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INSTRUCTIONS TO CANDIDATES:

1. Do NOT open this final assessment paper until you are told to do so.

2. This assessment paper contains FOUR (4) sections.

It comprises SIX (6) printed pages, including this page.

3. This is an Open Book/Open Laptop/Open PC Assessment.

But you are NOT allowed to use the Internet (web browser, messaging/cloud services, etc).

You are free to use your Laptop/PC as you see fit without accessing the Internet other than for

Zoom e-proctoring and to upload the (scanned) soft copy answer at the end of the paper.

4. There are 8 pages of answer sheets (Answer Sheets.docx, not password protected).

If you have printer, you can print the blank answer sheets earlier.

If you don’t have printer, just mimic the format on 8 blank pages as best as you can.

Answer ALL questions within the given (boxed) space to make grading easier.

When you write your answers, you can do so using either pen or pencil, just write legibly!

Scan the printed Answer Sheets and upload the scan to LumiNUS files at the end of the paper.

Note that if you prefer to write your answers digitally, we can also type your answers at Answer

Sheets.docx too. However, drawing test cases will be much more difficult in this case.

5. Important tips: Pace yourself! Do not spend too much time on one (hard) question.

Read all the questions first! Some (subtask) questions might be easier than they appear.

6. You can use pseudo-code in your answer but beware of penalty marks for ambiguous answer.

You can use standard, non-modified classic algorithm in your answer by just mentioning its

name, e.g. run Dijkstra’s on graph 𝐺, Kuhn-Munkres on graph 𝐺′, etc.

7. All the best :)
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A Short Answers (5x5 = 25 marks)

Q1). You are given a special implicit graph with 𝐾 vertices labeled with [1, 2, .., 𝐾]. There is an

edge between two vertices labeled with 𝑖 and 𝑗 if and only if (𝑖 + 𝑗) is a prime. See Figure 1 for an

example special implicit graph when 𝐾 = 5.

Figure 1: Implicit Graph with 𝐾 = 5

Draw this special implicit graph when 𝐾 = 7 (2 marks), then answer (3x1 mark = 3 marks) the

Min-Vertex-Cover (the cardinality and the vertices in the MVC), the Max-Independent-Set (the

cardinality and the vertices in the MIS), and the Max-Clique (the cardinality and the vertices in the

Max-Clique) of this special implicit graph when 𝐾 = 7. All valid answers are accepted.

Q2). Your company produces two products: 𝐴 and 𝐵. This is the information that you know:

� Selling one unit of 𝐴/𝐵 gives you 3/5 SGD profit, respectively.

� You need to produce at least 10 𝐴s and at least 9 𝐵s weekly to satisfy minimum demands.

� Each 𝐴/𝐵 takes 4/6 hours to make, respectively and your only factory can obviously only run

at most 24*7 = 168 hours per week.

With the information above and your current understanding of CS4234, what is your company’s

maximum weekly profit?. Marking scheme: 2 marks to express this problem as an ILP, 3 marks for

the correct answer/the solution for that ILP (remember that 𝐴 and 𝐵 must be both integers).

Q3). Draw a small flow graph with 𝑉 = 7 vertices, source 𝑠 is vertex 0, sink 𝑡 is vertex 6 such that

all Ford-Fulkerson based methods (the DFS implementation of Ford-Fulkerson, Edmonds-Karp, or

Dinic’s algorithm) terminate after just exactly one iteration (give a short explanation), but even the

relabel-to-front 𝑂(𝑉 3) Push-Relabel algorithm will spend many useless pushes or relabel operations

(give a short explanation of at least 43 push or relabel operations) (mostly) to return undelivered unit

of flows back to 𝑠 = 0.

2



CS4234

Q4). You are given a new NP-hard optimization problem (it’s name is omitted, but it is real).

This is the information that you know:

� 50 ≤ 𝑛 ≤ 500 for the (hidden) test cases that you have to solve,

� A standard Complete Search solution for this problem runs in 𝑂(𝑛! * 𝑛),

� There is no known Dynamic Programming solution,

� The run time limit per test case is approximately 10 minutes,

� It is OK to get ‘good enough’ results as long as the run time limit is not exceeded,

� You do not spot any special properties that can be usable,

� You are given a few sample test cases and the best known (not necessarily optimal) solutions

for those sample test cases to train on, and

� Variability of Local Optimas quality that you found for each sample test case is very high.

� Fitness-Distance Correlation analysis for all sample test cases between the best known versus

multiple Local Optimas that you found usually do NOT show positive correlation.

With the information above and your current understanding of CS4234, what will you do/implement

to deal with this problem?

Q5). You have implemented a Tabu Search algorithm for another NP-hard optimization problem.

This is the information that you know:

� The search space is all possible bit (0 or 1) strings of length 𝑛 bits.

� You used the following Tabu Table mechanism: a 1D table Tabu that forbids the 𝑖-th bit to be

toggled for TT (Tabu Tenure) iterations. (initially, Tabu[i] is -INF ∀𝑖 ∈ [0..𝑛− 1])

� Setting an index 𝑖 to be tabu can be done in 𝑂(1) by storing current iteration number at Tabu[i].

� Any local move that tries to toggle index 𝑖 at iteration 𝑥 will check against this Tabu Table in

𝑂(1): is x-Tabu[i] > TT (if True, then this toggle index 𝑖 move is NOT tabu)?

With the information above and your current understanding of Tabu Search algorithm, what do you

think will happen if we set TT ≥ n?

B Tracing (10 marks)

Kuhn-Munkres algorithm is one of the possible algorithm that can be used to find the solution of

(max) weighted Max-Cardinality-Bipartite-Matching (MCBM). In this tracing question, we will

check your understanding about this algorithm. You are given a 7 × 7 matrix 𝑀 that describes a

(transformed into) complete Bipartite Graph 𝐾7,7. The left set contains vertex [0/1/../6] (the rows

in 𝑀) and the right set contains vertex [7/8/../13] (the columns in 𝑀). A non-negative value 𝑀 [𝑖][𝑗]

signifies that if we match vertex 𝑖 with vertex 𝑗, we will obtain 𝑀 [𝑖][𝑗] profit. Value 𝑀 [𝑖][𝑗] = −1

signifies that there is actually no (directed) edge between vertex 𝑖 to vertex 𝑗 in the initial Bipartite

Graph (see part 1). However, assuming that there exists edge 𝑖 → 𝑗 with weight −1 will not change

the final answer (see part 4) for this test case.
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7 8 9 10 11 12 13

0 -1 8 6 -1 -1 -1 -1
1 1 4 -1 -1 -1 -1 -1
2 4 -1 1 -1 -1 -1 -1
3 -1 -1 -1 9 7 8 6
4 -1 -1 -1 7 -1 3 -1
5 -1 -1 -1 6 -1 -1 -1
6 -1 -1 -1 -1 -1 -1 0

1. (1 mark). Draw the initial Bipartite Graph where edge 𝑖 → 𝑗 with 𝑀 [𝑖][𝑗] = −1 does not exist.

2. (1 mark). How many different perfect MCBMs are there in a complete Bipartite Graph 𝐾7,7?

3. (3 marks). What is the maximum weight of the perfect MCBM? (if you run Kuhn-Munkres

algorithm (see below) or via Complete Search (see above), this answer should be correct, i.e.,

𝑂𝑃𝑇 ; otherwise if you has a bug (or you guess this answer) and your answer is 𝑋, then your

score is max(0, 3 - abs(𝑂𝑃𝑇 -𝑋)).

4. (5 marks). Show the workings of your Kuhn-Munkres algorithm.

1 mark for the initial equality graph and the initial labels of each vertex.

2 marks to show the progress of Kuhn-Munkres algorithm

2 marks for the final equality graph with the selected perfect matching with max total profit.

C Simple Application (10 marks)

Steven needs to create 𝑛 questions for this paper, one for each of the 𝑛 topics (labeled topic 0 to

𝑛 − 1) of CS4234. He has 𝑚 question ideas and fortunately 𝑚 ≥ 𝑛. Each question is suitable for

at least one topic (a superbly set question, e.g., see section D, can be suitable for multiple topics)

and has appropriateness rating of [1/2/../9] with 1 being ‘least appropriate’ and 9 being ‘the most

appropriate’. He wants to setup the paper with two constraints: each of the 𝑛 topics of CS4234

need to have exactly 1 chosen question and each question can only be assigned to exactly 1

topic (output “CREATE AT LEAST X NEW QUESTION(S)” where 𝑋 is the minimal number of

new question(s) that Steven has to create to satisfy the first constraint) and if the first constraint is

satisfiable, choose the setup with the highest total appropriateness rating.

For example, if Steven has 𝑚 = 3 question ideas for 𝑛 = 2 topics (question idea A and B have

appropriateness rating 7 and 6, respectively; both A and B are only suitable for topic 0; question

idea C only has appropriateness rating 1 but is the only one suitable for topic 1), then he shall pick

the question idea 𝐴 with appropriateness rating 7 for topic 0 and has no choice to pick the question

idea 𝐶 with appropriateness rating 1 for topic 1, thus total = 7+1 = 8 appropriateness rating. Note

that if Steven doesn’t have question idea 𝐶 for the earlier example, then the output is “CREATE AT

LEAST 1 NEW QUESTION(S)” (that is, create 1 new question for the missing topic 1).

Solve the general version of this problem for 1 ≤ 𝑛 ≤ 𝑚 ≤ 200. Describe the fastest possible

algorithm (you can use pseudocode) and analyze its type complexity.
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D Max-Prime-Sum-Matching (55 marks)

In the problem of Max-Prime-Sum-Matching, there are 𝐾 positive integers, 𝑁1, 𝑁2, ..., 𝑁𝐾 . For each

integer 𝑁𝑖, there are 𝐶𝑖 copies of the integer. The input must satisfy the following limits:

� 1 ≤ 𝑁1 < 𝑁2 < ... < 𝑁𝐾 ≤ 𝐾2

� 1 ≤ 𝐶𝑖 ≤ 𝐾2 for all 𝑖 from 1 to 𝐾

You can match two integers 𝑁𝑖 and 𝑁𝑗 together if their sum is a prime number, but each copy can

only be matched at most once. The problem of Max-Prime-Sum-Matching is to find the maximum

number of matches you can make.

For example, for the instance 𝑁 = [2, 3, 4, 5], 𝐶 = [2, 3, 2, 4] the maximum number of matches is 4

and one possible set of matches is {(2, 3), (3, 4), (3, 4), (2, 5)}.

Answer the following questions about Max-Prime-Sum-Matching. For all the questions, you may

assume that there is a boolean function 𝑖𝑠𝑃𝑟𝑖𝑚𝑒𝑆𝑢𝑚(𝑖, 𝑗) that takes in 2 integers 1 ≤ 𝑖, 𝑗 ≤ 𝐾 and

tells you whether 𝑁𝑖 + 𝑁𝑗 is prime in 𝑂(1) time.

1 Solve these instances of Max-Prime-Sum-Matching. For each instance, state the maximum

number of matches and give a possible set of matches. (1+2+2+2 = 7 marks)

(a) 𝑁 = [1, 2, 3, 4, 5], 𝐶 = [1, 1, 1, 1, 1], i.e., see Q1 of Section A

(b) 𝑁 = [1, 2, 3, 4, 5, 6, 7], 𝐶 = [2, 1, 1, 1, 1, 1, 1]

(c) 𝑁 = [2, 3, 4, 5, 10, 11], 𝐶 = [3, 3, 1, 1, 1, 1]

(d) 𝑁 = [1, 3, 4, 8, 17, 31], 𝐶 = [3, 2, 2, 1, 4, 5]

2 Express Max-Prime-Sum-Matching as an ILP. (5 marks)

3 Design a 2-approximation algorithm for Max-Prime-Sum-Matching that has a time complexity

of 𝑂(𝐾2). Prove that your algorithm gives a 2-approximation. (8 marks)

4 Consider a special case of Max-Prime-Sum-Matching called Max-Prime-Sum-Distinct-Matching

where only 2 different integers with a prime sum can be matched (i.e. you cannot match 2

copies of the same integer). The input format is the same for both problems.

(a) Given an instance of Max-Prime-Sum-Distinct-Matching, we can construct a matching

graph 𝐺 where each copy of an integer is a vertex and 2 vertices are connected by an edge

if and only if they can matched. Explain why 𝐺 is bipartite. (2 marks)

(b) The worst-case time complexity of running Hopcroft-Karp algorithm on 𝐺 is 𝑂(𝐾𝑛1).

Find 𝑛1. (2 marks)

(c) However, if 𝐶𝑖 = 1 for all 𝑖 from 1 to 𝐾, then the worst-case time complexity of running

Hopcroft-Karp algorithm on 𝐺 is a lower 𝑂(𝐾𝑛2).

Find 𝑛2. (2 marks)
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(d) Given an instance of Max-Prime-Sum-Distinct-Matching, explain how to construct a

network flow graph 𝐻 with 𝑂(𝐾) vertices such that the Max Flow of 𝐻 is the same as the

answer to Max-Prime-Sum-Distinct-Matching on the instance. (4 marks)

(e) Which Max Flow algorithm should you use to find the Max Flow of 𝐻 in 𝑂(𝐾3) time?

(1 mark)

(f) After running Max Flow, how can you obtain the number of unmatched copies of 𝑁𝑖 from

the residual graph 𝐻 ′? (2 marks)

5 Define the 𝑂(𝐾3) time algorithm used to solve Max-Prime-Sum-Distinct-Matching in the

previous part as algorithm 𝑋 (i.e., generating flow graph 𝐻 and then running Max Flow).

Mr. Panda proposes a few different ways to use algorithm 𝑋 to solve Max-Prime-Sum-Matching

in 𝑂(𝐾3) time but they are all wrong. For each algorithm, show that he is wrong by giving a

counterexample with the smallest possible 𝐾. You should provide the input, correct answer,

and a possible wrong answer given by the algorithm.

(a) Run algorithm 𝑋 and just return the answer. (2 marks)

(b) If 𝑁1 > 1, run algorithm 𝑋 and return the answer. Otherwise, set 𝐶1 = 0 and run algorithm

𝑋 to get an answer 𝑀 . Return 𝑀 + ⌊𝐶1/2⌋. (2 marks)

(c) If 𝑁1 > 1, run algorithm 𝑋 and return the answer. Otherwise, run algorithm 𝑋 to get an

answer 𝑀 . If there are multiple valid maximum flows, pick any. Get 𝐿 = the number of

unmatched copies of 𝑁1. Return 𝑀 + ⌊𝐿/2⌋. (2 marks)

6 Design an algorithm to solve Max-Prime-Sum-Matching and prove that it is correct. You can

use algorithm 𝑋 in your answer if needed. (16 marks)

� If your algorithm runs within 𝑂(𝐾3) time, you can get up to 16 marks.

� Otherwise, if your algorithm runs within 𝑂(𝐾3 log𝐾) time, you can get up to 12 marks.

� Otherwise, if your algorithm runs within 𝑂(𝐾5) time, you can get up to 6 marks.

� Otherwise, no marks will be awarded.

Hint: You may have to run algorithm 𝑋 more than once, and change the flow graph slightly

each time.

– End of this Paper, All the Best –

– The last few pages are the blank answer sheets —
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