
CS4234
Optimiz(s)ation Algorithms

L3a – Min-Set-Cover
No VisuAlgo page yet

Any taker?
(1 current FYP student AY23/24 is probably going to be doing this soon)

• Let X = {x1, x2, …, xn} be a set of n elements
• Let S1, S2, …, Sm be subsets of X, i.e., each Sj  X

– Assume that every item in X appears in some set,
i.e., j Sj = X

• A set cover of X with S is a set I  {1, 2, …, m}
such that jI Sj = X

• The solution for MIN-SET-COVER problem
is a set cover I of minimum size

MIN-SET-COVER (one more COP)
Combinatorial Optimization Problem

Notice…  2m possible such subsets

MIN-SET-COVER Example 1

0 1 2 3 4 5 6 7S = V =

0-1 1-2 1-4 2-3 2-5 3-6 4-5 5-6 6-7X = E =

VC p SC…,
so both are NP-hard

|VC| = |SC| = 4 in
this example

PS:
I will add edge 1-5 from Lecture 1…
As this picture is actually a *bipartite*,
not a *general* graph
I will make it consistent (one day)

MIN-SET-COVER Example 2

X =

S =

Cost Saving in Software Company
What is the optimal solution?

Stating Steven’s problem for LAST AY’s CS4234 tutorial
group issues into an MSC problem? (not an issue this sem)

MIN-SET-COVER Example 3

Review the recording for NUS students 

n = |X| = 31

• https://nus.kattis.com/problems/socialadvertising

Now a “Doable” Task?

Review the recording for NUS students 

Steven will attempt to live code from here
Without compiling :O…, as he is not sure what
devtools are available in LT19 desktop PC

Hopefully AC

Ah this is just a recording this year…
So I will show you my C++ code directly

NOT-live coding (C++)

GreedySetCover – A Greedy Algorithm

S1
S2 S3

S5

S4

GreedySetCover Execution (1)

S1
S2 S3

S5

S4

Set d(j) - 1

S1 4

S2 6

S3 3

S4 5

S5 4

GreedySetCover Execution (2)

S1
S2 S3

S5

Set d(j) - 1 d(j) - 2

S1 4 2

S2 6

S3 3 3

S4 5 3

S5 4 2

S4

GreedySetCover Execution (3)

S1
S2 S3

S5

Set d(j) - 1 d(j) - 2 d(j) - 3

S1 4 2 1

S2 6

S3 3 3

S4 5 3 2

S5 4 2 1

S4

GreedySetCover Execution (4)

S1
S2 S3

S5

Set d(j) - 1 d(j) - 2 d(j) - 3 d(j) - 4

S1 4 2 1 1

S2 6

S3 3 3

S4 5 3 2

S5 4 2 1 0

S4

Time complexity: O(mn +(n+m) log m),
greedy with max PQ with key = (d(i), i),
the PQ must also supports update key

GreedySetCover vs Optimal

S1
S2 S3

S5

Set d(j) - 1 d(j) - 2 d(j) - 3 d(j) - 4

S1 4 2 1 1

S2 6

S3 3 3

S4 5 3 2

S5 4 2 1 0

S4

S1
S2 S3

S5

S4
{S1, S4, S5} is the optimal
(minimum) Min-Set-Cover
solution for this instance

Initially, there are 12 elements
None of the sets cover more than 6 elements
Any solution for this instance of the Min-Set-Cover
problem requires at least 12/6 = 2 sets

S1
S2 S3

S5

S4

GreedySetCover – Analysis (1)

After S2 is selected greedily, there are 6 elements left
None of the available sets cover more than 3 elements
Any solution for this instance of the Min-Set-Cover
problem now requires at least 6/3 = 2 (more) sets

S1
S2 S3

S5

S4

GreedySetCover – Analysis (2)

In general, if there are k elements left and
None of the available sets cover more than t elements
Any solution for this instance of the Min-Set-Cover
problem now requires at least k/t (more) sets

S1
S2 S3

S5

S4

GreedySetCover – Analysis (3)

GreedySetCover – Analysis (4)

S1

S5

12 1 2 7

10 3 4 8

11 5 6 9

These are the first sets that cover these elements

S4

S2 S3

GreedySetCover – Analysis (5)

S1

S5

12 1 2 7

10 3 4 8

11 5 6 9
S4

S2 S3

cost(x1) = 1/6
…

cost(x6) = 1/6
cost(x7) = 1/3

…
cost(x9) = 1/3

cost(x10) = 1/2
cost(x11) = 1/2
cost(x12) = 1/1

|I| = 4

GreedySetCover – Analysis (6)

S1

S5

12 1 2 7

10 3 4 8

11 5 6 9
S4

S2 S3

j=7, 12-7+1 = 6 uncovered elements

6
covered
elements

S3 covers c(7) = 3
remaining uncovered elements

GreedySetCover – Analysis (7)

S1

S5

12 1 2 7

10 3 4 8

11 5 6 9
S4

S2 S3

GreedySetCover – Analysis (8)

Shift the green line upwardsAnecdote: And yet we said the
O(log n) Deterministic-3
approximation algorithm for
MVC was ‘not good’… so let’s
debate on ‘theory vs practice’

GreedySetCover – Challenge

Review the recording for NUS students 

The “easiest” question in Midterm Test S1 AY 2018/19

• Yet another NP-hard COP: Min-Set-Cover
• Four :O MSC Examples: VC, CostSaving, Tutorial, Ads

• (Optimized) complete search for small instance
• GreedySetCover (an approximation algorithm)
• Analysis: O(log n)-approximation algorithm

– The proof is clever…
• Can you do that kind of algebraic manipulation to arrive

at the proof by yourself (for another analysis)?

Summary

