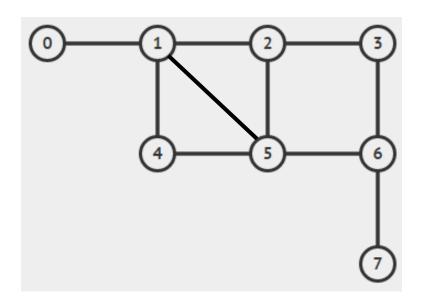
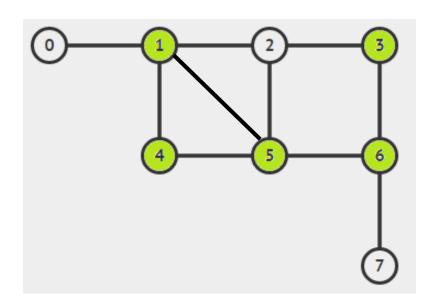
CS4234 Optimiz(s)ation Algorithms

L1 - Min-Vertex-Cover
https://visualgo.net/en/mvc

Definition:

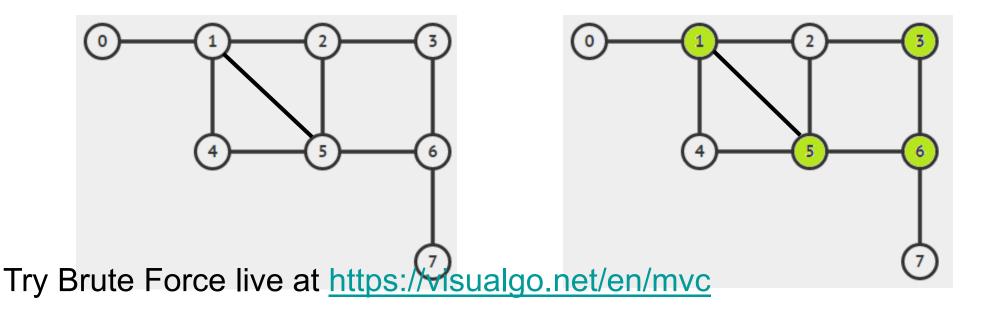
- A vertex cover for a graph G = (V, E) is a set S \subseteq V such that for every edge e = (u, v) \in E, either u \in S or v \in S





Definition:

- Given a graph G = (V, E), find a minimum-sized set S that is a vertex cover for G
- Analogy: A certain coffee brand in Singapore



The **decision** version

– Given a graph G = (V, E) and a parameter k, does there exist a Vertex-Cover of G of size k (vertices)?

Proof:

- Vertex-Cover is in NP
- Vertex-Cover is NP-hard
 - Clique \leq_p Vertex-Cover
- See revision slides from CS3230 (copied here)

1. VERTEX-COVER \in NP

Input: An undirected graph **G** = (V, E) and an integer **k Certificate**: A subset V' of size **k**

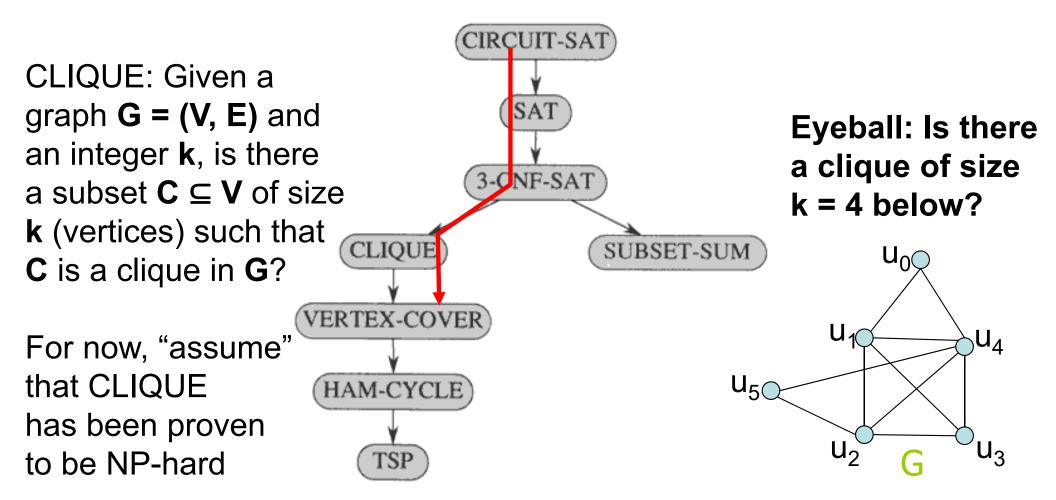
The **O(V+E)** verification algorithm checks:

- Then, it scans all edge (u, v) ∈ E to check if at least one of u and v belongs to V' (O(1) per that data structure check, so <u>O(E)</u> overall)

Therefore, **<u>Vertex Cover is in NP</u>**

Agenda for showing more NP-complete problems

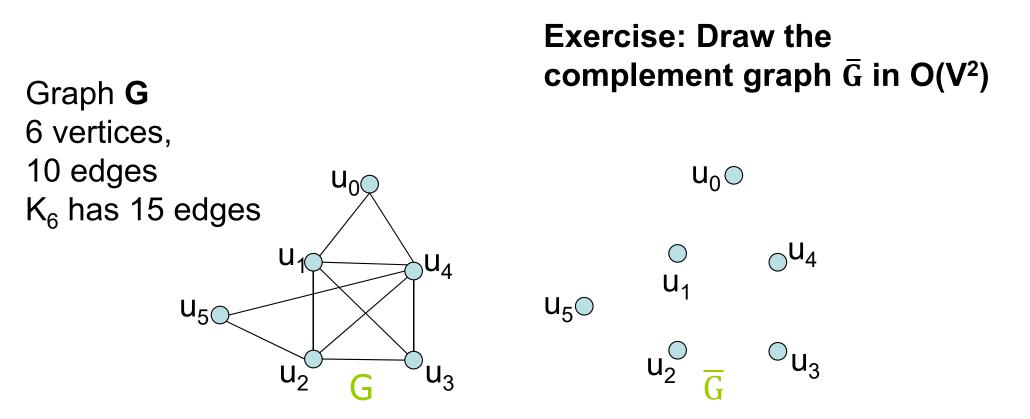
Using polynomial time reduction, we can obtain **more** NP-complete problems



2. $CLIQUE \leq_{p} VERTEX-COVER$ (1)

Given an undirected graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ and \mathbf{k} (note: $\mathbf{n} = |\mathbf{V}|$), we construct a graph $\overline{\mathbf{G}} = (\mathbf{V}, \overline{\mathbf{E}})$ where $(\mathbf{u}, \mathbf{v}) \in \overline{\mathbf{E}}$ iff $(\mathbf{u}, \mathbf{v}) \notin \mathbf{E}$

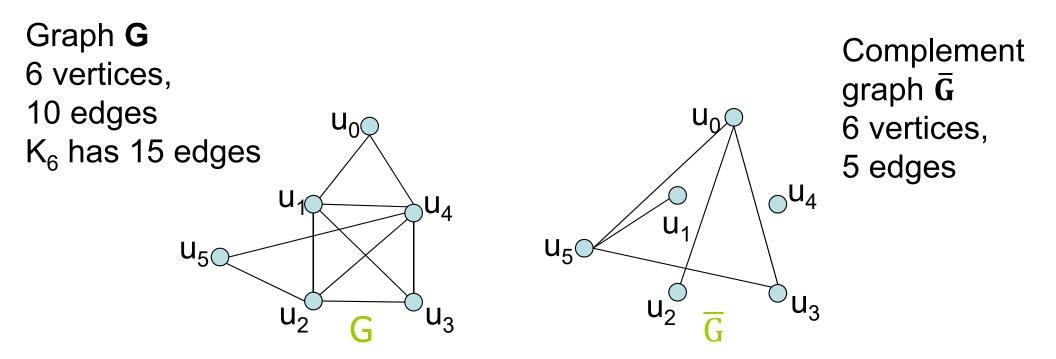
Claim: G has a size-k clique iff \overline{G} has a size-(n-k) vertex cover



2. $CLIQUE \leq_{p} VERTEX-COVER$ (2)

Given an undirected graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ and \mathbf{k} (note: $\mathbf{n} = |\mathbf{V}|$), we construct a graph $\overline{\mathbf{G}} = (\mathbf{V}, \overline{\mathbf{E}})$ where $(\mathbf{u}, \mathbf{v}) \in \overline{\mathbf{E}}$ iff $(\mathbf{u}, \mathbf{v}) \notin \mathbf{E}$

Claim: G has a size-k clique iff \overline{G} has a size-(n-k) vertex cover



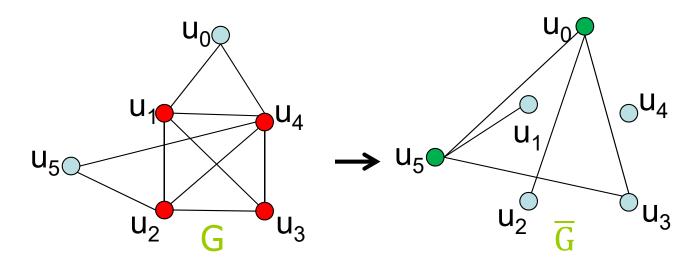
Suppose V' \subseteq V is a size-**k** clique of G,

e.g., $V' = \{u_1, u_2, u_3, u_4\}$ is a size-**4** clique of G

- For any arbitrary edge $(u, v) \in \overline{E}$ in the complement graph \overline{G} , then $(u, v) \notin E$
 - Which implies that at least one of u or v does not belong to a clique V' as every pair of vertices in V' are connected by an edge in E and thus won't be in Ē

Hence, at least one of u and v belongs to V-V' (of size **n-k**), e.g., V-V' = { u_0 , u_5 } is a size-**2** vertex cover of \overline{G}

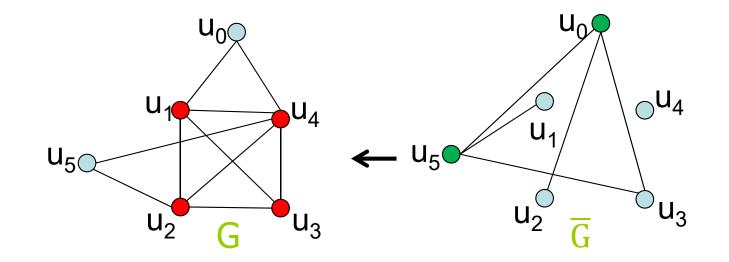
Since edge (u, v) ∈ Ē was chosen arbitrarily, every edge (u, v) ∈ Ē is covered by a vertex in V-V', so V-V' (of size n-k) is a VC of G



Conversely, suppose U \subseteq V is the size-(**n-k**) vertex cover of \overline{G} , e.g., U = {u₀, u₅} is a size-**2** vertex cover of \overline{G}

- By definition of vertex cover, for all u, v ∈ V,
 if (u, v) ∈ Ē, then at least one of u and v belong to U
- The contrapositive of this statement is for all u, v ∈ V and both u and v do not belong to U → (u, v) ∉ Ē → (u, v) ∈ E

Hence, V-U is a clique and V-U has size = \mathbf{n} -(\mathbf{n} - \mathbf{k}) = \mathbf{k} , e.g., V-U = { u_1 , u_2 , u_3 , u_4 } is a size- $\mathbf{4}$ clique of G



VERTEX-COVER is NP-Complete

We have shown that:

- 1. VERTEX-COVER is in NP
- 2. VERTEX-COVER is NP-Hard

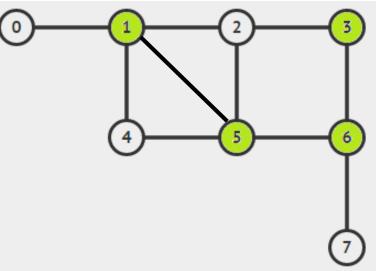
Therefore, VERTEX-COVER (**the decision problem**) is NP-Complete

MIN-VERTEX-COVER is NP-hard (1)

Clearly, <u>if</u> we could efficiently find a MIN-VERTEX-COVER (MVC, **an optimization problem**), then we could also efficiently answer the **decision version** of VERTEX-COVER (VC), i.e., VERTEX-COVER (MIN-VERTEX-COVER

Decide: Can we have VC with **k** vertices of this graph? \rightarrow Just run MVC optimization algorithm on that graph output yes if the ans $\leq \mathbf{k}$ or no otherwise

An O(1) (polynomial) reduction



MIN-VERTEX-COVER is NP-hard (2)

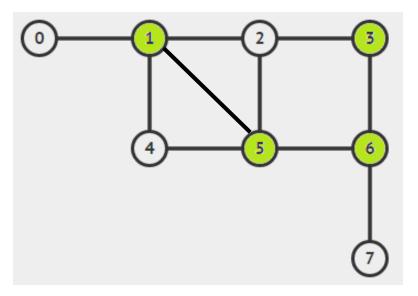
Hence finding a MIN-VERTEX-COVER (MVC) is at least as hard as the decision version, and hence we term it **NP-hard**

MVC is not NP-complete

• We do not have polynomial time verifier to show that MVC is in NP

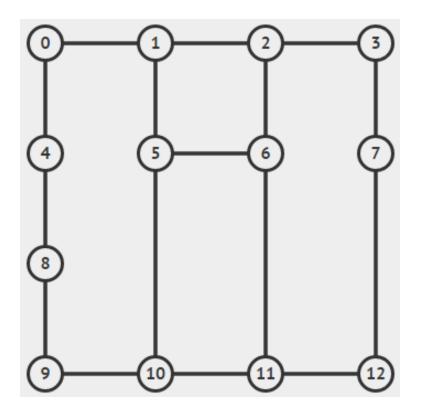
Bonus:

- Solving MVC also solves another NP-hard problem (details in tutorial): Max-Independent-Set (MIS)
 - MIS: un-selected vertices in the example



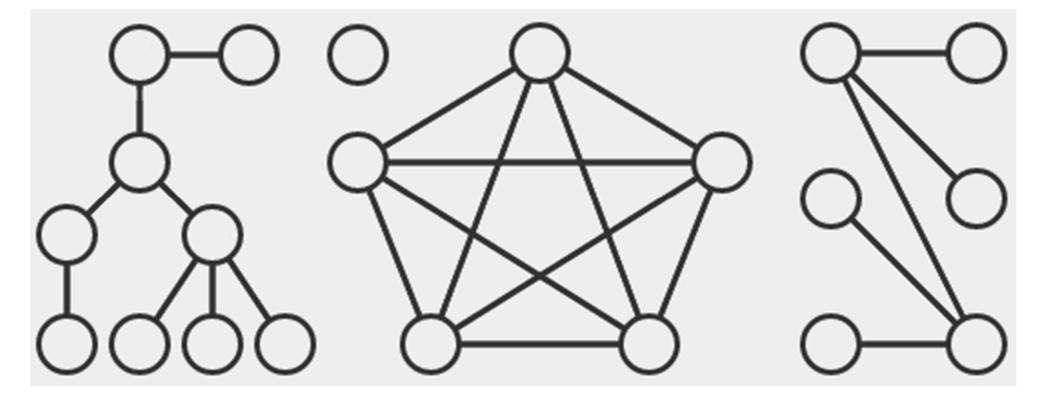
It is really hard... (1)

What is the minimum-sized vertex cover of this graph?



It is really hard... (2)

What is the minimum-sized vertex cover of this graph?



Desirable Solution:

- 1. Fast (i.e., polynomial time)
- 2. Optimal (i.e., yielding the best solution possible)

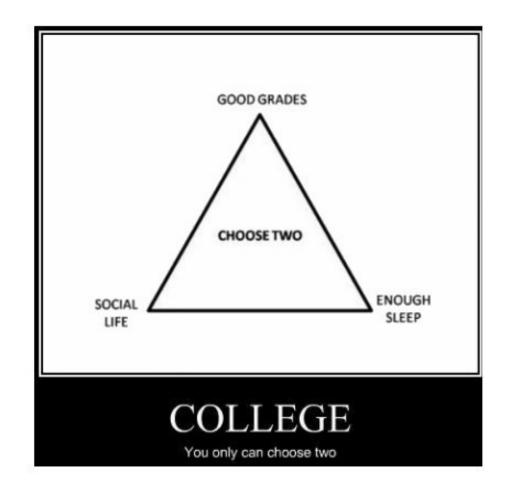
Fast

Optimal

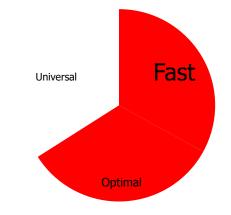
Universal

- 3. Universal (i.e., good for all instances/inputs) In reality: Choose 2 out of 3:
 - 1. Deal with the special case (lost universality)
 - 2. Deal with parameterized solution (lost speed)
 - 3. Consider approximate solution (lost optimality)

Intermezzo

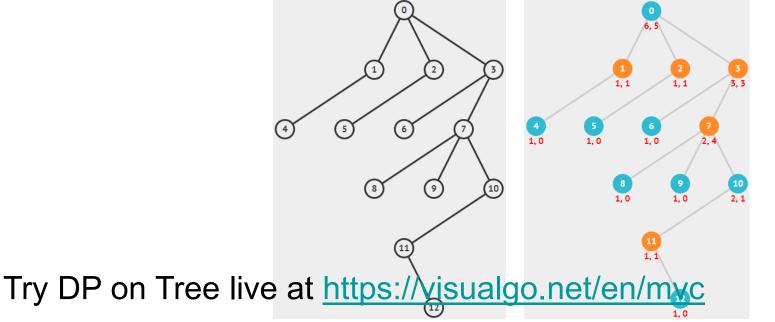


PS: Similar pictures can be easily Googled online



Dynamic Programming solution:

- $in(v) = 1 + \sum_{c \subset children(v)} min(in(c), out(c))$
- $out(v) = \sum_{c \subset children(v)} in(c)$
- Base case at a leaf v: in(v) = 1, out(v) = 0
- answer = min(in(r), out(r)), computable in O(n)
- The tree can be a general tree (it does not have to be a binary tree)



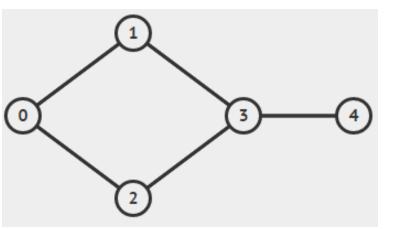
PS: There are a few other known special cases of MVC ⁽³⁾

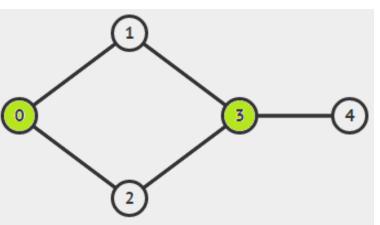
MVC with small k – Parameterized Solution

PS: Pure Brute Force is O(2ⁿm), see <u>https://visualgo.net/en/mvc</u>

Parameterized Complexity

– What if you are told that $k \le 2$?





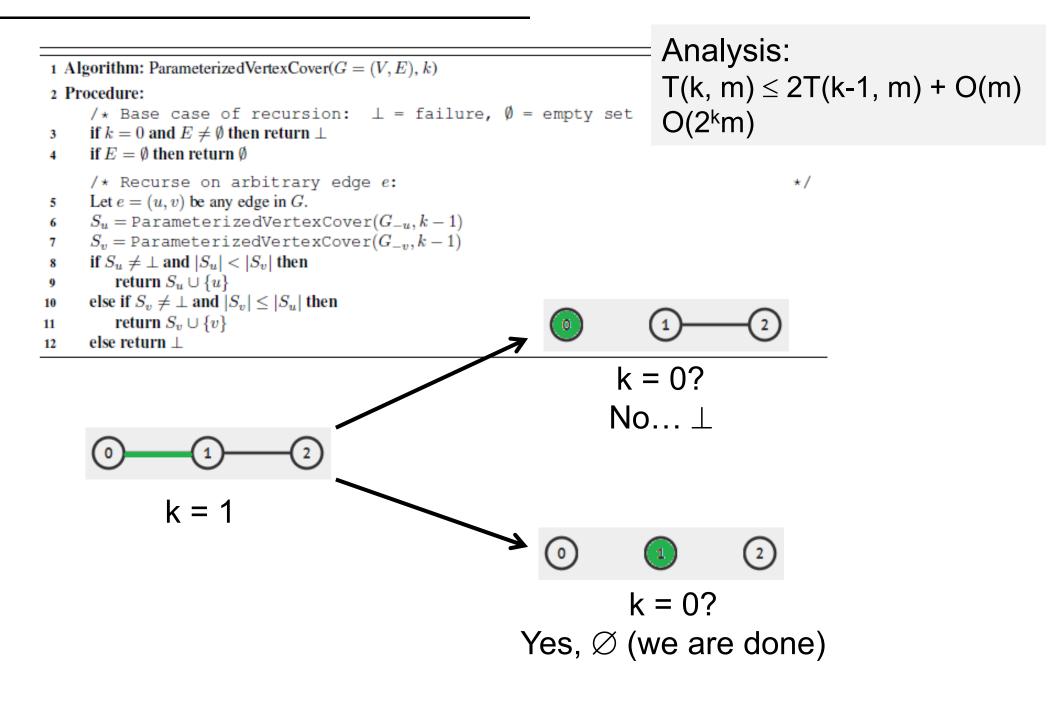
Fast

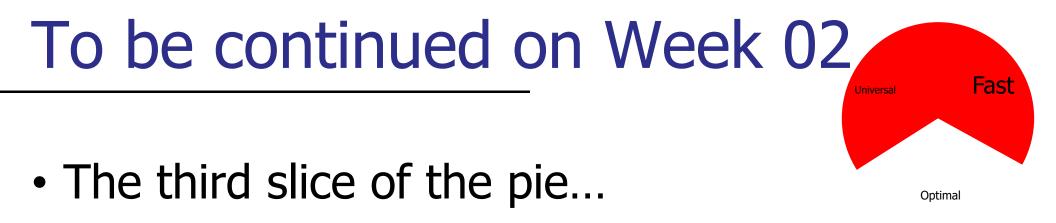
Universal

- What if you are told that k is much smaller than n?

- Naïve O(n^km) algorithm
 - Very not scalable 😕
- Better O(2^km) algorithm
- Also not scalable, but much better than the naïve one

$MVC \ with \ small \ k \ - \ {\sf Parameterized \ Solution}$





Summary

- Re-introducing the MVC problem
- Re-proof that VC (decision) is NP-complete
- ₃C₂ scenarios
- Special case of MVC: On (Binary) Tree, use DP
- Parameterized MVC: Small k, good brute force
- Approximation algorithms for MVC \rightarrow Week 02