
CS2040S Semester 1 2023/2024

Data Structures and Algorithms

Tutorial+Lab 06

Table ADT 1: Hash Table; Midterm Debrief

For Week 08

Document is last modified on: July 18, 2023

1 Introduction and Objective

In this tutorial, we will continue our discussion about Hash Table, one possible efficient imple-

mentation of Table ADT (unordered). We will heavily use https://visualgo.net/en/hashtable in

this tutorial. We will contrast and compare two collision resolution methods that each has its own

strengths and weaknesses.

2 Tutorial 06 Questions

Hash Function Basics

Q1). Which of the following is the best (string) hash function?

1. int index = (rand() * (key[0]-’A’)) % N;

2. int index = (key[0]-’A’) % N;

3. int index = hash function(key) % N;

where

� rand() is a function that returns a pseudo-random integral number in the range between 0

and RAND MAX (This value is library-dependent, but is guaranteed to be at least 32767 on any

standard library implementation).

� key is a string

� N is the hash table size, usually a prime number

1

https://visualgo.net/en/hashtable


� hash function(v) is as shown in https://visualgo.net/en/hashtable?slide=4-7

Q2). A good hash function is essential for good Hash Table performance. A good hash function

is easy/efficient to compute and will evenly distribute the possible keys (necessary condition to have

good performing Hash Table implementation). Comment on the flaw (if any) of the following (integer)

hash functions. Assume that for this question, the load factor α = number of keys N / Hash Table

size M ≤ 10 (i.e., small enough for our Separate Chaining or Linear Probing implementation) for all

cases below:

1. M = 100. The keys are N = 50 positive even integers in the range of [0, 10 000].

The hash function is h(key) = key % 100.

2. M = 100. The keys are N = 50 positive integers in the range of [0, 10 000].

The hash function is h(key) = floor(sqrt(key)) % 100.

3. M = 101. The keys are N = 50 positive integers in the range of [0, 10 000].

The hash function is h(key) = floor(key * random) % 101, where 0.0 ≤ random ≤ 1.0 (C++

rand()/Python random()/Java Random class).

Hash Table Basics

Q3). Hashing or No Hashing: Hash Table is a Table ADT that allows for search(v), insert(new-v),

and delete(old-v) operations in O(1) average-case time, if properly designed. However, it is not

without its limitations. For each of the cases described below, state if Hash Table can be used. If not

possible to use Hash Table, explain why is Hash Table not suitable for that particular case. If it is

possible to use Hash Table, describe its design, including:

1. The <Key, Value> pair

2. Hashing function/algorithm

3. Collision resolution (OA: LP/QP/DH or SC; give some details)

(Choose 2 out of 3 to be discussed live): The cases are:

1. A population census is to be conducted on every person in your (very large, e.g., population of

1 Billion) country. You can assume that no two person have the same name in this country.

However, there can be two or more person with the same age. You can assume that age is an

integer and within reasonable human age range [0..150] years old. We are only interested in

storing every person’s name and age. The operations to perform are: retrieve age by name and

retrieve list of names (in any order) by age. Important consideration: Each year, everyone’s age

increases by one year, a bunch of new babies (age 0) are born and added into the database, some

people unfortunately pass away and removed from the database. All these yearly changes have

to be considered.

2

https://visualgo.net/en/hashtable?slide=4-7


2. A different population census similarly contains only the name (in full name, again, guaranteed

to be distinct) and the age of every person. The operation to perform is: Retrieve person’s full

name and his/her age given a last (sur)-name. Note that although the full names are distinct,

their last (sur-)names may not.

3. A grades management program stores a student’s index number and his/her final marks in one

GCE ‘O’ Level subject. There are 100,000 students, each scoring final marks in [0.0, 100.0] (the

exact precision needed is not known). The operation to perform is: Retrieve a list of students

who passed in ranking order (highest final marks to passing marks). A student passes if the final

marks are more than 65.5. Whether a student passes or not, we still need to store all students’

performance as the passing final marks can be adjusted as per necessary.

Q4). Quick check: Let’s review all 4 modes of Hash Table (use the Exploration mode of https:

//visualgo.net/en/hashtable). During the tutorial session, the tutor will randomize the Hash

Table size M , the selected mode (LP, QP, DH, or SC), the initial keys inside, and then ask student to

Insert(random-integer), Remove(existing-integer), or Search(integer) operations. This part

can be skipped if most students are already comfortable with the basics.

Hash Table Discussions

Q5). Choose 2 out 4 to be discussed live: The following topics require deeper understanding of Hash

Table concept. Please review https://visualgo.net/en/hashtable?slide=1, use the Exploration

Mode, or Google around to help you find the initial answers and we will discuss the details in class.

For some questions, there can be more than one valid answers.

1. What is/are the main difference(s) between List ADT basic operations (see https://visualgo.

net/en/list?slide=2-1) versus Table ADT basic operations (see https://visualgo.net/en/

hashtable?slide=2-1)?

2. At https://visualgo.net/en/hashtable?slide=4-4, Steven mentions about Perfect Hash

Function. Now let’s try a mini exercise. Given the following strings, which are the names

of Steven’s current family members: {“Steven Halim”, “Grace Suryani Halim”, “Jane Angelina

Halim”, “Joshua Ben Halim”, “Jemimah Charissa Halim”}, design any valid minimal perfect

hash function to map these 5 names into index [0..4] without any collision. Steven and Grace

are not planning to increase their family size so you can assume that N = 5 will not change.

3. Thus far, which collision resolution technique is better (in your opinion or Google around): One of

the Open Addressing technique (LP, QP, DH) or the Closed Addressing (Separate Chaining/SC)

technique?

4. Which non-linear data structure should you use if you have to support the following three

operations: 1). many insertions, 2) many deletions, and 3) many requests for the data in sorted

order?

3

https://visualgo.net/en/hashtable
https://visualgo.net/en/hashtable
https://visualgo.net/en/hashtable?slide=1
https://visualgo.net/en/list?slide=2-1
https://visualgo.net/en/list?slide=2-1
https://visualgo.net/en/hashtable?slide=2-1
https://visualgo.net/en/hashtable?slide=2-1
https://visualgo.net/en/hashtable?slide=4-4


Hands-on 5

TA will run the second half of this session with a few to do list:

� Very quick review of Java HashSet and HashMap,

� Do a speed run of VisuAlgo online quiz that are applicable so far, e.g.,

https://visualgo.net/training?diff=Medium&n=5&tl=5&module=hashtable,

� Finally, live solve another chosen Kattis problem involving Table ADT (that does *not* require

ordering) but has interesting time complexity analysis (to be fully understood in CS3230 later).

Problem Set 4

We will end the tutorial with last-minute algorithmic discussion of PS4.

We are now allowed to discuss 100+100 solutions in high level.

4

https://visualgo.net/training?diff=Medium&n=5&tl=5&module=hashtable

	Introduction and Objective
	Tutorial 06 Questions

