1 if the protocol Q computes the i-th

6



instance of f correctly, and Ti = 0 otherwise. Let k′ def
=

bδkc. There exist k′ coordinates {i1, . . . , ik′} such that
for each 1 ≤ r ≤ k′ − 1,

either Pr
[
T (r) = 1

]
≤ (1− ε/2)k

′
or

Pr
[
Tir+1

= 1
∣∣∣T (r) = 1

]
≤ 1− ε/2,

where T (r) def
=

r∏
j=1

Tij .

Proof of Claim III.6: For s ∈ [t], denote the s-th
message of Q by Ms. Define M def

= M1 · · ·Mt. In the
following we assume 1 ≤ r < k′, however same argu-
ments also work when r = 0, that is for identifying the
first coordinate, which we skip for the sake of avoiding
repetition. Suppose we have already identified r coordi-
nates i1, . . . , ir satisfying that Pr[Ti1 = 1] ≤ 1 − ε/2
and Pr[Tij+1 = 1|T (j) = 1] ≤ 1−ε/2 for 1 ≤ j ≤ r−1.
If Pr

[
T (r) = 1

]
≤ (1 − ε/2)k

′
, we are done. So from

now on, assume Pr
[
T (r) = 1

]
> (1− ε/2)k

′ ≥ 2−δk.
Let D be a random variable uniformly distributed in

{0, 1}k and independent of XY . Let Ui = Xi if Di = 0,
and Ui = Yi if Di = 1. For any random variable L,
let us introduce the notation: L1 def

= (L|T (r) = 1).
For example, X1Y 1 = (XY |T (r) = 1). If L =

L1 · · ·Lk, define L−i
def
= L1 · · ·Li−1Li+1 · · ·Lk, and

L<i
def
= L1 · · ·Li−1. Random variable L≤i is defined

analogously. Let C
def
= {i1, . . . , ir}. Define Ri

def
=

D−iU−iXC∪[i−1]YC∪[i−1] for i ∈ [k]. We denote an
element from the range of Ri by ri. 2

To prove the claim, we will show that there exists a
coordinate j 6∈ C such that,

1) (XjYj) can be embedded well in (X1
jR

1
j , Y

1
j R

1
j )

(with appropriate parameters as required in Lemma
II.11.)

2) Random variables R1
j , X

1
j , Y

1
j ,M

1
1 , . . . ,M

1
t sat-

isfy the conditions of Lemma III.4 with appropri-
ate parameters.

2We justify here the composition of Ri. Random variables
D−iU−i are useful since conditioning on them makes the distribution
of inputs product across Alice and Bob (for fixed values of XiYi) and
is helpful in our arguments later. Random variables XCYC are helpful
since conditioning on them ensures that the inputs become product even
conditioned on success on C. Random variables X[i−1]Y[i−1] are
helpful since the following chain rule is used to draw a new coordinate
outside C with low information content:

I(XY : M) =
∑
i

I
(
XiYi : M

∣∣X[i−1]Y[i−1]

)
.

The following calculations are helpful for achieving
condition (1) of Lemma II.11.

δk > S∞
(
X1Y 1

∥∥XY ) ≥ S
(
X1Y 1

∥∥XY )
≥
∑
i/∈C

S
(
X1
i Y

1
i

∥∥XiYi
)
, (6)

where first inequality follows from the assumption that
Pr
[
T (r) = 1

]
> 2−δk, and the last inequality follows

from Fact II.3. The following calculations are helpful
for achieving conditions (2) and (3) of Lemma II.11.

δk > S∞
(
X1Y 1D1U1

∥∥XYDU)
≥ S

(
X1Y 1D1U1

∥∥XYDU)
≥ E

(d,u,xC ,yC)

←D1,U1,X1
C ,Y

1
C

[
S
((
X1Y 1

)
d,u,xC ,yC

∥∥∥(XY )d,u,xC ,yC

)]
(7)

=
∑
i/∈C

E
(d,u,xC∪[i−1],yC∪[i−1])

←D1,U1,X1
C∪[i−1],Y

1
C∪[i−1][

S

((
X1
i Y

1
i

)
d,u,xC∪[i−1],
yC∪[i−1]

∥∥∥∥(XiYi)d,u,xC∪[i−1],
yC∪[i−1]

)]
(8)

=
∑
i/∈C

E
(di,ui,ri)

←D1
i ,U

1
i ,R

1
i

[
S
(
(X1

i Y
1
i )di,ui,ri

∥∥(XiYi)di,ui,ri
)]

(9)

=
1

2

∑
i/∈C

E
(ri,xi)←R1

i ,X
1
i

[
S
((
Y 1
i

)
ri,xi

∥∥∥(Yi)xi

)]
+

1

2

∑
i/∈C

E
(ri,yi)←R1

i ,Y
1
i

[
S
((
X1
i

)
ri,yi

∥∥∥(Xi)yi

)]
. (10)

Above, Eq. (7) and Eq. (8) follow from Fact II.3; Eq. (9)
is from the definition of Ri. Eq. (10) follows since D1

i

is independent of R1
i and with probability half D1

i is 0,
in which case U1

i = X1
i and with probability half D1

i is
1 in which case U1

i = Y 1
i .

The following calculations are useful for achieving
partly the conditions in (5) exhibiting that the informa-
tion carried by messages about sender’s input is small.

δ1ck ≥
∣∣M1

∣∣ ≥ I
(
X1Y 1 : M1

∣∣D1U1X1
CY

1
C

)
=
∑
i/∈C

I
(
X1
i Y

1
i : M1

∣∣∣D1U1X1
C∪[i−1]Y

1
C∪[i−1]

)
=
∑
i/∈C

t∑
s=1

I
(
X1
i Y

1
i : M1

s

∣∣∣D1U1X1
C∪[i−1]Y

1
C∪[i−1]M

1
<s

)
=
∑
i/∈C

t∑
s=1

I
(
X1
i Y

1
i : M1

s

∣∣D1
iU

1
i R

1
iM

1
<s

)
(11)
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=
∑
i/∈C

((∑
s odd

+
∑
s even

)
I
(
X1
i Y

1
i : M1

s

∣∣D1
iU

1
i R

1
iM

1
<s

))

≥ 1

2

∑
i/∈C

(∑
s odd

I
(
X1
i : M1

s

∣∣R1
iY

1
i M

1
<s

)
+
∑
seven

I
(
Y 1
i : M1

s

∣∣R1
iX

1
iM

1
<s

) )
. (12)

Above we have used the chain rule for mutual infor-
mation several times. Last inequality follows since D1

i is
independent of (X1

i Y
1
i R

1
iM

1) and with probability half
D1
i is 0, in which case U1

i = X1
i and with probability

half D1
i is 1 in which case U1

i = Y 1
i .

The following calculations are useful for achieving
partly the conditions in (5) exhibiting that the informa-
tion carried by messages about receiver’s input is very
small. Here we are only able to argue round by round
and hence pay a factor proportional to the number of
messages in the final result. Let s ∈ [t] be odd.

δk ≥ S∞
(
D1U1X1Y 1M1

≤s
∥∥DUXYM≤s)

≥ S
(
D1U1X1Y 1M1

≤s
∥∥DUXYM≤s)

≥ E(d,u,xC ,yC ,m≤s)←D1,U1,X1
C ,Y

1
C ,M

1
≤s[

S
(
(X1Y 1)d,u,xC ,yC ,m≤s

∥∥(XY )d,u,xC ,yC ,m≤s
)]

=
∑
i/∈C

E
(d,u,xC∪[i−1],yC∪[i−1],m≤s)

←D1,U1,X1
C∪[i−1],Y

1
C∪[i−1],M

1
≤s[

S

(
(X1

i Y
1
i )d,u,xC∪[i−1],

yC∪[i−1],m≤s

∥∥∥∥(XiYi)d,u,xC∪[i−1],
yC∪[i−1],m≤s

)]
=
∑
i/∈C

E
(di,ui,ri,m≤s)

←D1
i ,U

1
i ,R

1
i ,M

1
≤s[

S
(
(X1

i Y
1
i )di,ui,ri,m≤s

∥∥(XiYi)di,ui,ri,m≤s
) ]

(13)

≥ 1

2

∑
i/∈C

E
(xi,ri,m≤s)

←X1
i ,R

1
i ,M

1
≤s

[
S
(
(Y 1
i )xi,ri,m≤s

∥∥(Yi)xi,ri,m≤s
)]

=
1

2

∑
i/∈C

E
(xi,ri,m≤s)

←X1
i ,R

1
i ,M

1
≤s

[
S
(
(Y 1
i )xi,ri,m≤s

∥∥(Yi)xi,ri,m<s
)]

(14)

=
1

2

∑
i/∈C

E(xi,ri,m<s)←X1
i ,R

1
i ,M

1
<s[

S
(
(Y 1
i M

1
s )xi,ri,m<s

∥∥(Yi)xi,ri,m<s ⊗ (M1
s )xi,ri,m<s

) ]
≥ 1

2

∑
i/∈C

E
(xi,ri,m<s)

←X1
i ,R

1
i ,M

1
<s

[
I
(
(Y 1
i )xi,ri,m<s : (M1

s )xi,ri,m<s
)]

(15)

=
1

2

∑
i/∈C

I
(
Y 1
i : M1

s

∣∣X1
i R

1
iM

1
<s

)
. (16)

Above we have used Fact II.3 several times. Eq. (13)
follows from the definition of Ri; Eq. (14) follows
from the fact that Y ↔ XiRiM<s ↔ Ms for any i,
whenever s is odd; Eq. (15) follows from Fact II.4. From
a symmetric argument, we can show that when s ∈ [t] is
even, 1

2

∑
i/∈C I

(
X1
i : M1

s

∣∣Y 1
i R

1
iM

1
<s

)
≤ δk. This and

Eq. (16) together imply∑
i/∈C

(∑
s odd

I
(
Y 1
i : M1

s

∣∣R1
iX

1
iM

1
<s

)
+∑

s even

I
(
X1
i : M1

s

∣∣R1
iY

1
i M

1
<s

) )
≤ 2δkt. (17)

Combining Equations (6)(10)(12)(17), and making
standard use of Markov’s inequality, we can get a
coordinate j /∈ C such that

S
(
X1
j Y

1
j

∥∥XjYj
)
≤ 12δ, (18)

E
(rj ,xj)

←R1
j ,X

1
j

[
S
((
Y 1
j

)
rj ,xj

∥∥∥(Yj)xj

)]
≤ 12δ, (19)

E
(rj ,yj)

←R1
j ,Y

1
j

[
S
((
X1
j

)
rj ,yj

∥∥∥(Xj)yj

)]
≤ 12δ, (20)

∑
s odd

I
(
X1
j : M1

s

∣∣R1
jY

1
j M

1
<s

)
+∑

s even

I
(
Y 1
j : M1

s

∣∣R1
jX

1
jM

1
<s

)
≤ 12δ1c, (21)∑

s odd

I
(
Y 1
j : M1

s

∣∣R1
jX

1
jM

1
<s

)
+∑

s even

I
(
X1
j : M1

s

∣∣R1
jY

1
j M

1
<s

)
≤ 12δt. (22)

Set ε′ def
= ε

125t , and

εs
def
=

{
I
(
Y 1
j : M1

s

∣∣R1
jX

1
jM

1
<s

)
s ∈ [t] odd,

I
(
X1
j : M1

s

∣∣R1
jY

1
j M

1
<s

)
s ∈ [t] even.

;

cs
def
=

{
I
(
Y 1
j : M1

s

∣∣R1
jX

1
jM

1
<s

)
s ∈ [t] even,

I
(
X1
j : M1

s

∣∣R1
jY

1
j M

1
<s

)
s ∈ [t] odd.

By (22),
∑t
s=1

√
εs ≤

√
12δt. From Equations

(18)(19)(20) and Lemma II.11 we can infer that
(XjYj) is (1− 10

√
3δ)-embeddable in (X1

jR
1
j ;Y

1
j R

1
j ).

This, combined with Equations (21)(22) and Lemma
III.5 (take ε′, εs, cs in the lemma to be as defined
above and take XYX ′Y ′R′M ′1 · · ·M ′t in the lemma
to be XjYjX

1
j Y

1
j R

1
jM

1
1 · · ·M1

t ) imply the following
(for appropriate constant κ). There exists a public-
coin t-message protocol Q1 between Alice, with in-
put Xj , and Bob, with input Yj , with Alice sending
the first message and total communication, 12δ1c+5t

ε′ +

8



O(t log 1
ε′ ) < D

(t),µ
ε (f), such that at the end Alice pos-

sesses RAM1 · · ·Mt and Bob possesses RBM1 · · ·Mt,
satisfying∥∥XjYjRARBM1 · · ·Mt −X1

j Y
1
j R

1
jR

1
jM

1
1 · · ·M1

t

∥∥
1

≤ 10
√

3δ + 3
√

12δt+ 6ε′t < ε/2.

Assume for contradiction that Pr
[
Tj = 1

∣∣T (r) = 1
]
>

1 − ε/2. Consider a protocol Q2 (with no
communication) for f between Alice, with
input X1

jR
1
jM

1
1 · · ·M1

t , and Bob, with input
Y 1
j R

1
jM

1
1 · · ·M1

t , as follows. Bob generates the
rest of the random variables present in Y 1 (not present
in his input) himself since, conditioned on his input,
those other random variables are independent of Alice’s
input (here we use Fact II.13). Bob then generates the
output for the j-th coordinate in Q, and makes it the
output of Q2. This ensures that the success probability
of Bob in Q2 is Pr

[
Tj = 1

∣∣T (r) = 1
]
> 1 − ε/2.

Now consider protocol Q3 for f , with Alice’s input
Xj and Bob’s input Yj , which is a composition of Q1

followed by Q2. This ensures, using Fact II.8, that
success probability of Bob (averaged over public coins
and the inputs XjYj) in Q3 is larger than 1− ε. Finally
by fixing the public coins of Q3, we get a deterministic
protocol Q4 for f with Alice’s input Xj and Bob’s
input Yj such that the communication of Q4 is less than
D

(t),µ
ε (f) and Bob’s success probability (averaged over

the inputs XjYj) in Q4 is larger than 1 − ε. This is a
contradiction to the definition of D

(t),µ
ε (f) (recall that

XjYj are distributed according to µ). Hence it must be
that Pr

[
Tj = 1

∣∣T (r) = 1
]
≤ 1 − ε/2. The claim now

follows by setting ir+1 = j.

Open problems

Some natural questions that arise from this work are:
1) Can the dependence on t in our direct product

theorem be improved?
2) Can these techniques be extended to show di-

rect product theorems for bounded-round quantum
communication complexity?
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APPENDIX

Proof of Lemma II.11: Using the definition of the
relative entropy, we have the following.

E
(a,c)←A′,C′

[
S
(
B′a,c

∥∥Ba)]− E
(a,c)←A′,C′

[
S
(
B′a,c

∥∥B′a)]
= E

(a,b,c)←A′,B′,C′

[
log

Pr[B′ = b|A′ = a]

Pr[B = b|A = a]

]
= E
a←A′

[S(B′a‖Ba)] ≥ 0.

This means that

E
(a,c)←A′,C′

[
S
(
B′a,c

∥∥B′a)] (23)

≤ E
(a,c)←A′,C′

[
S
(
B′a,c

∥∥Ba)] ≤ ε. (24)

Then

E
(a,c)←A′,C′

[
S
(
B′a,c

∥∥B′a)]
= S(A′C ′B′‖(A′C ′) (B′|A′)) (25)
= S(A′B′C ′‖(A′B′) (C ′|A′)) (26)

≥ ‖A′B′C ′ − (A′B′) (C ′|A′)‖21 . (27)

Above, Eq. (25) follows from the chain rule for the rel-
ative entropy, Eq. (26) follows because (A′C ′) (B′|A′)
and (A′B′) (C ′|A′) are identically distributed, and
Eq. (27) follows from Fact II.5. Now from Equations
(27) and (24) we get

‖A′B′C ′ − (A′B′) (C ′|A′)‖1 ≤
√
ε.

By similar arguments we get

‖A′B′C ′ − (A′B′) (C ′|B′)‖1 ≤
√
ε.

The inequalities above and Lemma II.10 imply that
(A′, B′) is (1− 4

√
ε)-embeddable in (A′C ′, B′C ′). Fur-

thermore from Fact II.5 and S(A′B′‖AB) ≤ ε we get

‖A′B′ −AB‖1 ≤
√
ε.

Finally using the inequality above, Fact II.8 and the
triangle inequality for the `1 norm, we get that (A,B)
is (1− 5

√
ε)-embeddable in (A′C ′, B′C ′).

Proof of Lemma III.3: Let us introduce a new ran-
dom variable N with joint distribution X ′Y ′N

def
=
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(X ′Y ′)(M ′|X ′). Note that Y ′ ↔ X ′ ↔ N is a Markov
chain. Using Lemma II.1, we have

S(X ′Y ′M ′‖X ′Y ′N) = I(Y ′ : M ′ |X ′) ≤ ε. (28)

Applying Fact II.5, we get ‖X ′Y ′M ′ −X ′Y ′N‖1 ≤√
ε. Theorem III.1 and the following claim together

imply that there exists a public-coin protocol between
Alice and Bob, with input X ′, Y ′, respectively,
with a single message from Alice to Bob of
c+5
ε′ + O(log 1

ε′ ) bits, at the end of which both
Alice and Bob possess a random variable N ′ satisfying
‖X ′Y ′N ′ −X ′Y ′N‖1 ≤ 2

√
ε + 6ε′. Finally using the

triangle inequality for the `1 norm we conclude the
desired.

Claim A.1.

Pr
(m,x,y)←N,X′,Y ′

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
≥ c+ 5

ε′

]
≤ 3ε′+

√
ε.

Proof: For any m, x, y it holds that

log
Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]

= log
Pr[N = m|X ′ = x, Y ′ = y]

Pr[N = m|Y ′ = y]

= log
Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]

+ log
Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]

+ log
Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]
. (29)

From union bound and above we get (recall 1 > ε > 0),

Pr
(m,x,y)
←M ′,X′,Y ′

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
≥ c+ 5

ε′

]

= Pr
(m,x,y)
←M ′,X′,Y ′

[
log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[N = m|Y ′ = y]
≥ c+ 5

ε′

]

≤ Pr
(m,x,y)
←M ′,X′,Y ′

[
log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]
≥ ε+ 1

ε′

]

+ Pr
(m,x,y)
←M ′,X′,Y ′

[
log

Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]
≥ c+ 1

ε′

]

+ Pr
(m,x,y)
←M ′,X′,Y ′

[
log

Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]
≥ ε+ 1

ε′

]
.

(30)

We bound each term above separately. For the first one,
let us define the set

G1
def
=

{
(m,x, y) : log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]
<
ε+ 1

ε′

}
.

Consider,

0 ≥ − E
(x,y)←X′,Y ′

[
S
(
M ′xy

∥∥Nxy)]
= E

(m,x,y)←M ′,X′,Y ′

[
log

Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]

]
(31)

=
∑

(m,x,y)∈G1

(
Pr[M ′ = m,X ′ = x, Y ′ = y] ·

log
Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]

)
+

∑
(m,x,y)/∈G1

(
Pr[M ′ = m,X ′ = x, Y ′ = y] ·

log
Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]

)
≥

∑
(m,x,y)∈G1

(
Pr[M ′ = m,X ′ = x, Y ′ = y] ·

log
Pr[N = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|X ′ = x, Y ′ = y]

)
+ Pr[(M ′, X ′, Y ′) /∈ G1] · ε+ 1

ε′
(32)

=
∑

(m,x,y)/∈G1

(
Pr[M ′ = m,X ′ = x, Y ′ = y] ·

log
Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[N = m|X ′ = x, Y ′ = y]

)
− S(M ′X ′Y ′‖NX ′Y ′)

+ Pr[(M ′, X ′, Y ′) /∈ G1] · ε+ 1

ε′
(33)

≥ −1− ε+ Pr[(M ′, X ′, Y ′) /∈ G1] · ε+ 1

ε′
. (34)

Above, Eq. (31) and Eq. (33) follow from the definition
of the relative entropy, and Eq. (32) follows from the
definition of G1. To get Eq. (34), we use Fact II.6 and
Eq. (28). Eq. (34) implies that Pr[(M ′, X ′, Y ′) /∈ G1] ≤
ε′.

To upper bound the second term let us define

G2
def
=

{
(m,x, y) : log

Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]
<

c+ 1

ε′

}
.
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Consider,

c ≥ I
(
M ′ : X ′

∣∣Y ′) (35)

= E
(m,x,y)←M′,X′,Y ′

[
log

Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]

]
(36)
(37)

=
∑

(m,x,y)∈G2

(
Pr
[
M ′ = m,X ′ = x, Y ′ = y

]
·

log
Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]

)
+

∑
(m,x,y)6∈G2

(
Pr
[
M ′ = m,X ′ = x, Y ′ = y

]
·

log
Pr[M ′ = m|X ′ = x, Y ′ = y]

Pr[M ′ = m|Y ′ = y]

)
≥ c+ 1

ε′
· Pr

[(
M ′, X ′, Y ′

)
/∈ G2

]
− 1. (38)

Above Eq. (35) is one of the assumptions in the lemma;
Eq. (36) follows from the definition of the conditional mutual
information; Eq. (38) follows from the definition of G2 and
Fact II.6. Eq. (38) implies that Pr[(M ′, X ′, Y ′) /∈ G2] ≤ ε′.

To bound the last term define

G3
def
=

{
(m,x, y) : log

Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]
<

ε+ 1

ε′

}
.

Consider,

ε ≥ S
(
X ′Y ′M ′

∥∥X ′Y ′N)
≥ S

(
Y ′M ′

∥∥Y ′N) (39)

= E
(m,x,y)←M′,X′,Y ′

[
log

Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]

]
=

∑
(m,x,y)∈G3

(
Pr
[
M ′ = m,X ′ = x, Y ′ = y

]
·

log
Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]

)
+

∑
(m,x,y)6∈G3

(
Pr
[
M ′ = m,X ′ = x, Y ′ = y

]
·

log
Pr[M ′ = m,Y ′ = y]

Pr[N = m,Y ′ = y]

)
≥ −1 + Pr

[(
M ′, X ′, Y ′

)
/∈ G3

]
· ε+ 1

ε′
. (40)

Above Eq. (39) follows from Fact II.7 and Eq. (40) follows
from definition of G3. This implies Pr[(M ′, X ′, Y ′) /∈ G3] ≤
ε′.

Combining the bounds for the three terms we get

Pr
(m,x,y)←M′,X′,Y ′

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
≥ c+ 5

ε′

]
≤ 3ε′.

Using ‖X ′Y ′M ′ −X ′Y ′N‖1 ≤
√
ε (as was shown previ-

ously), we finally have,

Pr
(m,x,y)←N,X′,Y ′

[
log

Pr[N = m|X ′ = x]

Pr[N = m|Y ′ = y]
≥ c+ 5

ε′

]
≤ 3ε′+

√
ε.

Proof of Lemma III.4: We prove the lemma by induc-
tion on t. For the base case t = 1, note that

I(X ′R′ : M ′1 |Y ′R′) = I(X ′ : M ′1 |Y ′R′) ≤ c1

and

I(Y ′R′ : M ′1 |X ′R′) = I(Y ′ : M ′1 |X ′R′) ≤ ε1.

Lemma III.3 implies (by taking X ′, Y,′M ′ in Lemma
III.3 to be X ′R′, Y ′R′,M ′1 respectively) that Alice, with
input X ′R′, and Bob, with input Y ′R′, can run a public-
coin protocol with a single message from Alice to Bob
of

c1 + 5

ε′
+O(log

1

ε′
)

bits and generate a new random variable M1 satisfying

‖R′X ′Y ′M ′1 −R′X ′Y ′M1‖1 ≤ 3
√
ε1 + 6ε′.

Now let t > 1. Assume t is odd, for even t a similar
argument will follow. From the induction hypothesis
there exists a public-coin t − 1 message protocol Pt−1

between Alice, with input X ′R′, and Bob, with input
Y ′R′, with Alice sending the first message, and total
communication∑t−1

s=1 cs + 5(t− 1)

ε′
+O

(
(t− 1) log

1

ε′

)
, (41)

such that at the end both Alice and Bob possess random
variables M1, . . . ,Mt−1 satisfying

‖R′X ′Y ′M1 · · ·Mt−1 −R′X ′Y ′M ′1 · · ·M ′t−1‖1

≤ 3

t−1∑
s=1

√
εs + 6ε′(t− 1). (42)

Note that

I(Y ′R′M ′<t : M ′t |X ′R′M ′<t)
= I(Y ′ : M ′t |X ′R′M ′<t) ≤ ct

and

I(X ′R′M ′<t : M ′t |Y ′R′M ′<t)
= I(X ′ : M ′t |Y ′R′M ′<t) ≤ εt.

Therefore Lemma III.3 implies (by taking X ′, Y,′M ′

in Lemma III.3 to be X ′R′M ′<t, Y
′R′M ′<t,M

′
t respec-

tively) that Alice, with input X ′R′M ′<t, and Bob, with
input Y ′R′M ′<t, can run a public coin protocol P with
a single message from Alice to Bob of

ct + 5

ε′
+O

(
log

1

ε′

)
(43)
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bits and generate a new random variable M ′′t satisfying∥∥R′X ′Y ′M ′1 · · ·M ′t−1M
′
t −R′X ′Y ′M ′1 · · ·M ′t−1M

′′
t

∥∥
1

≤ 3
√
εt + 6ε′. (44)

Fact II.8 and Eq. (42) imply that Alice, on input
X ′R′M<t and Bob on input Y ′R′M<t, on running the
same protocol P will generate a new random variable
Mt satisfying

‖R′X ′Y ′M1 · · ·Mt−1Mt −R′X ′Y ′M ′1 · · ·M ′t−1M
′′
t ‖1

= ‖R′X ′Y ′M1 · · ·Mt−1 −R′X ′Y ′M ′1 · · ·M ′t−1‖1

≤ 3

t−1∑
s=1

√
εs + 6ε′(t− 1). (45)

Therefore by composing protocol Pt−1 and protocol P ,
using Equations (41), (43), (44), (45) and the triangle
inequality for the `1 norm, we get a public-coin t-
message protocol Pt between Alice, with input X ′R′,
and Bob, with input Y ′R′, with Alice sending the first
message, and total communication∑t

s=1 cs + 5t

ε′
+O

(
t log

1

ε′

)
,

such that at the end Alice and Bob both possess random
variables M1, . . . ,Mt satisfying

‖R′X ′Y ′M1 · · ·Mt −R′X ′Y ′M ′1 · · ·M ′t‖1

≤ 3

t∑
s=1

√
εs + 6ε′t.

Proof of Lemma III.5: InQt, Alice and Bob, using pub-
lic coins and no communication first generate RA, RB
such that ‖XY RARB −X ′Y ′R′R′‖1 ≤ τ . They can
do this from the Definition II.9 of embedding. Now they
will run protocol Pt (as in Lemma III.4) with Alice’s
input being XRA and Bob’s input being Y RB and at the
end both possess M1, . . . ,Mt. From Lemma III.4, the
communication of Qt is as desired. Now from Fact II.8,
Lemma III.4 and the triangle inequality for the `1 norm,

‖XY RARBM1 · · ·Mt −X ′Y ′R′R′M ′1 · · ·M ′t‖1

≤ τ + 3

t∑
s=1

√
εs + 6ε′t.
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