
CS4234
Optimiz(s)ation Algorithms

L3b – Steiner-Tree
still-DRAFT (since 2017) VISUALIZATION

(to be improved by 1 FYP student in AY 23/24):
https://visualgo.net/en/steinertree

PS: This lecture will run in two parts:
On Week 03 (up to the preview of MST-based approximation algorithm)

On Week 04 (the full details of this 2-approximation algorithm)

Motivation

MST?
Run Prim’s or
Kruskal’s algorithm
Cost: ~52 M SGD

But what if we can add
new points to help us?

Cost: 50M SGD

(0,10) (10,10) (30,10)

(20,20)

(20,0)

O(V2 log V) solution
Note that we are dealing with KV

• Given a set R of n distinct points in the Euclidean
(2-dimensional) plane

• Find a(n additional, possibly empty) set of points S
and a spanning tree T = (R  S, E) such that that
the weight of the tree is minimized

• The weight of the tree is defined as:
where |u – v| is the Euclidean distance from u to v

• The resulting tree is called a Euclidean Steiner
Tree and the points in S are called Steiner points

EUCLIDEAN-STEINER-TREE

But there are some known properties of any optimal
Euclidean Steiner Tree:
• Each Steiner point in an optimal solution has degree 3
• The three lines entering a Steiner point form

120 degree angles, in an optimal solution
• An optimal solution has at most n-2 Steiner points

So is this Steiner Tree (50M) optimal?

If no, can you come up
with a better one?
Review recording to see the solution

This is NP-hard (proof omitted)

Flipped Classroom Challenge

Let’s define a metric function, e.g., Euclidean distance

There are several functions other than
Euclidean distance that are metric, e.g.,
the Manhattan/taxicab/rectilinear distance

Metric-Steiner-Tree (1)

Unlike in Euclidean case where the additional Steiner
points can be anywhere on the 2D plane, we are also
given the set of possible Steiner vertices S

Think: Does this make Metric-Steiner-Tree easier
or harder than the Euclidean-Steiner-Tree?

Metric-Steiner-Tree (2)

We can generalize this even further

General-Steiner-Tree

All NP-hard (proof by book, Garey & Johson, 1979)…
• Euclidean: The points are in Euclidean plane
• Metric: We have a distance metric
• General: On arbitrary graph

General-ST is a generalization of Metric-ST

Metric-ST is not simply a generalization of
Euclidean-ST as Euclidean-ST allows any points
in the plane to be a Steiner point

Steiner-Tree (the 3 variants)

• https://visualgo.net/en/steinertree
• Now with some form of e-Lecture slides (in 2023), but anyway

– Draw all the Required vertices first, label as [0, 1, …, s-1]
– Then draw all the Steiner vertices [s, s+1, …, n-1]
– Click “Exact” and enter the value of s accordingly
– VisuAlgo will show one possible way to solve General-ST by trying all

2|n-s| possible subsets of Steiner vertices, include them and their
associated weighted edges along with the Required vertices, and then
run MST algorithm on them (each in O(E log V) = O(n2 log n))

– Time complexity: O(2|n-s| * n2 log n), very slow for big TC
• Review recording for a sample run

Steiner-Tree Complete Search Solution

• Steiner-Tree is known to have a close
relationship with the (easier, e.g., in P)
Min-Spanning-Tree problem (hence I put MST in PS1-Prerequisites)

• So… what if we just ignore all Steiner
points/vertices S and just find the MST
on the required vertices R only?

Steiner-Tree Approximations

Ratio: 2/(3) or ~1.15

We can increase the size of this cycle graphs Cn

This test case shows that the MST approximation is
no better than a 2(n-1)/n-approximation of the
optimal spanning tree (the Steiner tree)
• As n gets large, this is ~2-approximation
• We will do the more proper analysis soon

Widening Approximation Ratio?

Warning: The Steiner Tree may not be the optimal one, e.g.,
can you draw an even better Steiner Tree for C4 and C5 above?

PS: weights are
non-metric (but
almost metric)

Bad news for general, non-metric, Steiner Tree
variant… as we can construct similar test case but play
with the non-metric weights to have a very bad
MST approximation solution

Bad for General-Steiner-Tree

• Most years, I won’t be able to finish all slides on
Week 03

• Even though this is a recorded lecture, I plan to keep
the flow to be the same as in 2022 edition, i.e., I stop
here and continue after I return from IOI 2023 on
Week 04 (the early part of Week 04 lecture will also
act as a refresher of MSC and Steiner-Tree topics)

Natural Breakpoint

Focus on Metric-ST First (1)

Cost of the optimal Steiner tree T = 8

PS: weights are metric,
but not drawn in a
proper 2 dimension

Focus on Metric-ST First (2)

Cost of C’, bypassing all Steiner vertices = 15 (also see Fig 4 for clarity)
Such short-cutting won’t increase the cost, because of triangle inequality

Cost of DFS on T: 1+1+1+1+1+1+1+1+1+1+1+1+2+2 = 16
Each edge in T is visited 2x in this cycle C, i.e., cost(C) = 2 x cost(T)

2

1
2 2

2

2
This is what we
want to prove…, i.e.,
what if we ‘ignore’
Steiner vertices esp on why

w(d-f) = 1 yet w(c-b) = 2

cost(C’)  2 x cost(T)

Focus on Metric-ST First (3)

Cost of C’’, bypassing all Steiner vertices from C
and then removing duplicate vertices = 11

cost(C’’)  2 x cost(T)

cost(C’)  2 x cost(T)

Focus on Metric-ST First (4)

Cost of T’, bypassing all Steiner vertices from C
and then removing duplicate vertices

and then breaking any one edge in this cycle (e.g., ea) = 9
This T’ is an acyclic spanning tree of G

Let M be the minimum spanning tree of the required vertices R of G
So, cost(M)  cost(T’)

 2 x cost(T)
Conclusion: cost(M)  2 x cost(T), a 2-approximation 

cost(T’)  2 x cost(T)

Can we do this?
1. Given an instance of the General-ST problem
2. Reduce it to a new Metric-ST instance
3. Solve the new Metric-ST instance using an existing

(approx) algorithm that solves the metric version
(e.g., the 2-approximation: MST on R vertices only)

4. Convert the solution of Metric-ST back to a
solution for General-ST

Is this a gap-preserving reduction, i.e., can we also
have 2-approximation on General-ST variant?

Now how about General-ST?

We can make a non-metric edge weights into a metric
one, using All-Pairs Shortest Paths algorithm, e.g., the
O(V3) Floyd-Warshall (other algorithms exist)

We can use proof by contradiction about shortest path
properties to show that such metric completion
preserves the triangle inequality

(the 3 other metric properties non-negativity, identity,
and symmetric can be easily shown)
Details in the PDF

Step 2: Metric completion

When we do the metric completion, we also remember
the actual shortest paths, e.g.,
• Assume d(i, j) > d(i, k) + d(k, j)

and thus we shorten d(i, j) into d(i, k) + d(k, j),
• In the event this 'virtual' edge (i, j) is taken in the

Metric-ST variant, we actually take edge (i, k) and
(k, j) in the General-ST variant

• Some of these edges may overlap and create cycles,
we have to remove some edges as we want a
spanning tree, not cycle(s)
– Thus the cost can be equal or lower in General ST version

Step 4: Reconstruction

Theorem: Given an -approximation algorithm
for finding a Metric Steiner tree, we can find an
-approximation for a General Steiner tree

Full details in the PDF

Analysis

• Introducing the Steiner Tree problem
– Similar to the MST problem, but different and harder

• Three variants: Euclidean, Metric, General
– All NP-hard, focus on Metric and General variants
– Exponential Complete Search solution for General ST

• Approximation algorithm: MST of R vertices only
– OK for Metric, can be awful for General variant verbatim
– Proof of 2-Approximation on Metric variant
– Converting General variant to Metric variant

(metric completion) and then using the same
2-approximation algorithm (gap preserved)

Summary

