CS4234 Optimiz(s)ation Algorithms

L3a - Min-Set-Cover

No VisuAlgo page yet Any taker?
(1 current FYP student AY23/24 is probably going to be doing this soon)

MIN-SET-COVER (one more COP)

Combinatorial Optimization Problem

- Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of \mathbf{n} elements
- Let $S_{1}, S_{2}, \ldots, S_{m}$ be subsets of X, i.e., each $S_{j} \subseteq X$ - Assume that every item in X appears in some set, i.e., $\cup_{j} S_{j}=X$
- A set cover of X with S is a set $I \subseteq\{1,2, \ldots, \mathbf{m}\}$ such that $\cup_{j \in \mathrm{I}} S_{j}=X$

Notice... $\exists 2^{\mathrm{m}}$ possible such subsets

- The solution for MIN-SET-COVER problem is a set cover I of minimum size

MIN-SET-COVER Example 1

PS:

I will add edge 1-5 from Lecture $1 . .$. As this picture is actually a *bipartite*, not a *general* graph I will make it consistent (one day)

$$
\mathrm{VC} \leq_{\mathrm{p}} \mathrm{SC} \ldots,
$$

so both are NP-hard

$$
|\mathrm{VC}|=|\mathrm{SC}|=4 \text { in }
$$

this example

MIN-SET-COVER Example 2

Cost Saving in Software Company What is the optimal solution?

MIN-SET-COVER Example 3

Stating Steven's problem for LAST AY's CS4234 tutorial group issues into an MSC problem? (not an issue this sem)

	3 groups		
	Group	Students	Timetable
$n=\|x\|=31$	T1 (CS4234)	12	Session 1 - Monday, Time: 11:00-12:00, Venue: SR_LT19, Recurrence: 13 (Steven Halim)
	T2 (CS4234)	9	Session 1 - Monday, Time: 14:00-15:00, Venue: SR_LT19, Recurrence: 13 (Steven Halim)
	T3 (CS4234)	10	Session 1 - Monday, Time: 17:00-18:00, Venue: SR_LT19, Recurrence: 13 (Steven Halim)

Review the recording for NUS students \odot

Now a "Doable" Task?

- https://nus.kattis.com/problems/socialadvertising

Review the recording for NUS students ©

NOT-live coding (C++)

Steven will attempt to live code from here
Without compiling : $0 . . .$, , as he is not sure what devtools are available in LT19-desktop PC

Hopefully AC

Ah this is just a recording this year... So I will show you my C++ code directly

GreedySetCover - A Greedy Algorithm

/* This algorithm adds sets greedily, one at a time, until everything is covered. At each step, the algorithm chooses the next set that will cover the most uncovered elements.
1 Algorithm: GreedySetCover $\left(X, S_{1}, S_{2}, \ldots, S_{m}\right)$
2 Procedure:
$3 \quad I \leftarrow \emptyset$
/* Repeat until every element in X is covered:
$4 \quad$ while $X \neq \emptyset$ do
5 Let $d(j)=\left|S_{j} \cap X\right| / /$ This is the number of uncovered elements in S_{j}
6 Let $j=\operatorname{argmax}_{i \in\{1,2, \ldots, m\}} d(i) / /$ Break ties by taking lower i
$7 \quad I \leftarrow I \cup\{j\} / /$ Include set S_{j} into the set cover
$8 \quad X \leftarrow X \backslash S_{j} / /$ Remove elements in S_{j} from X.
9 return I

Greedysetcover Execution (1)

/* This algorithm adds sets greedily, one at a time, until everything is covered. At each step, the algorithm chooses the next set that will cover the most uncovered elements.
1 Algorithm: GreedySetCover $\left(X, S_{1}, S_{2}, \ldots, S_{m}\right)$

2 Procedure:

$3 \quad I \leftarrow \emptyset$
/* Repeat until every element in X is covered:
$4 \quad$ while $X \neq \emptyset$ do
5 Let $d(j)=\left|S_{j} \cap X\right| / /$ This is the number of uncovered elements in S_{j}
6 Let $j=\operatorname{argmax}_{i \in\{1,2, \ldots, m\}} d(i) / /$ Break ties by taking lower i
$7 \quad I \leftarrow I \cup\{j\} / /$ Include set S_{j} into the set cover
$8 \quad X \leftarrow X \backslash S_{j} / /$ Remove elements in S_{j} from X.
9 return I

Greedysetcover Execution (2)

/* This algorithm adds sets greedily, one at a time, until everything is covered. At each step, the algorithm chooses the next set that will cover the most uncovered elements.
1 Algorithm: GreedySetCover $\left(X, S_{1}, S_{2}, \ldots, S_{m}\right)$

2 Procedure:

$3 \quad I \leftarrow \emptyset$
/* Repeat until every element in X is covered:
$4 \quad$ while $X \neq \emptyset$ do
5 Let $d(j)=\left|S_{j} \cap X\right| / /$ This is the number of uncovered elements in S_{j}
6 Let $j=\operatorname{argmax}_{i \in\{1,2, \ldots, m\}} d(i) / /$ Break ties by taking lower i
$7 \quad I \leftarrow I \cup\{j\} / /$ Include set S_{j} into the set cover
$8 \quad X \leftarrow X \backslash S_{j} / /$ Remove elements in S_{j} from X.
9 return I

Set	$d(j)-1$	$d(j)-2$
S1	4	2
S2	6	
S3	3	3
S4	5	3
S5	4	2

Greedysetcover Execution (3)

/* This algorithm adds sets greedily, one at a time, until everything is covered. At each step, the algorithm chooses the next set that will cover the most uncovered elements.
1 Algorithm: GreedySetCover $\left(X, S_{1}, S_{2}, \ldots, S_{m}\right)$
2 Procedure:
$3 \quad I \leftarrow \emptyset$
/* Repeat until every element in X is covered:
$4 \quad$ while $X \neq \emptyset$ do
Let $d(j)=\left|S_{j} \cap X\right| / /$ This is the number of uncovered elements in S_{j}
Let $j=\operatorname{argmax}_{i \in\{1,2, \ldots, m\}} d(i) / /$ Break ties by taking lower i
$I \leftarrow I \cup\{j\} / /$ Include set S_{j} into the set cover
$X \leftarrow X \backslash S_{j} / /$ Remove elements in S_{j} from X.
return I

Set	$d(j)-1$	$d(j)-2$	$d(j)-3$
S1	4	2	1
S2	6		
S3	3	3	
S4	5	3	2
S5	4	2	1

GreedySetCover Execution (4)

/* This algorithm adds sets greedily, one at a time, until everything is covered. At each step, the algorithm chooses the next set that will cover the most uncovered elements. Time complexity: $\mathrm{O}(\mathrm{mn}+(\mathrm{n}+\mathrm{m}) \log \mathrm{m})$,

1 Algorithm: GreedySetCover $\left(X, S_{1}, S_{2}, \ldots, S_{m}\right)$
2 Procedure:
$3 \quad I \leftarrow \emptyset$
/* Repeat until every element in X is covered:
while $X \neq \emptyset$ do
Let $d(j)=\left|S_{j} \cap X\right| / /$ This is the number of uncovered elements in S_{j} Let $j=\operatorname{argmax}_{i \in\{1,2, \ldots, m\}} d(i) / /$ Break ties by taking lower i
$I \leftarrow I \cup\{j\} / /$ Include set S_{j} into the set cover
$X \leftarrow X \backslash S_{j} / /$ Remove elements in S_{j} from X.
return I

Set	$\mathrm{d}(\mathrm{j})-1$	$\mathrm{~d}(\mathrm{j})-2$	$\mathrm{~d}(\mathrm{j})-3$	$\mathrm{~d}(\mathrm{j})-4$
S1	4	2	1	1
S2	6			
S3	3	3		
S4	5	3	2	
S5	4	2	1	0

GreedySetCover vs Optimal

$\{\mathrm{S} 1, \mathrm{~S} 4, \mathrm{~S} 5\}$ is the optimal (minimum) Min-Set-Cover solution for this instance

GreedySetCover - Analysis (1)

Initially, there are 12 elements
None of the sets cover more than 6 elements Any solution for this instance of the Min-Set-Cover problem requires at least $12 / 6=2$ sets

GreedySetCover - Analysis (2)

After S2 is selected greedily, there are 6 elements left None of the available sets cover more than 3 elements Any solution for this instance of the Min-Set-Cover problem now requires at least $6 / 3=2$ (more) sets

GreedySetCover - Analysis (3)

In general, if there are \mathbf{k} elements left and None of the available sets cover more than \mathbf{t} elements Any solution for this instance of the Min-Set-Cover problem now requires at least \mathbf{k} / \mathbf{t} (more) sets

GreedySetCover - Analysis (4)

When we run the algorithm, let us label the elements in the order that they are covered.

For each element x_{j}, let c_{j} be the number of elements covered at the same time. In the example, this would yield:

$$
c_{1}=6, c_{2}=6, c_{3}=6, c_{4}=6, c_{5}=6, c_{6}=6, c_{7}=3, c_{8}=3, c_{9}=3, c_{10}=2, c_{11}=2, c_{12}=1
$$

GreedySetCover - Analysis (5)

We define $\operatorname{cost}\left(x_{j}\right)=1 / c_{j}$. In this way, the cost of covering all the new elements for some set is exactly 1 . In this example, the cost of covering $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ is 1 , the cost of covering x_{7}, x_{8}, x_{9} is 1 , etc. In general, if I is the set cover constructed by the Greedy Algorithm, then:

$$
|I|=\sum_{j=1}^{n} \cos t\left(x_{j}\right) .
$$

$$
\begin{aligned}
& \operatorname{cost}\left(\mathrm{x}_{1}\right)= 1 / 6 \\
& \ldots \\
& \operatorname{cost}\left(\mathrm{x}_{6}\right)= 1 / 6 \\
& \operatorname{cost}\left(\mathrm{x}_{7}\right)= 1 / 3 \\
& \ldots \\
& \operatorname{cost}\left(\mathrm{x}_{9}\right)= 1 / 3 \\
& \operatorname{cost}\left(\mathrm{x}_{10}\right)= 1 / 2 \\
& \operatorname{cost}\left(\mathrm{x}_{11}\right)= 1 / 2 \\
& \operatorname{cost}\left(\mathrm{x}_{12}\right)= 1 / 1 \\
&=4
\end{aligned}
$$

GreedySetCover - Analysis (6)

Key step. Let's consider the situation after elements $x_{1}, x_{2}, \ldots, x_{j-1}$ have already been covered, and the elements $x_{j}, x_{j+1}, \ldots, x_{n}$ remain to be covered. Let OPT be the optimal solution for covering all n elements.
What is the best that OPT can do to cover the element $x_{j}, x_{j+1}, \ldots, x_{n}$? How many sets does OPT need to cover these remaining elements?

Notice that there remain $n-j+1$ uncovered elements. However, no set covers more than $c(j)$ of the remaining elements. In particular, all the sets already selected by the Greedy Algorithm cover zero of the remaining elements. Of the sets not yet chosen by the Greedy Algorithm, the one that covers the most remaining elements covers $c(j)$ of those elements: Otherwise, the Greedy Algorithm would have chosen a different set.

$$
j=7,12-7+1=6 \text { uncovered elements }
$$

GreedySetCover - Analysis (7)

Therefore, OPT needs at least $(n-j+1) / c(j)$ sets to cover the remaining $(n-j+1)$ elements. We thus conclude that:

$$
O P T \geq \frac{n-j+1}{c(j)}(n-j+1) \text { st }\left(x_{j}\right)
$$

Or to put it differently:

$$
\operatorname{cost}\left(x_{j}\right) \leq \frac{O P T}{(n-j+1)}
$$

GreedySetCover - Analysis (8)

We can now show that the Greedy Algorithm provides a good approximation:

$$
\begin{array}{rlr}
|I| & =\sum_{j=1}^{n} \operatorname{cost}\left(x_{j}\right) & \\
& \leq \sum_{j=1}^{n} \frac{O P T}{(n-j+1)} & \frac{1}{n}+\frac{1}{n-1}+\frac{1}{n \cdot 2}+\ldots+\frac{1}{2}+\frac{1}{1} \\
& \leq O P T \sum_{i=1}^{n} \frac{1}{i} & \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+1
\end{array}
$$

(Notice that the third inequality is simply a change of variable where $i=(n-j+1)$, and the fourth inequality is because the Harmonic series $1 / 1+1 / 2+1 / 3+1 / 4+\ldots+1 / n$ can be bounded by $\ln n+O(1)$.)
We have therefore shown than the set cover constructed is at most $O(\log n)$ times optimal, i.e., the Greedy Algorithm is an $O(\log n)$-approximation algorithm:

Anecdote: And yet we said the O(log n) Deterministic-3 approximation algorithm for MVC was 'not good'... so let's debate on 'theory vs practice'

A The Easier Ones (30 marks)

Q1. Min-Set-Cover Instance (6 marks)
Let's assume that we have a set X with $n=32$. To simplify the question, assume that $X=$ $\{1,2,3, \ldots, 30,31,32\}$. Create a Min-Set-Cover instance with that X and your chosen set $S=$ $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ (The number of subsets m is up to you) so that your test case makes the $O(\ln n)$ approximation Greedy-Set-Cover as discussed in class produces a solution that requires $\lfloor\ln 32\rfloor=$ $\left\lfloor\log _{e} 32\right\rfloor=\lfloor 3.46\rfloor=3$ times more subsets than the optimal answer.

The "easiest" question in Midterm Test S1 AY 2018/19

Review the recording for NUS students $;$

Summary

- Yet another NP-hard COP: Min-Set-Cover
- Four :O MSC Examples: vc, costSaving, Tutorial, Ads
- (Optimized) complete search for small instance
- GreedySetCover (an approximation algorithm)
- Analysis: $\mathbf{O}(\log \mathbf{n})$-approximation algorithm
- The proof is clever...
- Can you do that kind of algebraic manipulation to arrive at the proof by yourself (for another analysis)?

