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Graph Matching (after recess, not part of Midterm test)
– Weighted MCBM: (Min/Max) Cost (Max) Flow,

Hungarian (Kuhn-Munkres algorithm)

– Unweighted MCM: Edmonds’ Matching (overview)

– Weighted MCM: DP with Bitmask (small graph only, review…)

• This DP with Bitmask solution will also solve other variants,
but only if they are posed on small (V ≤ 20) graphs…

• Still unable to make it work for applying the Christofides’s
1.5-Approximation algorithm for large instances of M-R/NR-TSP
as of year 2021 
– PS: Now 1.5-e, see https://www.quantamagazine.org/computer-scientists-break-

traveling-salesperson-record-20201008/

Roadmap (for CS4234) – Week 07
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WEIGHTED MCBM

Solutions (slightly deeper this AY):
Min/Max Cost (Max) Flow, CP4 Book 2 Section 9.25
Kuhn-Munkres (Hungarian), CP4 Book 2 Section 9.27
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UVa 10746 (last state)
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Min Cost so far =
0 + 5.0 + 0 +
0 + 10.0 - 5.0 + 10.0 + 0 +
0 + 20.0 + 0 = 40.0

Bank Cruiser

Time Complexity: Depends on the chosen
MCMF algorithm, about O(mn) iterations * SSSP 
cost/iteration, e.g., another O(nm) if using 
Bellman-Ford algorithm to find the cheapest 
augmenting path…, so O(n2m2) (quite bad…)

Alternatives: O(km) SPFA/
Bellman-Ford-Moore (see CP4)
or Dijkstra’s with potential
(I am not familiar yet)



Kuhn-Munkres (Hungarian) Algorithm

Harold Kuhn (1955) and James Munkres (1957) name 
their (joint) algorithm based on the work of two other 
Hungarian mathematicians (Denes Konig + Jano Egervary)
• There is a graph version and matrix version (we discuss the graph version)

Initial implementation O(n4); today’s best version O(n3)

Default version: For Max Weighted Perfect Bipartite Matching
• But can easily be modified to support Min Weighted (negate edge 

weights) and for Bipartite Graph where Perfect Matching is impossible 
(add dummy vertices/edges with irrelevant weights)

An explanation using CP4 Book 2 drawings



L: Initial Graph
M: Complete Weighted Bipartite Graph

R: Equality Subgraph
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Review the recording or re-read CP4 Book 2 for the explanation



L: 1st Augmenting Path
M: Stuck

R: Relabel the Equality Subgraph
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Review the recording or re-read CP4 Book 2 for the explanation



L: 2nd Augmenting Path
M: 3rd Augmenting Path

R: Max Weighted Perfect Matching
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Review the recording or re-read CP4 Book 2 for the explanation



Let’s See

This tool https://algorithms.discrete.ma.tum.de/graph-algorithms/matchings-hungarian-method/index_en.html
is on maximization problem on a complete bipartite graph (so that Perfect Matching exists)

The layout is top row = right set and bottom row = left set



Kuhn-Munkres (Hungarian) Algorithm

A good Hungarian algorithm implementation runs in O(V3), 
thus it is a much better algorithm for Weighted MCBM
problem compared to (the more general) MCMF
• You are allowed to quote this info verbatim in PS4/exam

– Focus on the modeling of the complete weighted bipartite graph
– And on whether it is a maximization or a minimization problem

• References:
– https://github.com/jaehyunp/stanfordacm/blob/master/code/MinCostMatching.cc
– https://e-maxx.ru/algo/assignment_hungary

• https://translate.google.com/translate?hl=ru&sl=ru&tl=en&u=https%3A%2F%2
Fe-maxx.ru%2Falgo%2Fassignment_hungary

– https://brilliant.org/wiki/hungarian-matching/
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UNWEIGHTED MCM

Solutions (High Level Tour Only – but slightly deeper after each AY):
Edmonds’ Matching Algorithm, CP4 Book 2, Section 9.28
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Non-Bipartite Graph and Blossom

A graph is not bipartite if it has at least one
odd-length cycle

What is the MCM of this non-bipartite graph?

It is harder to find augmenting path (Berge’s Lemma)
in such graph due to alternating cycles called blossoms
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https://visualgo.net/en/matching, select “Unweighted General” tab



Blossom Shrinking/Expansion (1)

However, shrinking these blossoms (recursively) will 
make this problem “easy” again (with proper post-
processing when the recursion unwinds)

(Switch to still-draft visualization @ VisuAlgo for live explanation)
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https://visualgo.net/en/matching, select “Unweighted General” tab

Review the recording or re-read CP4 Book 2 for the explanation



Blossom Shrinking/Expansion (2)
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https://visualgo.net/en/matching, select “Unweighted General” tab

Review the recording or re-read CP4 Book 2 for the explanation



Blossom Shrinking/Expansion (3)
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https://visualgo.net/en/matching, select “Unweighted General” tab

Review the recording or re-read CP4 Book 2 for the explanation



When To Use Edmonds’ Matching?

This algorithm is a hard to implement…

O(V3) library code is preferred
• Only used for unweighted MCM with V  [22..200*; complex code]

– If V  [19..21], see the next section

• Randomized greedy pre-processing is ALSO APPLICABLE here!!
– Again, you can quote this verbatim for final assessment
– Focus on the unweighted non-bipartite graph modeling

For code, just use external source
• https://codeforces.com/blog/entry/49402 (C++)
• https://sites.google.com/site/indy256/algo/edmonds_matching (Java)
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WEIGHTED MCM

Solution(s):
DP with Bitmask (only for small graph)
Or Modified? Edmonds’ Matching (future work…)
• https://arxiv.org/abs/1703.03998 or at 

https://home.cs.colorado.edu/~hal/MCM.pdf
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No? Choice… (only for V ≤ [19..21])
ii wMCM(int mask) { // returns (|MCM|, min-weight-of-the-MCM)

if (mask == (1<<N)-1) return ii(0, 0); // no more matching

if (memo[mask] != ii(-1, -1)) return memo[mask];

int p1; // find the first free vertex

for (p1 = 0; p1 < N; ++p1) if (!(mask & (1<<p1))) break;

ii ans = wMCM(mask | (1<<p1)); // p1 unmatched

for (int p2 = p1+1; p2 < N; ++p2) // find the second free vertex

if (!(mask & (1<<p2)) && cost[p1][p2]) {

ii nxt = wMCM(mask | (1<<p1) | (1<<p2)); // match p1-p2

nxt.first += 2; nxt.second += cost[p1][p2]; // add MCM+weight

if ((nxt.first > ans.first) || // better MCM

((nxt.first == ans.first) && // or equal MCM
(nxt.second < ans.second))) // but with smaller weight

ans = nxt;

}

return memo[mask] = ans;
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This is slightly more general than the 
intro problem in Chapter 1 of CP book 
series (UVa 10911) – min weight perfect
matching on a weighted complete graph

Old code, you can optimize a bit using Least Significant One technique



Also for Small Unweighted MCM Too

https://visualgo.net/en/recursion, select the “Matching” example…

Just set all weights = 1 in the previous code
But most likely TLE for 22 < V < 200 – so just 
use Edmonds’ Matching algorithm for that
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References

• Mostly CP4, Book 1 Section 4.6, then Book 2 Section 
8.5, and a few sections in Chapter 9 (9.25-9.29)

• TopCoder PrimePairs, RookAttack solution
• http://www.comp.nus.edu.sg/~cs6234/2009/Lectures

/Match-sl-PC.pdf (Prof LeongHW’s/P Karras slides)
• There are much bigger topics outside these two 

lectures and two tutorials and these two lecture notes 
will keep be improved over the years (twice per year, 
in S1/CS4234 and S2/CS3233)…
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All the best for your Midterm Test

• The true class ranking will emerge after this
• At the moment too many are tied at 15/15 

(and soon at 20/20)
– I will grade PS4 early birds soon
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