CS4234 Optimiz(s)ation Algorithms

L2 – Approximation Algorithms and Linear Programming https://visualgo.net/en/mvc (both unweighted and weighted version)

Right Infringements on NUS Course Materials

All course participants (including permitted guest students) who have access to the course materials on Canvas/LumiNUS or any approved platforms by NUS for delivery of NUS modules are not allowed to re-distribute the contents in any forms to third parties without the explicit consent from the module instructors or authorized NUS officials

For CS4234: probably the PS (high-level) solutions, tutorial, and past midterm/final **answers** that are preferably not stored in public domain that will be 'easily indexed by Google'

https://www.comp.nus.edu.sg/~stevenha/cs4234.html is public

Lecture 1 Recap (1)

Definition of the first Combinatorial Optimization Problem (COP) in CS4234: Min-Vertex-Cover

- We revisit CS3230 to (re-)prove that VC is NP-Complete
- Thus MVC is NP-hard (as hard as VC) but not in NP

|MVC| = 4 example MVC = {1, 3, 5, 6}

 $\frac{|\mathsf{MVC}| = 5}{|\mathsf{Prof Halim will improve the bruteforce animation}|}$ example MVC = {3, 0, 7, 8, 2}

Lecture 1 Recap (2)

What should we do if we know (or we can reduce an known NP-complete problem into our current problem (the decision variant)

 Hope that it is posed on special case that somehow has polynomial solution(s) → lost universality

Fast

Optimal

Universal

- e.g., MVC on (Binary) Tree, we have DP solution (or? see T01)
- Hope that it is on small instance/parameter
 → still actually not fast (exponential time)
 - e.g., MVC on small k (or? see future questions)
- Hope that we can get by with good enough solution fast
 → good enough may be non-optimal
 - e.g., MVC, but we are OK if the answer is at most 2 x OPT
 - To be discussed now $\ensuremath{\textcircled{}}$

Can be very bad:

- ??-approximation (no bound)

Not that bad?

More analysis later

Not that bad?

More analysis in the next slide

Below, $\mathbf{n} = 4$, there are n! = 4! = 24 whites/yellows, 24/2 = 12 greens, 24/3 = 8 blues, and 24/4 = 6 reds

Zoomed-in

The output of ApproxVertexCover-3 *could be*: n!/n reds + n!/3 blues + n!/2 greens + n!/1 yellows = n! * (1/n+1/3+1/2+1/1) = n! * (1/1+1/2+1/3+1/n) = n! * **In n** (Harmonic series)

This is In-**n** (or log-**n**, base of log is negligible) factor worse than optimal answer

Approx Algo for MVC – Deterministic 2

```
/* This algorithm adds vertices greedily, two at a time, until everything
     is covered. The edges are considered in an arbitrary order, and for
     each edge, both endpoints are added.
                                                                                              */
1 Algorithm: Approx Vertex Cover-2(G = (V, E))
2 Procedure:
     C \leftarrow \emptyset
3
     /* Repeat until every edge is covered:
                                                                                             */
     while E \neq \emptyset do
4
       Let e = (u, v) be any edge in G.
5
        C \leftarrow C \cup \{u, v\}
6
        G \leftarrow G_{-\{u,v\}} // Remove u and v and all adjacent edges from G.
7
     return C
```

This one has 2-approximation proof

- Let E' be the edges considered by this algorithm, this E' is a matching M (revisited by Week 06 of CS4234, details in the PDF), E' = M
- $|\mathbf{M}| \leq |\mathbf{OPT}(\mathbf{G})|$ (details in the PDF) and $\mathbf{C} = 2*|\mathbf{E}'|$

- So $C = 2*|E'| = 2*|M| \le 2*|OPT(G)|$

Try Deterministic 2-Opt live at https://visualgo.net/en/mvc

Approx Algo for MVC - Randomized Fast Universal 1 Algorithm: RandomizedVertexCover(G = (V, E))2 Procedure: $C \leftarrow \emptyset$ 3 Optimal /* Repeat until every edge is covered: */ while $E \neq \emptyset$ do 4 Let e = (u, v) be any edge in G. 5 $b \leftarrow \text{Random}(0,1) / / \text{Returns } \{0,1\}$ each with probability 1/2. 6 if b = 0 then z = u7 else if b = 1 then z = v8 0 10return C 11

2-approximation Analysis:

- Watered down proof:
 - In line [5-8], the probability that we choose the right z is <u>at least 1/2</u>
 - We include z in the cover and remove z (and 'cover' its edges) in line 9-10
 - So C is at most **2** * OPT when $E = \emptyset$

In expectation *verbal discussion*

Try Probabilistic 2-Opt live at https://visualgo.net/en/mvc

- All approximation algorithms for MVC shown earlier run in polynomial time, i.e., fast
- No one is preventing you to run all of them and then report this ③
 - [see the recording]

A high-level tour Also in CP4 Book 2, p586-589

LINEAR PROGRAMMING

Linear Programming (LP)

A typical LP consists of three components:

- 1. A list of (real-valued) variables x₁, x₂, ..., x_n
 - The goal: To find good values for these variables
- 2. An objective function $f(x_1, x_2, ..., x_n)$ that you are trying to maximize or minimize
 - The goal is to find the best values for the variables so as optimize this function
- 3. A set of m constraints that limits the feasible solution space
 - Each of these constraints is specified as an inequality

In a(n) LP problem, both the objective function and the constraints **are linear functions** of the variables

LP Example

A slightly different LP will be used in the "live" segment later

- 1. Find any (feasible) vertex v
- 2. Examine all the neighboring vertices of v: $v_1, v_2, ..., v_k$
- 3. Calculate f(v), $f(v_1)$, $f(v_2)$, ..., $f(v_k)$
 - If f(v) is the maximum (among its neighbors), then stop and return v
- 4. Otherwise, choose <u>one of</u> the neighboring vertices v_j where $f(v_j) > f(v)$
 - Let $v = v_i$
- 5. Go to step (2)

Details of Simplex is "dropped" in CLRS 4th edition...

Simplex Live Example

LP Solver in Microsoft Excel

Live Demonstration (MS Excel can be setup quickly to use Solver Add-in)

See **02.ExcelSample.xlsx** (tab 'LP')

	日ちっさ・						02.ExcelSample - Excel						
File	Home Insert	Page Layout	Formulas Dat	a Review View	Acrobat	Q Tell	me what you want to	o do					
			han Show Queries		Connections		olver Parameters				×		
From	From From From Other Existing		New Co Recen	Table Refresh	Refresh								
ACCES	Get External Data		Get & Transf	orm Connec	Connections		Set Objective:	SBS4			X		
B4 ▼ : × √ fx =B2			2*B3+C2*C3				To:	() Mi <u>n</u>	◯ <u>V</u> alue Of:	0		l	
	Α	В	C	D	F		By Changing Varial	ble Cells:			825		
1	Variables	A	В	0	_		5853:5053					l	
2	Coefficients	1	- 6				Subject to the Con SBS11:SBS13 <= SC	straints: S11:SCS13		<u>^</u>	Add	l	
3	Solutions	0	0	<= run Data->S	olver to	see	SB\$3:\$C\$3 >= 0				Channel	l	
4	7	0	-	you need to tu	rn on Se	olver					Gnange	1	
5	2			you need to tu	111 011 34						Delete	ł	
6	Constraints 1	1	0	/-	-	200					<u>R</u> eset All	ł	
7	Constraints 1	1	1	~-		200				~	Load/Save	ł	
· ·	Constraints 2	0	1	-	-		Make Unconstr	ained Variables N	on-Negative			ł	
8	Constraints 3	1	1	<=	4	100	Select a Solving Method:	Simplex LP		~	Options	ł	
9						_						1	
10		LHS	RHS				Solving Method	onlinear engine fo	r Solver Problems that a	are smooth poplir	ear Select the LP		
11	Constraints 1	0	200				Simplex engine for linear Solver Problems and select the Evolutionary engine for Solver problems that are non-smooth.				e for Solver		
12	Constraints 2	0	300										
13	Constraints 3	0	400				Help			Solve	Cl <u>o</u> se		
14						L						-	

	÷-⇔.÷		02.ExcelSample - Excel								
File	Home Insert	Page Layout	Formulas Dat	ta Review Vie	w Acrobat (7 Tell me what you	want to do				
From	From From From Ot Web Text Sources Get External Dat	her Existing Connections	New Query + Co Recent Get & Transf	Queries Table t Sources	Connections 2↓ Properties ↓ Bedit Links ↓ Intections	Sort & Filter	Clear Reapply Advanced Col	xt to Flash Rem umns Fill Dupli	nove Data C icates Validation + Data Tor	ionsolidate Relatio	nships Manage V Data Model Ar
B4	B4 ▼ : X ✓ Å = 82*83+C2*C3										
	А	В	С	D	E	F	G	н	1	J	К
1	Variables	A	В								
2	Coefficients	1	6				for A+6B				
3	Solutions	100	300	<= run Data-	>Solver to se	ee the answers (A = 100, B = 300)					
4	Z	1900		you need to	a need to turn on Solver Add Solver Results ×						
5						Solver	found a solution.	All Constraints and	doptimality		
6	Constraints 1	1	0	<=	200) condit	Conditions are satisfied. Reports Answer Sensitivity Limits				
7	Constraints 2	0	1	<=	300) • •					
8	Constraints 3	1	1	<=	400	08	O Restore Original Values				
9						Ret	Return to Solver Parameters Dialog Outline Reports				
10		LHS	RHS								
11	Constraints 1	100	200			5	<u>2κ</u>	incel		S	ave Scenario
12	Constraints 2	300	300								
13	Constraints 3	400	400			Solver	Solver found a solution. All Constraints and optimality conditions are satisfied.				
14						When is use	When the GRG engine is used, Solver has found at least a local optimal solution. When Simplex LP is used, this means Solver has found a global optimal solution.				
15											

Cannot do live demonstration on Steven's laptop... it is on Windows ⊗

If I cannot SSH to my DO droplet, just see this screenshot

https://github.com/jaehyunp/stanfordacm/blob/master/code/Simplex.cc

Good usable Simplex code from Stanford ICPC team \odot

I have a local copy of that Simplex code in Java (thanks to a senior student from "many" AYs ago)

Any volunteer to convert this to Python?

- Probably ChatGPT can do the translation too
- for non-Kattis projects, you may want to use <u>https://docs.scipy.org/doc/scipy/reference/optimize.linprog-simplex.html</u>

Now use any tool to solve this

- Maximize 777x+7y
- Such that:
 - $-100x \le 15000$
 - $-50y \le 10000$
 - $-x+y \le 300$

Answer for this year [do it yourself!!]

And x and y are non-negative

PS: Steven shall randomize the LP exercise each year

MIN WEIGHT VERTEX COVER (MWVC)

Two ways to *approximately* deal with this version...

Both the Deterministic & Randomized 2-approximation algorithm for Min-Vertex-Cover "fail" on the weighted version; Do you understand why?

MWVC as an (Integer) Linear Program ILP/IP

The formulation $(x_j \text{ is a Boolean } \{0, 1\} \text{ variable } where 0 = not in VC and 1 = in VC):$

$$\label{eq:min-Vertex-Cover} \begin{array}{l} \text{Min-Vertex-Cover} \ (set \ w(v_j) \ to \ all \ 1) \leq_p ILP \\ \hline So \ ILP \ is \ also \ NP-hard \end{array}$$

PS: A tool for ILP that I have explored in the past

MWVC as a Relaxed Linear Program

Relaxing the Integer constraint

$$\min\left(\sum_{j=1}^{n} w(v_j) \cdot x_j\right) \quad \text{where:} \\ x_i + x_j \geq 1 \quad \text{for all } (i, j) \in E \\ x_j \geq 0 \quad \text{for all } j \in V \\ x_j \leq 1 \quad \text{for all } j \in V \\ \end{cases}$$

Assume w is all 1 Example LP solution $x_0 = x_1 = x_2 = x_3 = 0.5$ What should we do?

PS: LP solution can be equal or better than ILP solution. Why?

Round up \mathbf{x}_{j} value if it is ≥ 0.5 let $y_{j} = 1$ if $x_{j} \geq 1/2$, and let $y_{j} = 0$ otherwise. But is this a good approximation?

lp_solve output

	# cat k4.lp
min: x0+x1+x2+x3;	
x0+x1 >= 1;	
x0+x2 >= 1;	
x0+x3 >= 1;	
x1+x2 >= 1;	
x1+x3 >= 1;	
x2+x3 >= 1;	
x0 >= 0:	
$x_0 >= 0,$ $x_1 >= 0.$	
$x_1 >= 0,$ $x_2 >= 0.$	
$x_2 >= 0,$	
x3 >= 0,	
x0 <= 1;	
x1 <= 1:	
x2 <= 1;	
x3 <= 1;	
	<pre>lp solve k4.lp</pre>
	· <u> </u>
Value of objective function:	2.0000000
Actual values of the variable	25 :
x0	0.5
xl	0.5
x2	0.5
x3	0.5

Analysis

 $OPT(G) = OPT(ILP) \ge OPT(LP)$ $cost(OPT) \ge \sum_{j=1}^{n} w(v_j) \cdot x_j$

Assume w is all 1 Example ILP solution $x_0 = x_1 = x_2 = 1$; $x_3 = 0$ Example LP solution $x_0 = x_1 = x_2 = x_3 = 0.5$

Rounded answer $\leq 2 \times OPT(LP)$ $\sum_{j=1}^{n} w(v_j) \cdot y_j \leq \sum_{j=1}^{n} w(v_j) \cdot (2x_j)$

Notice, however, that
$$y_j \leq 2x_j$$
, for all j .

$$\leq 2\left(\sum_{j=1}^{n} w(v_j) \cdot x_j\right)$$

 $\leq 2 \times OPT(G)$

Analysis: This is a **2**-Approximation algorithm

Linear Programming Summary

General form of an LP:

- 1. A set of variables: $x_1, x_2, ..., x_n$
- 2. A linear objective to maximize (or minimize): c^Tx
 - c and x as vectors,
 - c^{T} represents the transpose of c
 - multiplication represents the dot product
- 3. A set of linear constraints written as a Matrix equation: $Ax \le b$

Presented as: max $c^T x$ where $Ax \le b$ and $x \ge 0$

Exercise to translate given LP into standard form

- $\min x_1 + 2x_2 x_3$ where // this is a minimization problem
 - $x_1 + x_2 = 7 //$ this is an equality
 - $x_2 2x_3 \geq 4 //$ this is a \geq inequality
 - $x_1 \leq 2$

Details in the PDF

- There is an even simpler 2-Approximation algorithm for MWVC... which is...
 - See <u>https://visualgo.net/en/mvc</u>, M weighted VC

Summary

- Approximation algorithms for MVC
 - Deterministic, 3 variants, **but only variant 2 is 2-Approximation**
 - Randomized, *Expected* 2-Approximation
- Introduction to LP and an overview of Simplex Method
 - Simplex in Excel++, Ubuntu lp_solve, and custom code
- Introducing the weighted MVC (MWVC)
 - Problem with MVC approximation algorithms...
 - Reducing MWVC to ILP
 - Relaxing ILP to LP (we can use Simplex) and rounding up the answer
 - Analysis of that solution: **2-approximation**
 - Plus yet another alternative 2-approximation solution

Admin

- PS1 is open until this Sun, 27 Aug 23, 11.59pm
 - As of Thu, 24 August 2023, 11.30am...
 - 47 with ACs on A+B+C+D or more,
 - Ignore E+F+G+H if you have (many) other things to do
 - 7 more with only $\geq 2/4$ ACs
 - Should also be on track to complete PS1, but will have a busy day today/tomorrow...
 - But a staggering 69-47-7 = 15 pax with only 1 or 0 AC...
 - Are you staying in this course or not?
 - Consider that first PS1, these first two lectures (,plus my Lecture 03a+03b recordings and future Tut01+Tut02) and decide if the (optional/elective) CS4234 is for you...
 - I am OK with if you drop* (Terms and conditions apply)
- PS2 still starts from Sat, 26 Aug 23, 08.00am
 - Four (:O) **NP-hard** optimization problems
- Tut01.pdf is out; first tutorial next Mon, 28 Aug 23

PS1 (More) Hints

Only shown in the recording