
CS4234
Optimiz(s)ation Algorithms

L7 – (Weighted) Max-Cardinality
-(Bipartite)-Matching, round 2
https://visualgo.net/en/matching

v0.8: Steven Halim

CS3233/CS4234
Steven Halim, SoC, NUS

CS3233/CS4234
Dual Slides

Dr. Steven Halim

This course material is now made available for public usage.
Special acknowledgement to School of Computing, National University of Singapore

for allowing Steven to prepare and distribute these teaching materials.

CS3233/CS4234
Steven Halim, SoC, NUS

Graph Matching (after recess, not part of Midterm test)
– Weighted MCBM: (Min/Max) Cost (Max) Flow,

Hungarian (Kuhn-Munkres algorithm)

– Unweighted MCM: Edmonds’ Matching (overview)

– Weighted MCM: DP with Bitmask (small graph only, review…)

• This DP with Bitmask solution will also solve other variants,
but only if they are posed on small (V ≤ 20) graphs…

• Still unable to make it work for applying the Christofides’s
1.5-Approximation algorithm for large instances of M-R/NR-TSP
as of year 2021
– PS: Now 1.5-e, see https://www.quantamagazine.org/computer-scientists-break-

traveling-salesperson-record-20201008/

Roadmap (for CS4234) – Week 07

Types of Graph Matching

Bipartite?
Yes No

Unweighted MCM
• Edmonds’ Matching++

No

Weighted MCM

Yes

1

3

2

4
5

Weighted MCBM
• Min Cost Max Flow
• Kuhn-Munkres

(Hungarian)

Yes

1

3

42

No

Unweighted MCBM
• Augmenting Path
• Max Flow (Dinic’s)
• Hopcroft-Karp
• Augmenting Path++

EASIER

Small?

Weighted?

No

Greedy-able?

EASIER

Un/weighted MCM
• DP with Bitmask

Yes

EASIER

Weighted?

NoUn/weighted MCBM
• Greedy Bip Matching

Yes

EASIER

https://www.youtube.com/watch?v=GhjwOiJ4SqU&feature=youtu.be&t=2m54s cites CP3

A C

B D

A C

B D

C
B D

A

C
B D

A

WEIGHTED MCBM

Solutions (slightly deeper this AY):
Min/Max Cost (Max) Flow, CP4 Book 2 Section 9.25
Kuhn-Munkres (Hungarian), CP4 Book 2 Section 9.27

CS3233/CS4234
Steven Halim, SoC, NUS

UVa 10746 (last state)

0

1

8
s t

4

2

3

5

6

7

Capacity = 1
Cost = 0.0

Capacity = 1
Cost = 0.0

10.0

20.0

20.0

Min Cost so far =
0 + 5.0 + 0 +
0 + 10.0 - 5.0 + 10.0 + 0 +
0 + 20.0 + 0 = 40.0

Bank Cruiser

Time Complexity: Depends on the chosen
MCMF algorithm, about O(mn) iterations * SSSP
cost/iteration, e.g., another O(nm) if using
Bellman-Ford algorithm to find the cheapest
augmenting path…, so O(n2m2) (quite bad…)

Alternatives: O(km) SPFA/
Bellman-Ford-Moore (see CP4)
or Dijkstra’s with potential
(I am not familiar yet)

Kuhn-Munkres (Hungarian) Algorithm

Harold Kuhn (1955) and James Munkres (1957) name
their (joint) algorithm based on the work of two other
Hungarian mathematicians (Denes Konig + Jano Egervary)
• There is a graph version and matrix version (we discuss the graph version)

Initial implementation O(n4); today’s best version O(n3)

Default version: For Max Weighted Perfect Bipartite Matching
• But can easily be modified to support Min Weighted (negate edge

weights) and for Bipartite Graph where Perfect Matching is impossible
(add dummy vertices/edges with irrelevant weights)

An explanation using CP4 Book 2 drawings

L: Initial Graph
M: Complete Weighted Bipartite Graph

R: Equality Subgraph

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Review the recording or re-read CP4 Book 2 for the explanation

L: 1st Augmenting Path
M: Stuck

R: Relabel the Equality Subgraph

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Review the recording or re-read CP4 Book 2 for the explanation

L: 2nd Augmenting Path
M: 3rd Augmenting Path

R: Max Weighted Perfect Matching

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Review the recording or re-read CP4 Book 2 for the explanation

Let’s See

This tool https://algorithms.discrete.ma.tum.de/graph-algorithms/matchings-hungarian-method/index_en.html
is on maximization problem on a complete bipartite graph (so that Perfect Matching exists)

The layout is top row = right set and bottom row = left set

Kuhn-Munkres (Hungarian) Algorithm

A good Hungarian algorithm implementation runs in O(V3),
thus it is a much better algorithm for Weighted MCBM
problem compared to (the more general) MCMF
• You are allowed to quote this info verbatim in PS4/exam

– Focus on the modeling of the complete weighted bipartite graph
– And on whether it is a maximization or a minimization problem

• References:
– https://github.com/jaehyunp/stanfordacm/blob/master/code/MinCostMatching.cc
– https://e-maxx.ru/algo/assignment_hungary

• https://translate.google.com/translate?hl=ru&sl=ru&tl=en&u=https%3A%2F%2
Fe-maxx.ru%2Falgo%2Fassignment_hungary

– https://brilliant.org/wiki/hungarian-matching/

CS3233/CS4234
Steven Halim, SoC, NUS

UNWEIGHTED MCM

Solutions (High Level Tour Only – but slightly deeper after each AY):
Edmonds’ Matching Algorithm, CP4 Book 2, Section 9.28

CS3233/CS4234
Steven Halim, SoC, NUS

Non-Bipartite Graph and Blossom

A graph is not bipartite if it has at least one
odd-length cycle

What is the MCM of this non-bipartite graph?

It is harder to find augmenting path (Berge’s Lemma)
in such graph due to alternating cycles called blossoms

CS3233/CS4234
Steven Halim, SoC, NUS

https://visualgo.net/en/matching, select “Unweighted General” tab

Blossom Shrinking/Expansion (1)

However, shrinking these blossoms (recursively) will
make this problem “easy” again (with proper post-
processing when the recursion unwinds)

(Switch to still-draft visualization @ VisuAlgo for live explanation)

CS3233/CS4234
Steven Halim, SoC, NUS

https://visualgo.net/en/matching, select “Unweighted General” tab

Review the recording or re-read CP4 Book 2 for the explanation

Blossom Shrinking/Expansion (2)

CS3233/CS4234
Steven Halim, SoC, NUS

https://visualgo.net/en/matching, select “Unweighted General” tab

Review the recording or re-read CP4 Book 2 for the explanation

Blossom Shrinking/Expansion (3)

CS3233/CS4234
Steven Halim, SoC, NUS

https://visualgo.net/en/matching, select “Unweighted General” tab

Review the recording or re-read CP4 Book 2 for the explanation

When To Use Edmonds’ Matching?

This algorithm is a hard to implement…

O(V3) library code is preferred
• Only used for unweighted MCM with V [22..200*; complex code]

– If V [19..21], see the next section

• Randomized greedy pre-processing is ALSO APPLICABLE here!!
– Again, you can quote this verbatim for final assessment
– Focus on the unweighted non-bipartite graph modeling

For code, just use external source
• https://codeforces.com/blog/entry/49402 (C++)
• https://sites.google.com/site/indy256/algo/edmonds_matching (Java)

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

WEIGHTED MCM

Solution(s):
DP with Bitmask (only for small graph)
Or Modified? Edmonds’ Matching (future work…)
• https://arxiv.org/abs/1703.03998 or at

https://home.cs.colorado.edu/~hal/MCM.pdf

CS3233/CS4234
Steven Halim, SoC, NUS

No? Choice… (only for V ≤ [19..21])
ii wMCM(int mask) { // returns (|MCM|, min-weight-of-the-MCM)

if (mask == (1<<N)-1) return ii(0, 0); // no more matching

if (memo[mask] != ii(-1, -1)) return memo[mask];

int p1; // find the first free vertex

for (p1 = 0; p1 < N; ++p1) if (!(mask & (1<<p1))) break;

ii ans = wMCM(mask | (1<<p1)); // p1 unmatched

for (int p2 = p1+1; p2 < N; ++p2) // find the second free vertex

if (!(mask & (1<<p2)) && cost[p1][p2]) {

ii nxt = wMCM(mask | (1<<p1) | (1<<p2)); // match p1-p2

nxt.first += 2; nxt.second += cost[p1][p2]; // add MCM+weight

if ((nxt.first > ans.first) || // better MCM

((nxt.first == ans.first) && // or equal MCM
(nxt.second < ans.second))) // but with smaller weight

ans = nxt;

}

return memo[mask] = ans;

} CS3233/CS4234
Steven Halim, SoC, NUS

This is slightly more general than the
intro problem in Chapter 1 of CP book
series (UVa 10911) – min weight perfect
matching on a weighted complete graph

Old code, you can optimize a bit using Least Significant One technique

Also for Small Unweighted MCM Too

https://visualgo.net/en/recursion, select the “Matching” example…

Just set all weights = 1 in the previous code
But most likely TLE for 22 < V < 200 – so just
use Edmonds’ Matching algorithm for that

CS3233/CS4234
Steven Halim, SoC, NUS

Types of Graph Matching

Bipartite?
Yes No

Unweighted MCM
• Edmonds’ Matching++

No

Weighted MCM

Yes

1

3

2

4
5

Weighted MCBM
• Min Cost Max Flow
• Kuhn-Munkres

(Hungarian)

Yes

1

3

42

No

Unweighted MCBM
• Augmenting Path
• Max Flow (Dinic’s)
• Hopcroft-Karp
• Augmenting Path++

EASIER

Small?

Weighted?

No

Greedy-able?

EASIER

Un/weighted MCM
• DP with Bitmask

Yes

EASIER

Weighted?

NoUn/weighted MCBM
• Greedy Bip Matching

Yes

EASIER

https://www.youtube.com/watch?v=GhjwOiJ4SqU&feature=youtu.be&t=2m54s cites CP3

A C

B D

A C

B D

C
B D

A

C
B D

A

References

• Mostly CP4, Book 1 Section 4.6, then Book 2 Section
8.5, and a few sections in Chapter 9 (9.25-9.29)

• TopCoder PrimePairs, RookAttack solution
• http://www.comp.nus.edu.sg/~cs6234/2009/Lectures

/Match-sl-PC.pdf (Prof LeongHW’s/P Karras slides)
• There are much bigger topics outside these two

lectures and two tutorials and these two lecture notes
will keep be improved over the years (twice per year,
in S1/CS4234 and S2/CS3233)…

CS3233/CS4234
Steven Halim, SoC, NUS

All the best for your Midterm Test

• The true class ranking will emerge after this
• At the moment too many are tied at 15/15

(and soon at 20/20)
– I will grade PS4 early birds soon

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

