CS4234 Optimiz(s)ation Algorithms

L2 - Approximation Algorithms and Linear Programming

https://visualgo.net/en/mvc (both unweighted and weighted version)

Right Infringements on NUS Course Materials

All course participants (including permitted guest students) who have access to the course materials on Canvas/LumiNUS or any approved platforms by NUS for delivery of NUS modules are not allowed to re-distribute the contents in any forms to third parties without the explicit consent from the module instructors or authorized NUS officials

For CS4234: probably the PS (high-level) solutions, tutorial, and past midterm/final answers that are preferably not stored in public domain that will be 'easily indexed by Google'
https://www.comp.nus.edu.sg/~stevenha/cs4234.html is public

Lecture 1 Recap (1)

Definition of the first Combinatorial Optimization Problem (COP) in CS4234: Min-Vertex-Cover

- We revisit CS3230 to (re-)prove that VC is NP-Complete
- Thus MVC is NP-hard (as hard as VC) but not in NP

```
|MVC| = 4
example MVC = {1,3, 5,6}
```


example MVC $=\{3,0,7,8,2\}$

Lecture 1 Recap (2)

What should we do if we know (or we can reduce an known NP-complete problem into our current problem (the decision variant)

- Hope that it is posed on special case that somehow has polynomial solution(s) \rightarrow lost universality
- e.g., MVC on (Binary) Tree, we have DP solution (or? see T01)
- Hope that it is on small instance/parameter \rightarrow still actually not fast (exponential time)
- e.g., MVC on small k (or? see future questions)
- Hope that we can get by with good enough solution fast
\rightarrow good enough may be non-optimal
- e.g., MVC, but we are OK if the answer is at most $2 \times$ OPT
- To be discussed now ©

Approx Algo for MVC - Deterministic 1

```
/* This algorithm adds vertices greedily, one at a time, until everything
is covered. The edges are considered in an arbitrary order, and for
each edge, an arbitrary endpoint is added.
1 Algorithm: Approx VertexCover-1 \((G=(V, E))\)
```

Optimal
2 Procedure:
$3 \quad C \leftarrow \emptyset$

```
    /* Repeat until every edge is covered: */
```

 while \(E \neq \emptyset\) do
 Let \(e=(u, v)\) be any edge in \(G\).
 \(C \leftarrow C \cup\{u\}\)
 \(G \leftarrow G_{-u} / /\) Remove \(u\) and all adjacent edges from \(G\)
 return \(C\)

Can be very bad:

- ??-approximation (no bound)

Approx Algo for MVC - Deterministic 2

```
/* This algorithm adds vertices greedily, two at a time, until everything
is covered. The edges are considered in an arbitrary order, and for
each edge, both endpoints are added.
```

1 Algorithm: Approx VertexCover-2 $(G=(V, E)$)

Optimal

2 Procedure:
$3 \quad C \leftarrow \emptyset$
/* Repeat until every edge is covered:
while $E \neq \emptyset$ do
Let $e=(u, v)$ be any edge in G.
$C \leftarrow C \cup\{u, v\}$
$G \leftarrow G_{-\{u, v\}} / /$ Remove u and v and all adjacent edges from G.
return C

Not that bad?

- More analysis later

Approx Algo for MVC - Determinisicic 3

```
/* This algorithm adds vertices greedily, one at a time, until everything
is covered. At each step, the algorithm chooses the next vertex that
will cover the most uncovered edges.
1 Algorithm: Approx VertexCover-3(G=(V,E))
1 Algorithm: Approx VertexCover-3( \(G=(V, E)\) )
2 Procedure:
\(3 \quad C \leftarrow \emptyset\)
        /* Repeat until every edge is covered:
while }E\not=\emptyset\mathrm{ do
        Let d(x) = number of uncovered edges adjacent to }x\mathrm{ .
        Let }u=\mp@subsup{\operatorname{argmax}}{x\inV}{}d(x
        C\leftarrowC\cup{u}
        G\leftarrowG-{u} // Remove u and all adjacent edges from G.
        return C
```


Not that bad?

- More analysis in the next slide

Approx Algo for MVC - Deterministic 3

```
/* This algorithm adds vertices greedily, one at a time, until everything
is covered. At each step, the algorithm chooses the next vertex that
will cover the most uncovered edges.
1 Algorithm: Approx VertexCover-3( \(G=(V, E)\) )
1 Algorithm: Approx VertexCover-3( \(G=(V, E)\) )
Procedure:
\(3 \quad C \leftarrow \emptyset\)
/* Repeat until every edge is covered:
while \(E \neq \emptyset\) do
Let \(d(x)=\) number of uncovered edges adjacent to \(x\).
Let \(u=\operatorname{argmax}_{x \in V} d(x)\)
\(C \leftarrow C \cup\{u\}\)
\(G \leftarrow G_{-\{u\}} / /\) Remove \(u\) and all adjacent edges from \(G\).
return \(C\)
```

Optimal

Below, $\mathbf{n}=4$, there are $\mathrm{n}!=4!=24$ whites/yellows,
$24 / 2=12$ greens, $24 / 3=8$ blues, and $24 / 4=6$ reds

Zoomed-in

Optimal MVC $=\mathrm{n}!=4!$ whites

The output of ApproxVertexCover-3 could be:

$$
\begin{gathered}
n!/ n \text { reds }+n!/ 3 \text { blues }+n!/ 2 \text { greens }+n!/ 1 \text { yellows }= \\
n!{ }^{*}(1 / n+1 / 3+1 / 2+1 / 1)=n!{ }^{*}(1 / 1+1 / 2+1 / 3+1 / n)=n!\text { * In } n \\
(\text { Harmonic series })
\end{gathered}
$$

This is $\ln -\mathrm{n}$ (or log-n, base of log is negligible) factor worse than optimal answer

Approx Algo for MVC - Deteminisicic 2

```
/* This algorithm adds vertices greedily, two at a time, until everything
is covered. The edges are considered in an arbitrary order, and for
each edge, both endpoints are added.
1 Algorithm: Approx Vertex Cover-2(G=(V,E))
2 Procedure:
3 C}\leftarrow
/* Repeat until every edge is covered:
while }E\not=\emptyset\mathrm{ do
    Let e=(u,v) be any edge in G.
    C\leftarrowC\cup{u,v}
    G\leftarrowGG-{u,v}}/// Remove u and v and all adjacent edges from G.
    return C
```

- This one has 2 -approximation proof
- Let \mathbf{E} ' be the edges considered by this algorithm, this \mathbf{E} ' is a matching M (revisited by Week 06 of CS4234, details in the PDF), $\mathbf{E}^{\prime}=\mathbf{M}$
- |M| $\leq|\mathbf{O P T}(\mathbf{G})|$ (details in the PDF) and $\mathbf{C}=\mathbf{2 *}^{*}\left|\mathbf{E}^{\prime}\right|$
- So C = 2*|E'| = 2*|M|

Try Deterministic 2-Opt live at https://visualgo.net/en/mvc

Approx Algo for MVC - randomized

```
1 Algorithm: RandomizedVertexCover(G = (V,E))
2 Procedure:
3 C}\leftarrow
        /* Repeat until every edge is covered:
        while }E\not=\emptyset\mathrm{ do
        Let e=(u,v) be any edge in G.
        b\leftarrow\operatorname{Random(0,1)// Returns {0,1} each with probability 1/2.}
        if b=0 then z=u
        else if }b=1\mathrm{ then }z=
        C\leftarrowC\cup{z}
Q: how to efficiently implement this?
        G\leftarrowG-z// Remove z and all adjacent edges from G.
        return C
```

Optimal

2-approximation Analysis:

- Watered down proof:
- In line [5-8], the probability that we choose the right z is at least $1 / 2$
- We include z in the cover and remove z (and 'cover' its edges) in line 9-10
- So C is at most 2 * OPT when $\mathrm{E}=\varnothing$
- In expectation *verbal discussion*

Try Probabilistic 2-Opt live at https://visualgo.net/en/mvc

In Practice...

- All approximation algorithms for MVC shown earlier run in polynomial time, i.e., fast
- No one is preventing you to run all of them and then report this :)
- [see the recording]

A high-level tour
Also in CP4 Book 2, p586-589
LINEAR PROGRAMMING

Linear Programming (LP)

A typical LP consists of three components:

1. A list of (real-valued) variables $x_{1}, x_{2}, \ldots, x_{n}$

- The goal: To find good values for these variables

2. An objective function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that you are trying to maximize or minimize

- The goal is to find the best values for the variables so as optimize this function

3. A set of m constraints that limits the feasible solution space

- Each of these constraints is specified as an inequality

In a(n) LP problem, both the objective function and the constraints are linear functions of the variables

LP Example

A slightly different LP will be used in the "live" segment later

Simplex Method

1. Find any (feasible) vertex v
2. Examine all the neighboring vertices of v :
$v_{1}, v_{2}, \ldots, v_{k}$
3. Calculate $f(v), f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{k}\right)$

- If $f(v)$ is the maximum (among its neighbors), then stop and return v

4. Otherwise, choose one of the neighboring vertices v_{j} where $f\left(v_{j}\right)>f(v)$

- Let $v=v_{j}$

5. Go to step (2)

Sinn EREX LiVe EXPn

1. Find any (feasible) vertex v
2. Examine all the neighboring vertices of $v_{1}, v_{2}, \ldots, v_{k}$
3. Calculate $f(v), f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{k}\right)$

- If $f(v)$ is the maximum (among its neighbors), 250 then stop and return v

4. Otherwise, choose one of the neighboring vertices v_{j} where $f\left(v_{j}\right)>f(v)$

$$
-\quad \text { Let } v=v_{j}
$$

5. Go to step (2)

LP Solver in Microsoft Excel

Live Demonstration
(MS Excel can be setup quickly to use Solver Add-in)

See 02.ExcelSample.xIsx (tab 'LP')

Ip_solve in Ubuntu

Cannot do live demonstration on Steven's laptop... it is on Windows :

If I cannot SSH to my DO droplet, just see this screenshot

```
l-droplet:/# cat cs4234.lp
/* from CS4234 lecture note 02 */
max: A + 6 B;
A <= 200;
B <= 300;
A + B <= 400;
A >= 0;
B >= 0;
-droplet:/# lp_solve cs4234.lp
Value of objective function: 1900.00000000
Actual values of the variables:
A
100
B
300
```


Usable Simplex in C++

https://github.com/jaehyunp/stanfordacm/blob/master/code/Simplex.cc

Good usable Simplex code from Stanford ICPC team ©
I have a local copy of that Simplex code in Java (thanks to a senior student from "many" AYs ago)

Any volunteer to convert this to Python?

- Probably ChatGPT can do the translation too
- for non-Kattis projects, you may want to use https://docs.scipy.org/doc/scipy/reference/optimize.linprog-simplex.htm|

Now use any tool to solve this

- Maximize 777x+7y
- Such that:

$$
\begin{aligned}
& -100 x \leq 15000 \\
& -50 y \leq 10000 \\
& -x+y \leq 300
\end{aligned}
$$

Answer for this year [do it yourself!!]

- And x and y are non-negative

PS: Steven shall randomize the LP exercise each year

Two ways to approximately deal with this version... MIN WEIGHT VERTEX COVER (MWVC)
MIN-WEIGHT-VERTEX-COVER

Both the Deterministic \& Randomized 2-approximation algorithm for Min-Vertex-Cover "fail" on the weighted version; Do you understand why?

MWVC as an (Integer) Linear Program ilp/Ip

The formulation $\left(\mathrm{x}_{\mathrm{j}}\right.$ is a Boolean $\{0,1\}$ variable where $0=$ not in VC and $1=$ in VC):
min (
$x_{i}+x_{j} \geq 1$ for all $(i, j) \in E \longleftarrow$ an actual (I)LP program $x_{j} \geq 0$ for all $j \in V$
$x_{j} \leq 1$ for all $j \in V$$\quad$ Some other textbook $x_{j} \in \mathbb{Z}$ for all $\left.j \in V\right]$

Notice that this line actually has E copies in says $x_{j} \in\{0,1\}$, and there are V copies

The unweighted one Proven NP-hard last week

MWVC as a Relaxed Linear Program

Relaxing the Integer constraint

$$
\begin{aligned}
\min \left(\sum_{j=1}^{n} w\left(v_{j}\right) \cdot x_{j}\right) & \text { where: } \\
x_{i}+x_{j} & \geq 1 \text { for all }(i, j) \in E \\
x_{j} & \geq 0 \quad \text { for all } j \in V \\
x_{j} & \leq 1 \text { for all } j \in V
\end{aligned}
$$

Assume w is all 1
Example LP solution $x_{0}=x_{1}=x_{2}=x_{3}=0.5$
What should we do?
PS: LP solution can be equal or better than ILP solution. Why?
 But is this a good approximation?

Ip_solve output

min: $x 0+x 1+x 2+x 3$;
$\mathrm{x} 0+\mathrm{xl}>=1$;
x0 0 x2 >= 1;
$x 0+x 3>=1$;
$\mathrm{xl}+\mathrm{x} 2$ >= 1 ;
xl $+x 3$ >= 1 ;
$x 2+x 3>=1 ;$
$x 0>=0$;
xl >= 0;
x2 >= 0;
x3 >= 0;
x0 < = 1;
xl <= 1;
x2 <= 1;
x3 <= 1;
lp_solve k4.lp
Value of objective function: 2.00000000
Actual values of the variables:
x0
0.5
x1
0.5
x2
0.5
x3
0.5

Analysis

$$
\begin{aligned}
\mathrm{OPT}(\mathrm{G})=\mathrm{OPT}(\mathrm{ILP}) & \geq \mathrm{OPT}(\mathrm{LP}) \\
\operatorname{cost}(O P T) & \geq \sum_{j=1}^{n} w\left(v_{j}\right) \cdot x_{j}
\end{aligned}
$$

Assume w is all 1
Example ILP solution $x_{0}=x_{1}=x_{2}=1 ; x_{3}=0$
Example LP solution $x_{0}=x_{1}=x_{2}=x_{3}=0.5$
Rounded answer $\leq 2 \times$ OPT(LP)

$$
\begin{aligned}
\sum_{j=1}^{n} w\left(v_{j}\right) \cdot y_{j} & \leq \sum_{j=1}^{n} w\left(v_{j}\right) \cdot\left(2 x_{j}\right) \quad \text { Notice, however, that } y_{j} \leq 2 x_{j}, \text { for all } j . \\
& \leq 2\left(\sum_{j=1}^{n} w\left(v_{j}\right) \cdot x_{j}\right) \\
& \leq 2 \times O P T(G)
\end{aligned}
$$

Analysis: This is a 2-Approximation algorithm

Linear Programming Summary

General form of an LP:

1. A set of variables: $x_{1}, x_{2}, \ldots, x_{n}$
2. A linear objective to maximize (or minimize): $c^{\top} x$

- c and x as vectors,
- c^{\top} represents the transpose of c
- multiplication represents the dot product

3. A set of linear constraints written as a Matrix equation: $A x \leq b$
Presented as: $\boldsymbol{\operatorname { m a x }} \mathbf{c}^{\boldsymbol{\top}} \mathbf{x}$ where $\mathbf{A x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$

LP in Standard Form

Exercise to translate given LP into standard form

$$
\begin{aligned}
\min x_{1}+2 x_{2}-x_{3} & \text { where } / / \text { this is a minimization problem } \\
x_{1}+x_{2} & =7 / / \text { this is an equality } \\
x_{2}-2 x_{3} & \geq 4 / / \text { this is a } \geq \text { inequality } \\
x_{1} & \leq 2
\end{aligned}
$$

Details in the PDF

Wait...

- There is an even simpler 2-Approximation algorithm for MWVC... which is...
- See https://visualgo.net/en/mvc, M weighted VC

Summary

- Approximation algorithms for MVC
- Deterministic, 3 variants, but only variant 2 is 2-Approximation
- Randomized, Expected 2-Approximation
- Introduction to LP and an overview of Simplex Method
- Simplex in Excel++, Ubuntu Ip_solve, and custom code
- Introducing the weighted MVC (MWVC)
- Problem with MVC approximation algorithms...
- Reducing MWVC to ILP
- Relaxing ILP to LP (we can use Simplex) and rounding up the answer
- Analysis of that solution: 2-approximation
- Plus yet another alternative 2-approximation solution

Admin

- PS1 is open until this Sun, 27 Aug 23, 11.59pm
- As of Thu, 24 August 2023, 11.30am...
- 47 with ACs on $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$ or more,
- Ignore $\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}$ if you have (many) other things to do
- 7 more with only $\geq 2 / 4$ ACs
- Should also be on track to complete PS1, but will have a busy day today/tomorrow...
- But a staggering 69-47-7 = 15 pax with only 1 or 0 AC...
- Are you staying in this course or not?
- Consider that first PS1, these first two lectures (,plus my Lecture 03a+03b recordings and future Tut01+Tut02) and decide if the (optional/elective) CS4234 is for you...
- I am OK with if you drop* (Terms and conditions apply)
- PS2 still starts from Sat, 26 Aug 23, 08.00am
- Four (:O) NP-hard optimization problems
- Tut01.pdf is out; first tutorial next Mon, 28 Aug 23

PS1 (More) Hints

- Only shown in the recording

