CS4234
Optimiz(s)ation Algorithms

L3a — Min-Set-Cover

No VisuAlgo page yet
Any taker?

(1 curren t FYP student AY23/24 is probably going to be doing this soon

MIN-SET-COVER (one more COP)

Combinatorial Optimization Problem

« Let X = {Xy, Xy, ..., X} be a set of n elements
- Let S, S,, ..., Sy, be subsets of X, i.e., each S; c X

— Assume that every item in X appears in some set,

.e., U; SJ- = X
« Aset cover of XwithSisasetl {1, 2, ..., m}
such that Jier Sj =X Notice... 3 2™ possible such subsets

* The solution for MIN-SET-COVER problem
IS a set cover I of minimum size

MIN-SET-COV]

PS:

| will add edge 1-5 from Lecture 1...
As this picture is actually a *bipartite*,
not a *general* graph

| will make it consistent (one day)

N

0‘

56 o

v v ‘

(2
N

"R Example 1

VC < SC...,
so both are NP-hard

IVC| =|SC|=4in
this example

2-5

3-6

4

-5

5-6

‘N-SET-COVER Example 2

Cost Saving in Software Company
What is the optimal solution?

Pro STANNIeIS

S - Collin Bob Alice Dave

X X1

Languages

B

MIN-SET-COVER Example 3

Stating Steven’s problem for LAST AY’s C54234 tutorial
group issues into an MSC problem? (not an issue this sem)

3 groups
C 1 T-M 2:00, v F_L R
| | T2 (C54234) = Seszion 1 - Monday, Time: 14:00 - 15:00, Venue: SR_LT19, Recurrence: 13
C 10 T-M 3:00, W F_L R

Review the recording for NUS students ©

I Now a "Doable” Task?

« https://nus.kattis.com/problems/socialadvertising

Review the recording for NUS students ©

NOT-live coding (C++)

Ste*‘eﬂ \AH” ~{++A ¥ A livia ~AadA~ frn hArn
Cl\1] pL CU TTVLD WUUIL 11T VI | A A

atoo] bl i 1 T10 dad] nC

Hepefully-AC

Ah this is just a recording this year...
So I will show you my C++ code directly

- GreedySetCover — A Greedy Algorithm

/* This algorithm adds sets greedily, one at a time, until everything is
covered. At each step, the algorithm chooses the next set that will
cover the most uncovered elements. x [

1 Algorithm: GreedySetCover(X, S, Sz,.... Sm)

2 Procedure:
3 I«

/% Repeat until every element in X is covered: * [
4 while X &£ 0 do
5 letd(j)=|5;NnX|// This is the number of uncovered elements in 5;

6 Let j = argmax;.r, 5 _,)d(i) // Break ties by taking lower i
7 I+ Tu{j}// Include set S; into the set cover

8 X+« X\S5;// Remove elements in §; from X.

]

return [

(82)

1s1@® @ @
@ | ©
|s5|@] (@ @

s4 |

@ (@] @)

- GreedySetCover Execution (1)

/* This algorithm adds sets greedily, one at a time, until everything is
covered. At each step, the algorithm chooses the next set that will
cover the most uncovered elements. x [

1 Algorithm: GreedySetCover(X, 51, 52,..., Sm)

2 Procedure:
3 I«

/% Repeat until every element in X is covered: * [
4 while X &£ 0 do
5 letd(j)=|5;NnX|// This is the number of uncovered elements in 5;

6 Let j = argmax;.r, 5 _,)d(i) // Break ties by taking lower i
7 I+ Tu{j}// Include set S; into the set cover

8 X+« X\S5;// Remove elements in §; from X.

]

return [

g2

1s1@® @ @
@ ® O
|s5|@] (@ @

S1 4
.y ‘ fs2 |
S3 3
S4 5
S5 4

0] @] (@Y

- GreedySetCover Execution (2)

/* This algorithm adds sets greedily, one at a time, until everything is
covered. At each step, the algorithm chooses the next set that will
cover the most uncovered elements. w [/

1 Algorithm: GreedySetCover(X, 51, 52,..., Sm)

2 Procedure:
3 I«

/% Repeat until every element in X is covered: */
4 while X &£ 0 do
5 letd(j)=|5;NnX|// This is the number of uncovered elements in 5;
6 Let j = argmax;.r, 5 _,)d(i) // Break ties by taking lower i
7 I+ Tu{j}// Include set S; into the set cover
8 X+« X\S5;// Remove elements in §; from X.
9

return [

(82)

[s1 @
O
| s5|@

S1 4
S| -
=

S4 5 3
S5 4 2

o O @

- GreedySetCover Execution (3)

/* This algorithm adds sets greedily, one at a time, until everything is
covered. At each step, the algorithm chooses the next set that will

cover the most uncovered elements. x/

1 Algorithm: GreedySetCover(X, 51, 52,...,5n)
2 Procedure:

i I«

/% Repeat until every element in X is covered: */
4 while X &£ 0 do
5 letd(j)=|5;NnX|// This is the number of uncovered elements in 5;

Let j = argmax;.r, 5 _,)d(i) // Break ties by taking lower i
I+ Tu{j}// Include set S; into the set cover
X+« X\S5;// Remove elements in §; from X.

return [

P - - -

H

 S2) [s3

[s1 @
O S4
| s5|@

- GreedySetCover Execution (4)

/* This algorithm adds sets greedily, one at a time, until everything is
covered. At each step, the algorithm chooses the next set that will
cover the most uncovered elements. .. : .

: +(n+
 Algorithm: GreedySetCover(X, 51, 55,...,S,,) | Ime complexity: O(mn +(n+m) log m),
greedy with max PQ with key = (d(i), i),

P dure:
; mi"? the PQ must also supports update key

/% Repeat until every element in X is covered: */

/

4 while X &£ 0 do
5 letd(j)=|5;NnX|// This is the number of uncovered elements in 5;
6 Let j = argmax;.r, 5 _,)d(i) // Break ties by taking lower i
7 I+ Tu{j}// Include set S; into the set cover
8 X+« X\S5;// Remove elements in §; from X.
J return J
—
(82) [s3
s1@
-
st |
5
EE s 4
I -

- GreedySetCover vs Optimal

s2) (s3

S1@ @ O @
@ @ O @O s

s5@ @ O @

52) (s3]

S1@ @ @O @
@ @ O @ s¢

|s5|@ @ @ @

{S1, 54, S5} is the optimal
(minimum) Min-Set-Cover
solution for this instance

- GreedySetCover — Analysis (1)

Initially, there are 12 elements

None of the sets cover more than 6 elements

Any solution for this instance of the Min-Set-Cover
problem requires at least 12/6 = 2 sets

s2) [s3

(s1@® @ O |®
@ @ O @ s

(ss|@] |@ o @

- GreedySetCover — Analysis (2)

After S2 is selected greedily, there are 6 elements left

None of the available sets cover more than 3 elements

Any solution for this instance of the Min-Set-Cover
problem now requires at least 6/3 = 2 (more) sets

52) [S3]

[s1 @ O
O @|s4 |

| s5|@ O

- GreedySetCover — Analysis (3)

In general, if there are k elements left and

None of the available sets cover more than t elements
Any solution for this instance of the Min-Set-Cover
problem now requires at least k/t (more) sets

32) [s3

[s1 @ O
O @|s4 |

| s5|@ O

GreedySetCover — Analysis (4)

When we run the algorithm, let us label the elementsfin the order that they are covered.

£1,xLz,.ry,2Lq,L5,Lg..L7, L, Log.Lr1p.L11, 172

These are the first sets that cover these elements

For each element 1 ;, let c; be the number of elements covered at the same time. In the example, this would yield:

0] = E.{Zg = E.(:;:, = G.f.'j = G.f.'_', = G.f.'.;'; = G.f.",- = 3(3 =:_‘]|-.f_‘.;; =E'|-.f.‘[.;] ='.?.-!'ZL] = E.{Z]' =1

St

-\
N

@
O

EEN
-

Q|0 ~Of,

)
oo e

pr—
N
@)

10

- GreedySetCover — Analysis (5)

We define cost(z;) = 1/¢;. In this way, the cost of covering all the new elements for some set is exactly 1. In this
example, the cost of covering 1, x2, T3, T4, T5, g 15 1, the cost of covering x7, s, o 18 1, etc. In general, if T is the
set cover constructed by the Greedy Algorithm, then:

Tl
| = Z cost{x;) .
j=1

cost(x,) = 1/6

cost(xg) = 1/6
cost(x,) = 1/3

-\
N

@
O

cost(xg) = 1/3
cost(X,q) = 1/2
cost(xq) = 1/2
cost(x,,) = 1/1

=4

EEN
-

s4 |

Q|0 ~Of,
(o |
|® QmQQ]

)
oo e

| s5

- GreedySetCover — Analysis (6)

Key step. Let’s consider the situation after elements ;. 75,....x;_; have already been covered, and the elements

Tj.Tjsiq,.--,Ty, remain to be covered. Let OPT be the optimal solution for covering all n elements.

What 1s the best that OPT can do to cover the element T, T

remaining elements?

Notice that there remain n — j + 1 uncovered elements. However, no set covers more than ¢(j) of the remaining
elements. In particular, all the sets already selected by the Greedy Algorithm cover zero of the remaining elements.
Of the sets not yet chosen by the Greedy Algorithm, the one that covers the most remaining elements covers ¢(j) of

those elements: Otherwise, the Greedy Algorithm would have chosen a different set.

f,] S2 2\

J=7,

7sB

12-7+1 = 6 uncovered elements

S3 covers ¢(7) = 3

6

12
[s1 @
10

11

. covered
elements

remaining uncovered elements

8
O

s4 |

9

6

9

| s5|@

H

j41s- -+ Ty ! How many sets does OPT need to cover these

GreedySetCover — Analysis (7)

Therefore, OPT needs at least (n — j + 1)/c(j) sets to cover the remaining (n — j + 1) elements. We thus conclude

that:
OPT > % (n—j + 1)gfst(z;)
) =)

Or to put it differently:

P O P (}PT
cost{T;) = m—j+1)
12 (1.S22) [73B
[s1 @ O
10 3 4 3
O @| s |
115 6 [|9
| s5|@ O

- GreedySetCover — Analysis (8)

We can now show that the Greedy Algonthm provides a good approximation:

T
Il = Z cost(x;)
j=1

" orr Ly b=t T 7
< - :
= ;{?l—j-l—].] AN L |
| n { - \
5{'}FTZE .__——.I—l—\—/""'j[/_\/
i=1 \ 7 N N

< OPT(Inn+ 0O(1))

(Notice that the third inequality 1s simply a change of variable where i = (n — j + 1), and the fourth inequality 1s
because the Harmonic series 1/1 +1/2+1/34+1/4+ ... 4 1/n can be bounded by Inn + O(1).)

We have therefore shown than the set cover constructed is at most O{log n) times optimal Ji.e., the Greedy Algorithm

1s an O)(log nj-approximation algorithm: Lo

Anecdote: And yet we said the «\

O(log n) Deterministic-3 o] N

approximation algorithm for]l | N |

MVC was ‘not good’... so let's *] T

debate on ‘theory vs practice’ e -

GreedySetCover — Challenge

A The Easier Ones (30 marks)

Q1. Min-Set-Cover Instance (6 marks)

Let’s assume that we have a set X with n = 32. To simplify the question, assume that X =
{1.2,3,...,30,31,32}. Create a Min-Set-Cover instance with that X and your chosen set § =
{51.59....,5x} (The number of subsets m is up to you) so that your test case makes the O(lnn)-

approximation Greedy-Set-Cover as discussed in class produces a solution that requires [In32| =

|log, 32| = |3.46| = 3 times more subsets than the optimal answer.

The “easiest” question in Midterm Test S1 AY 2018/19

Review the recording for NUS students ©

~Summary

* Yet another NP-hard COP: Min-Set-Cover

* Four :0 MSC Examples: vc, costsaving, Tutorial, Ads
 (Optimized) complete search for small instance
» GreedySetCover (an approximation algorithm)
« Analysis: O(log n)-approximation algorithm

— The proof is clever...

e Can you do that kind of algebraic manipulation to arrive
at the proof by yourself (for another analysis)?

